ACTA MATHEMATICA VIETNAMICA
Volume 20, Number 1,.1995, pp. 43-53 .

-~ THE IRREDUCIBLE MODULAR REPRESENTATIONS
OF SEMIGROUPS OF ALL MATRICES |
TON TI{AT TRI
Abstract, Let M, = M (n, Fq) be the semigroup of allin X 'n matrices over the
field F,; of q elements. By using Dickson’s- invariants we construct a complete
set of g™ distinct irreducible Fy[M,] modules, called H, s and give isomorphisins

between them and the modules F'® which were constructed i in [3] by. the ”Weyl
_ module” construction.

1. Introduction.

Let p be a prime number and F, the tield;o'f pelements. Let H = (F,)"
be a p-abelian group, BH+ its clnssifying space with a disjoint basepoint.
The problem of finding a stable splitling BH+ into 1ndecomposab1e wedge
summands leads to the study ‘of modular representa,txons of M (n,F }, where
M(n, F,) is the semigroup of all matrices over F,.

A decomposition ‘of the identity in F,[M(n, F, )] into orthogonal 1dempo—
tents is shown to induce a stable splitting of BH. It is also known that
up to homotopy type, the summands constructed from a prlmltwe orthogona,l
- idempotent decomposition are indecomposable and are in one to one correspon-
dence with the irreducible representations of M(n, F,). Moreover, the multipli-
cities of these summands are closely related to the dirhensions of corresponding
irroducible representations | - - I

Now let M, = M(n,F, ) be the sermgroup of all n xn matrlces over the
field F, of ¢ elements. In {3] Harris and Kuhin noted that the "Weyl module”
construction of irreducible Fy[GL(n, F;)]-modules in fact constricts F (M-
modules: They followed the above construction as glven by James and:Kerber

and constructed the complete set of ¢" irreducible _Fq[Mn]—modules, called
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F("’l""’“"), 0<ai—ajy <g—1lfori=1,...,n—1and OIS ‘dz,, ._<'4‘q'— 1.
However, up to now there is no standard method to determine the dimensions
of these irreducible Fy[M,]-modules.

In this paper, let Fy[zq,...,2n] be the commutative polynomial algebra
in n indeterminants; zj,... ,n, over F; and let M, act on Fy[z1,-.. ,2a] in
the usual way. By using Dickson’s invariants we construct a complete set of

q" distinct irreduci‘ble Fy[M,] modules, called Hg,,...,8.): 0 £ B < ¢ —1for
¢ =1,...,n. Particularly, when Fy is the ﬁeld of two elements, the dimensions
of modules H,...0,1,0,...,0) where 1 sta.nds at the i-th posﬂ;lon é.re determined.

To state the main results we recall that the Dickson invariants L, = Lp(z1,

. Ty ) are defined by

1 Tn
Ln= wg 17?,
: _ . zgn-l ;,_-;g::‘_l |
The_n cr;Lﬁ = (det G)Ln for.’o.'.e M,. Forr_-ﬂ‘:= (B1,--- ,ﬁrnrj,rwe denote _ o
L =_'1'[L?* € Fylar,... . 2al.

THEOREM 1. 1 Let Hy s be the F, [M,,] submodu]e of F, [zcl, .. ,x,] generated

{Hﬂ B= (ﬁn -,ﬂn) 0<ﬂ; q-lforz—l 7}
is a complete set of g" distinét 1rreduc1bIe ‘modules.

. Denote GL, = GL(n,Fy). If His an Fy[M, ]—module, we shall denote by
rcsG £, H the Fy[GLy]-module obta.med by restriction of the set of operators on
H from F [Mn] to Fy[GLa].

COROLLARY 1.2. {H{, 5 6y = restly (Higii. ) 0S Bi Sq—1fori=
1,...on—1and 1 < B, < ¢—1} is a set of (g = l)gq_r"“'1 distinct irreducible
- F, [GLn]-moduIes T
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THEOREM 1.3. For1<:<n,0<ai—ai1 <¢—1,0< o, < ¢ —1, we have
Flot. an) o Hiay—ag cnor—on,an) 35 F. [M ] — modules.

When F, is the fleld of two elements we have

PropPosITION 1.4,
~dim He,..,0,1,0,..,0).= o

ny

where 1 stands at the i-th position
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2. The ?Weyl module” construction.

