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ON THE SUBDIFFENTIAL OF AN UPPER ENVELOPE
OF CONVEX FUNCTIONS

M. VOLL E

Abstract. We exiend a Rockafellar’s result for the subdifferential of the upper

envelope j = sup f, of a finite collection fl , -+, fr of convex pi'oper functionals
1£ign
on a locally convex HausderfF topological spa(,e X, Assummmb that f1, -, fa=1

are finite and continuous at a poinil g of X where fﬂ is ﬁmf.e we show that, for
any point x of X such that f(z) is finile. o

(+) 85 (x) = co{0fi(z) : file) = f(=)} + Y N(dom fi,x),

i=1

" where ¢o stands for thé convex hull and N{dom f;, z) for the normal cone to the
domain dom f; of f; at x. We also give an application of (%) to asymplotical
analysis related to a result by Choquet, and prove that (x} remains irue when the
epigraph of the Legendre-Fenchel conjugate of f is weak* complete and pointed,

~ and the f; are lower-semicontinuous.

1. Introduction

Among the classical rules of subdifferential calculus ({4] [12} [13] [14]...) one
of the imqst' mnportant occurs when the case of an upper ém_rel_qpe of convex
functions is considered. Let us recall that given a Hausdorff locally convex
’gopblqgical space X with dual X *,. h:X — RU {+co} a convex function, x €
dom h := {z € X : h(z) < +o0}, the subdifferential of . at = is deﬁned as
follows:

Oh(z) = {yi eEX*; VueX h(u) - h(w)lz {u - z,y)}

We now consider a finite collection fi,-- - , fn of convex functions on X with

valued in RU {+c0}, and set f = sup f; for the upper envelope of the f;.
1<i<n
Assuming that f is finite and continuous-at a given point z of X, there exists

Received Febru#ry.lﬁth,_ 1994
1991 Mathematics Subject Classification. 49 J 52. ‘
Key words: Subdifferential caleulus, convex duality, asymptotical analysis.



138 M. VOLLE

a formula for the subdifferential of f at z. This formula (see: [4] 16].[16]...) says
that

df(z) = co {afz(x) h(l) = f(ﬂ»‘)} (1)
where o denotes the converc hull There is o more geneml formula due to
Rockafellar {15, Theorem 4] that requlres the 11onv01dness of 9f;(z) and also a
qualification condition depending on z. Our purpose is to show that a general

_formula holds at each pomt of the space; and w1thout assurmng thc nonvordness

of dfi(x), under the cla,ssxcal cond1t1on below ,

There exists (Ba e X .such tha_t f1 . i, f,,___'l-f -
(are finite and )

continﬁoue'é_t ro and folze) €R- o (2)

Very simple examples, (see [17]) show that (2) is not sufficient to ensure (1)
neitheér the: assumption of- [15 Themem 4] Never’rhelese (2) 1eads to thc

classical. Morea,u—Rocafellar rule

L

for all z € X (see e.g.[6, Theorem 1; p:200]), where the addition in the second

member. is. the'a.lgebraic sum of sets..

*“We are goitig to show'that (2) is'also useful for dSmputing the subdifferential
of f at any point'wheré f is finite. For domg this, we shall werk'in the sp1r1t of
[15] [11], an and also use the norinal cone to the domain of a futictional (see e.g.
[6]). Recall that the normal cone of a cotivex subset C of a locally convex spa.ce N
U, with dual U*,‘at a pomt z E Cis gwen by R

N(C‘ :c) = {v € U* Vu e C‘ (u—-’c,v)g 0}
B_;[ mtroducmg the 1nd1ca.tor functlon IC of C -I | T
| Te(u)y= 07 u e aind'l"(j(u) = 400" 'i’f' é; ¢ U\d,‘ St
the normal cone of C at = c01nc1des with,the subd1fferentlal of Ic at T

(C' m) 8Ic(rc)
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Given a convex function g+ X ~ RU{+oo}, there is a fundamental relation
between the subdifferential of g at @ € domg and the normal cone to-the
epigraph

E(g) = {(:c r) € _X X H g(a,) < r}

of g at (a: g(:z:)) na.mely (see e.g [3]),

dg(z) = {y € X*; (y,~1) € N(E(g).(z,9(x)))}. (4
We need to complete the above relation by the following observations.