ProposiTION 2.1 [3,6.3].: There are Fy[{M,]|-modules W¢, defined for
a = (ay,... o) with a; —aj41 2 0, 1 = 1,...,n and a, > 0 having the
following properties: '
i) W2 is a submodule of VO™ where V = (F;)™ and m = a1 + - - - + an.
ii)Let a+1={(a1+1,...,an+1). Then Wt = W*.Q (det).
L In—l 0 . ‘
iti} Let e,y =- . Then e,_yW{anan-1,0) — lor, ,@n-1) 49

0 0
F, [M _1]—modules '

PROPOSITION 2.2 [3, 6 4] There exists a bJImear form ¢*: W x W* —s F,
such that ¢*(mz,y) = ¢*(z,m'y) for m € M,, and z,y € W* (m' is the

transpose of m).

CLet W§ = {we W*: ¢*w,v) =0forall v € W*} and F* = W/WF.
These are F,[M,,]-modules.

ProrosITION 2.3 [3, 6.6]. Let o = (@1,... ,0m) be such that 0 < a; —aiq1 <
g—-lfori=1,... ,ﬁ——l and 0 < a, £ ¢—1. Then
i) Fotl — o @ (det), |
i) epg Florr—san-1.0) = plon,.an-t) a5 B (M, _]-modules.
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THEOREM 2.4'[3,6.1}. {F(oiman) : 0 < oy —ajp; <g—1fori=1,...,n—
1 and 0 < a, < g — 1} is a complete set of irreducible Fy[M,]-modules.

3. Proof of Theorem 1.1 and Corollary 1.2.

According to Theorem 2.4, F,[M,] has a complete set of g™ irreducible
modules. Therefore it suffices to prove that the modules H 5 are irreducible and
distinct. : :

Let T, be the Sylow p—subgroup of GL conmstmg of all upper tr1a.ngular
matnces with 1 on the main dla.gonal where P is the characteristic of Fy
and B, the subgroup of GL, consxstmg of all 1 upper tr;a.ngular matnces For -
each nonnegative integer m, the homogeneous polynomials of degree m form a
subspace P, in F, [:1:1, - +&p]. Pm is a Fy[M,]-submodule of Fy[zy,... ,z.].

fzisa T mvana.nt in Pp,, then the one dimensional space spanned by z
will be an 1rreduc1ble'Fq[Tn] module. In [4] Huynh Mui showed that

Fq[xl,mz,. e ,in]T".=' FQ[VI,-. .. ,Vn],

where Vi = Vi(z1,..., i) = [lay,. ac_seP, (0121 + ..o+ i1z + 25).

We note that if o = (a;x) is an element of By, then ¢.V; = ay;V; fori =
1,...,n Leti;,...,i, be nonnegative integers and M,-l,,__",';n the one-dimensional
spaee spanned by Vf‘ -++Vi» Then M, ... in -
that Mi,... i, = My, i, 2 Fy[Ba]-modules if and only if i,- = z';. mod '(q - i)
for1<j<n. ' T ) . o

Set Lj, . 5 = L.k(a:jl\,' ‘ ij’k) Let = (b,... ,,3,,) with 0 < ﬂ, < q -1
for i = 1,... ,n. We define Ug by mductmn as follows S

is a Fy[By]-module. It is obvious

- Set Ug,0,.. ,0) = Pp,. Suppose that Uy, .. ”3,-_1,0.,_-_ ,0) are defined for 2 <
£ < n. Then we put | '

U(ﬂl 3o ;ﬁl :0:"- ).0), = ’ | ) Z 7 H - ‘ LJIJI J:E U(ﬁl: ﬂl—l;br'-:' )D)'

hji' ’l>0 T 1<j1<“'<j£$"-

ZI<J1< <J!<ﬂ Jl Jf—ﬁt

Obviously Ug are F;[M,]-modules. - IR,
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LEMMA 3.1. Let § — (Bir-ew Ba) With 0 < B; < g—1fori = 1,... ,n
Let f(z1,...,%,) € Ug be a T, invariant, then f(zy,.. y@n) = al? for some
a¢c F,.

PROOF. Let £ be the largest integer in {1,...,n} such that g, # 0. Since
f(z1,... ,z4) is a T, invariant, flz1,...,20) € Fy[V1,...,V,]. We note that
if é(ml,... 1&n) € Ug and for 1 < i < n, itri.s easy to show that degz, g <
qf. ‘Therefore deg,,f < ¢f. As degs, Vi = ¢!, it ‘implies f(z,... ;) €
F,Vi,...,V¢): Taking ¢ = (1; ' (()]) € My, we get o.f(z1,...,
Tn) = f(21,... ,Z5). On the other hand, f(:z:l, oo @) EUgsoo. fz1,... ,2,)
= 'Lﬂ‘ u' for some u' € Ugg, . .\Bt=1,0,...,0)- From this we have f(zi, ... ,:z:n)'='
L‘B ‘.u’. In [4] Mui showed that Ly = V; -+ V;.. Therefore Lf ¢ is a T, invariant,
so ' is also in U(ﬁ1.... Beo1,0,m D)0 | '

Repeat this procedure for v’ and so on. Finally we have

: ¢
. f(xlr_""xﬂ) =aHI)f’

for some a € F, and the leﬁlma is proired.
We note that L; = V; ... V,-. Hence

Lﬁ —_ Lﬂ1, ,ﬁn —_ Vﬂnvﬁn""ﬂn 1. Vﬂn+"‘+ﬂ2+ﬁ1

n—1

3.2 THE MODULES Hg ARE IRREDUCIBLE. For fixed ﬂ (ﬂl, . ,/‘3,,_), ﬁote _'
that Hg is a Fy[M,]-submodule of U 5. Let N be a nonzero F,[M,]-submodule
of Hg. We consider N as an F,[T},)-module by restriction of the set of operators
on N from F,[M,] to Fy[Ts,). Then N contains a one dimensiona) trivial F,|T.)-
submodule (see [1], Ch.8, Exercise 1) which is spanned by some T, invariant
flzr,...,2,) # 0in Ug. According to Lemma 3.1 f(ml,  yTp) = aLﬁ for
some a =,£ 0, @ € F,. Since aLf € N and N is a F [M ]—modu_le, N = Hﬂ
From this we conclude that H 8 is 1rredu01ble _ _

To prove that modules H p are dlStlIlct we need the followmg notatlons and
lemmas. '

Let N; be the set of ele:hents of M,, with ra.nk <t for0<i<n.
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DEFINITION 3:3. Let M be a Fy[My,]-module, M # {0} For0 <1< n, Misi
singular if and only if Ni_1 M = {0} and N;M # {0}. '

LEMMA 3.4. Let U,V be two Fy[My]-modules, U is ¢ singular and Vs j
singular. Tfi# j then U #V as Fy[My]-modules.. Vo

PROOF It 1mmed1ate1y follows from the assumptions on U and V.

LEMMA 3. 5 Let B = (Biy-++ »Bn) 1 mtho < ﬁ, <g-1 for i ,_‘1' n. Then
() Hipy,eoo 80 = Hipryr a-2,0) ® (det)P.

ii} Let en—1 = n0—1 0

. )- Then en'—lH(ﬁls yﬁn—1,0) = H('gl, -;ﬂn—l) as
F 9 My —1]-modules. : . _

PROOF To prove the dssertion 1) we note that L(F1-fa) = Lﬁ"-Lm i ’ﬂ"-i;b)
For o € M,,, we have 0. L(ﬂl' hn) = Lﬂ“((det o’)B“a L(ﬁ“ "ﬁ"-l"’)) Therefore

H(ﬂlr-" ,ﬁn) - Lgﬂ H(ﬂl yons uen—lao)'

If rank o < i, then 0.2y, ... | o.c; is linearly dependent. By definition of L;, this
1mp11es that o.L; = L(a Tiyees yOT§) = 0. For r € Mn ‘TL(ﬁl’ ,ﬁ,,_1,u)) #0
then the first ! columns of the matrix 7 are- linearly 1ndependent where [ is
the largest integer in {1,...,n} such that B # 0. Choose 7' € GLy such

that the first ! columns of matrix " equa.l to the first [ columns of 7. Then
T L(ﬂl! .. ,ﬁn_],.ﬁ)) = T. L(ﬂl: :ﬂn-—lao) So

Lﬁ"(r L(ﬁz, :ﬂn 1:0)) (det T")“‘ﬁn (1- L(ﬁh 1ﬁn 1,.3"))
VFrom thls it follows tha,t - | |

H(JBI: ,ﬂn) = L nH(ﬁh -lﬂn 1)0)

'Let {ul, ,u,.} be a 'bams of H(ﬁl, _,ﬁ" 1,0), then {Lﬁ“ul, ., LAn "u,,}-‘ is a
basis of Hp,,... B0)" ‘Define 7 n: H(ﬁx, Bn) H(ﬁx, .,ﬁ“ 1,0) ®(de’t;)f6u on these
basis vectors by n(Lﬁﬂu,) = ® ¢« where {L} is a basis of (det)ﬁ“ a.nd extend
to’ H(ﬁl, . B ) by hnea.rlty Now let o € My, o = Ek itk O € F We

have
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2(o(LEus) = n(det o) L (o.u))
= (det a)ﬁ"(Z(ak;(uk ®¢)) = (det o) (g.u; @ 0).
k :

On the other hand,
(L) =0 (u; @) =ocu® (det o).,

Sonisa Fq[M ]- homomorphlsm A d1menS10n count then shows that 5 is a
F,[My)-isomorphism and the assertion i) follows.