LEMMA(see, for instance; Durier [5, Lemma 3]). Let g be a convex function
on X with values in RU {+oc},z € domg.and (x,t) € E(g). Then, for any
(y,5) € X™ xR,

3) (4,5) € N(E(g), (a,8) = s < 0
For any (y,s) € X*x] —oco0,0[, . .

b) (v, s) € N(E(g),(z,8)) = t = J(:ﬂ) and — %€ Jg(z).
For any y € X*, ' ' o

c) (y,0) € N(E(g), (=,1)) = ve N(dom g,%)-

Proor. a) Let (y,s) € N(E(g), (3: t)). As (1: t+1) belongs to E(J) we have
0> (a:—:c,y)—l—s(t-!»l-—t)—s

b) Let (y,s ) € N(E(g) (z; t)) with s < 0. ‘As N(E(g) (1: t)) is a cone, we
have (-1 —1) € N(E(g) (:z: t)) On the oth(,r hand as (q,g(:c)) € E(g).

0> fo - 2,-¥) = (g(z) ~ ) =t~ g(z),

so that ¢ = g(:r:) Therefore, (— 1 ,—1) € N(E(g) T g(a:)) and, by (4), —% €
dg(z). S
c) Let (y,O) € N(E(g), (:r: t)) For any u € dom g, (u, g(fu)) € E{g), so that

03 (u—a,p) + 0(g() — 1) = {1 — 2,),

or, in other words, y € N(dom g, :c)
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., 2. A general formula

" Let us retarn'to the convex functions fi - - , fat X — RU {400} verlfymg

the condition (2), and to thexr upper envelope f = sup fi.
. 1<1<n

THEOREM. Let f1,---, fn be convex functmns on the Ioca.ﬂy convex space P4
with values in R U {+co}.” Assuming the emstence of g € dom fn such that

f1s-- s fn—1 are finite and continuous at wo, we have, for any = € dom f,
: o . i=1

- PROOF. Condition (2) amhounts to sayingthat’ . -
int E{(f;)N...N int E(fn 1) ﬂE(fn) 76 a,

and we then have ([17 P1op051t1on 1, p. 205], see ‘also (3)) for.any « € clom fy
wmﬂemm—meme<m) ,,-m

Let us take y € 3f(:L) By (4) and (5) we h'we

y:""]- Z(Jn 3)

W@M%NMHMWWmhmwﬂlwﬂ
By Part ‘a) of the lemma all, the s; are 110np051t1ve Hen(,e there exist
pE {1, cym), i1, by € {1 -,n}, and possibly pomts J1a " 2 dn—p €
{1,-- ,n} such that s;; <-Oforany k'€ {1,--+,p}; Som'si, = —1,85 = 0 for
any { € :{1,'- = p_}:. By Pefrtis_ b) and c) of tllellemma_ we then have
?:'“ € 3f,k(::,) fzk(a:) f(:z,) for edch L € {1 ,p}, =
S N L
Yie EN(domfh,m) for ea.ch EE {1 . ,n—p}.
Therefore, Lo

n—p

P
Y e Z;Siu Yis )+ ZN domfn, )
k=1




UPPER ENVELOPE OF CONVEX FUNCTIONS 141 \

and, a fortiori,

v € cof{dfu(a): fule) = f(&)} + Y N(dom fi,0)

=1 -

It turns out that the reverse inclusion
8f(z) D co{dfu(z) : filz) = f(z)} +_ N(dom f;,z)
. i=1

alwajéholds. To sec this, set I{ to be the set of indices k € {1,5-_- ,n} such
that fr(2) = f(z) and consider, for each k¥ € K, yi € '3fk(a:),)tk > 0 with
SrerAr = 1, and also z; € N(domaf;,x) for each ¢ € {1,-+-,n}. It must be
proved that >, Aryr + Z?zlhz.,- belongs to 8f(z). Now we have, for any
ke K,ue X, | |

Flu) = £(2) 2 o) = fulo) 2 (= 2m),

and consequently,

Flu) = fl@) = (u—a, Y Aeys)-

keK

Moreover, for any v € dom f = N, dom f;, we have
('U.'. - :B)zi) <0, Vi € {1?”' ,fl-}-

It follows that for any u € X,

(23

)= f) 2 = Y M) + D =)

ke K N
In other words, 3 e Akyk + 2 imy 2 € Of(2)-
REMARK. In the case when fi,---, fn are finite and continuous at x, one has

2 = N, int dom f;, so that for each 7 € {1,---,n}, N(domfi,d) = {0}. We

then recover the classical formula (1).
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3. Application