The assertion ii) immediately. follows from the definition.

As a Corollary of Lemma 3.5 we have

LEMMA 3.6. Let 8 =(B1,... ,B,) with0 < f; <qg—1fori=1,...,n and |
the largest integer in {1,... ,n} such that f; # 0. ‘Then Hpg are | singular.

PROOF. Fpr o € Nj_,, as in the proof of Lemma 3.5, a.L;I,_,. g = 0 with
1 <5 < -+ < j; < n. Therefore N;' 1"Hﬂ = 0. On the other hand, taking

I 0y
61“:((; 0) we have e, LF = erL(ﬁ"“ﬁ"’ 9 = L8, So Ni.Hg # 0

and the lemma, follows.

3.7 THE MODULES Hg ARE DISTINCT. Let Hg, Hg as in Theorem 1.1 such
that Hg = Hpgr as Fy[My}-modules. We have to prove § = f'. Let.l be
the largest integer in {1,...,n} such that 8; # 0. Then Hy is [ singular by
Lemma 3.6. According to Lemma 3.4 Hg is also [ singuldr. Therefore 8} # 0
and 8 = 0 for [ < i < n. From the proof in 3.2 we see that Hg and Hy
contain respectively unique. minimal F;[B,}-submodules Mg, 1.4 3,... .81_ 14805
and Mﬁ;+----+ﬁ;,---,ﬁ;_l-l-,@f,ﬁ{- So Hy = H‘g as Fy[B,] modules. Therefore

Mgy ttpy st 1,80 = Mpipipy,. g1 48,6 as Fy[Bpl-modules. Thus §; =
B mod (¢g—1). As 0 < f;,5] < g —1it implies §; = ). Let h be the largest
mteger (h < I)such that 8, # ;.- It implies that 8, = 0 and ), = q —1or
ﬁh=0andﬁh—q—1
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- Suppose that §; = 0 and g} = g —1. Letn: Hg = H;, be a Fy[M,]-

isomomhism Then n Mﬂl'l' +|Bf) -;ﬁi I+ﬂlsﬂl ___ Mﬁ;-""""’*’\ﬂ;v--"ﬁ;__l“"ﬂ;sﬂ: as
F [Bn]-modules Therefore ) -

I 2 gment s T 2

1<i<! 1<i<!
i#h . i;éh
for some a # 0, a € F Taking o ‘=-(a;.-_,°) (= M -such that arz = 1,k #

b+ 1 ann = an, b1 = 0, anptr = —1 Gh+1h =1 and % = 0 at other
pos1t10ns we have , : T o L .
Bi g g
77(0’-( H L]-,,.E,i)) -, aLl,...-,h;l,h‘ H T-Ll,... i
1<i<t 1<i<i
7k _ = >

and

. :"1??( H L'f,...,z')iz‘\aL'{,..?,h-—l,h-'i—l H Ll,.__..,i'

1<i<! 1<i<i
. z;ﬁh B . i wh

From thls we see that n is not a F [Mn] homomorphlsm Thls contradlc’mon
shows that there does not ex:st any h (h < l) such tha.t ﬁh ;é ﬂh In other
words 8 = 8" o

If Bp =¢—1and B} =0, the proof is entlrely analogous to the above ‘proof
and ‘Theorem 1.1 is proved.. ' i R T o
3.8 PROOF OF COROLLARY 1.2. Let H(ﬂ 6.3 be a F, [Gi‘ﬁ]‘ module as’in
Corolla.ry 1.2. Then o € M, \GLpn;0.Ly (det)Ln = 0. Therefore 0. Hp,.. 8.

0 Let N be a Fy[GL,}-submodule of H( B Ba)” ‘N can be considered .
as a Fy{M n] submodule of H (B1 e i) by extending the set of operators from

[GL,,] to Fy[M,] with o € My, \ GL,. Then ¢.N = 0.'Since Hg,,. p.) isan
irreducible F, [Mn]-module, = {0} or N-= Hg,, . 4.)- On the other hand
H(ﬁl’___,ﬁ") = H(ﬁl, g,y as Fy- spaces. Hence N = {0} oxr N.= Hig . -,.Bn)
Thus H ( Bryee o8 ) Is 1rreduc1ble Now let Hg = Hy, as F, [GLn]—modules Then
Hg = Hg as F o [M]-modules and therefore 8 = A'. So the modules H/ (Brr. B )

are distinct and the corollary is proved.
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4. Proof of Theorem 1.3.

LEMMA 4.1. Let o =‘(oc_1,_. ,o.fn_) WJth 0L aj—aip < g-1 fori—1,... ,n—1
and 0 < o, < g—1. Let £ be the largest integer in {1,... ,n} such that a, # 0.
Then F* defined in Section 2 are ¢ singular. - R o

I; 0
PrOOF. Let e; = (0 0) € M for 0.< 7 .< n. By Propos1t10n 23 and

induction we have e, F(@1r-12n) — F("’“ "“‘) and e;Flaan) = for J <
I. From this it implies NpF(o1s:an) 74 0. On the other hand, for each
c € Np_q, rankar =r < L Then g = o1e.02 for some 01,02 € GLn,
o. F("'l' “iem) = ale 0. F(“l’ e} = o1er F("‘“ "““) ‘ﬁ _0. The;."efore

Ng 1F(°‘1’ "“") = 0 and the lemma. follows

4.2 PROOF OF THEOREM 1.3. Because the modules H g in Theorem 1. 1 and F'¢
in Theorem 2.4 respectively form a complete set for F [M ], they are 1somorph1c
to each other up to some permutation. By Lemma 3.4 we need only to establish
isomorphisms between the ¢ singilar modules Hg and the £ singular modules
F“ for 0 £ £ < n. We shall prove this by induction on the £. )

For £ =0, H,... o) and F(0--:9) are nothing but the trivial one-dimensional
module. Therefore the theorem is proved For ¢ > 0, suppose that the theorem
is true for the ¢ smgular modules with ¢ < £.

Let f: F('—_'l’ 5a6,0...,0) o~ H(ﬁ;. v Bes0.. ,0) be' an isomorphism between the £

I

singular modules. Let e, = ( 0) €'M,. Since f is a F,[M,]- isomorphism

we have

£ eeF(“""“" 0)_efH(ﬂ1,-,ﬁc, - 0)-

Then iteratedly applying Proposition 2.3 and Lemma. 3. 5 we get f: F("’l’ ~a0) 22

Hg, ... 8- By induction assumption we have

(o —ayg,i o1 —ag,0) A~ g7,
F B ’ —H(ﬂ'l—ﬂz,--- JOg—1—ceg,0)°

Then
Floa—aemae-1=es0) ® (det)m g'H(af;-az',-:-:,.at—1"01110) ® (det)mv

(oeyye 00 o1,00) A
F yeev g ] o H(Cl']_'—az,

Qg1 — 0,00 )
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From this we conclude that

Hg,,..p0 = H(Of:'—dza--.- W1 e, )
Therefore fy = a3 — ag,... , Bt = at—-l - qr:ﬂz = a; and the '-j?he‘;ref.n_‘-i,s
proved |

4.3 PROOF OF PROPOSITION 1.4- Let U be the F vector space genera,ted by
the set : ' g The D L
{Lpy, et 1Sk <<k <m0

Obvibgsly Uisa F, [Mn]-module AsL; = Lll,_,, ,, E'«U,‘Kw;héye H,.. ,b',l_,(:],__,.,:,b) <

U. Let ky,... ,k; be such that 1 < k; < < oo+ < ki S n. Take o = (aj¢) € M,
such tha.t Gk = 1 1 <j <17and a_,g = 0 at the other pos1t10ns " Then

oLy, ;= Lkl k:» and therefore Hyg Loy =Us
7 Now we show that the set e

{Lkl 1 < kl <.- <,ki _<_n}

is independent.
Let

E' Apy ki Ly ke = 0.
1<k < <ki<n

For each tuple (ki;..s &) with 1 < ky < -+ < ki <'n, take ok, .k = (aus) €
M., such that ay, = 1..w1th u=v= ki,... ki and ay, = 0 at the Q_t_her

positions. Then

le...k.--( Z : akl...k;Lkl, )—— LT 7 Lkl, = (.
, 71$’¢1<:_-"_<k|'$ﬂ. . . )

So ak,..k; = 0. Thus the set
| {L_kl’---,’?i.i. 1<k <~ <k <n}

is independent. Therefore |
'dei_m H(o,.,_.,o_,l,o,...',o) -—_-.._dinflU- = C::a -

and the proposition is proved.
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