Now we give an ;_appli.cat‘ion_: of the previous theorem to the asymptotical *

analysisof a closed convex hull. Given nonvoid closed convex subsets C 1y "

,Cn

of the locally convex Hausdoff space U with dual U”, we are going to apply the

theorem in the case when X = U™ is equipped with a topology compatible with
the duality between U* and U. We also take f; = G¢,,1 <4 < n, where,
for any nonvold subset A of U, (‘5 A denotes the suppoﬂ: function of A which is

deﬁ.ned for any v E U* by | .
S4(0) = sup{{u, ;,) we 4}
We thon have (sée e.g. [9]) :.
| o A= 064(0).
The domain of _6; ‘is the so ca.lleci bo.rrier of A

b(A) dom &, A

When A is closed and convex,,tho negative polar. cone of b(A) is known to be

" the asymptotic cone of A :

N(b(A),0)= as A = m‘A(A —a), for every a € A.

A>0

By assuming that

S¢,, - 8¢, are finite and continuous at a point

_where B¢, is finite,

‘and by virtue of the relation =
o= By proin s
121:2,1 Cs ce U.‘:& G

the theorem, which we apply at the origin, says that

G

()
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w5 Ci = 8 sup 6c,)(0) = eo U osc o + ZN(b(c ).0)

i=1 1<i<n i1

= co{UC}-I—Z as Cj.

We can theh state

COROLLARY 1. Assume that C1,--- ,Chr are closed convex subsets of a locally

convex Hausdorff space satisfying the condition (6). Then
n T n .. n '
C_OUCZ'= co UC,—+Z as C}.
i=1 =1 i=1 -

REMARK. Assuming that U* is barrelled, (6) is equivalent to (cf [14])
int b(Cy) M-+ N int B(Cro1) NH(C,) # 0.

That is, in fact, equivalent to the following assertion (cf. [7, Proposition 3,
p.206)]): For any z; € as C1,-+ ,%a € a8 Cn such that Y ., @i = 0, one has

$1="'=(En:0.

The formula given in Corollary 1 has been established by Choquet |2, Coro-
llary 6] in a slightly different context: The closed convex sets €, -+ ,Cr, were
assumed to be included in a given weakly complete pointed (i.e. containing
no line) convex set. Let us interpret condition (6) in such a framework. For
doing this, we have to use the Legendre-Fenchel transformation. Recall that
~ the Fenchel conjugate of a function g : U* — RU {+o0} is given, for any u € U,
by

g*(u) = sup {{u,v) — g(v)}.
veU*

Of course, an analogous notion holds for the functions defined on U. By the
Moreau-Fenchel duality Theorem, any cornvex lower-semicontinous functional

f:U—=RU {+0co} coincides with its bi-conjugate : f = f**. In particular, the
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* Fenchel transform of the support function of any subset A of U is nothing but

the indicator fu_n_ction of _thé clo_sed convex h};_dlpf A:
(84)" = Lza.

~ The proposition below is a ‘stép toward the assumption made by Choquet.
It involves Weakly locally compact pointed closed convex sets a.nd the1r support
functaons ({1], [8])

[

PROPOSITION 1. Let A1 yr A be nonvoid subsets of a Iocally convex space U
whose dual U* is equzpped W1th the Mackey topology The foﬂowmg properties
are equivalent : R

a)G4,,..,64, arc ﬁnite'and cont:fﬁuous at a point of U*,

b) e UL, A; is locally compact and pointed. .

PROOF. Let us observe that a) amounts to saying that SuPigig_n G 4, is finite
and continuous at a point of U*. Now, by (7) and [1, Corollary 1.15] this
property is equivalent to b). R T S A

As.o.coosoquénce of Corollé,r;;% 1 .a‘nd Proi;bsitioo i,we éét B

COROLLARY 2. Let C'l, : C be nonvmd closed convex Hausdorﬁ' space.
'Assume ‘that C’l, . C | ‘are mcIuded in a Weakly Iocaﬂy compact pomted
convex set. Then . 0
o | EUC,z co UC’ +Z aSC’

i=1 ) =1 _ :_1

In fact one can also deduce the above corolla.ry from the result of Choquet

([2 Corollary 6]) by noticing the following

PROPOSITION 2. Every pointed closed Iocally compact convex subset of a
locally convex E@ugdozﬁ' space 1s weakly completc._

PROOI‘ et A be a, pomted closed loca,lly co*npact (hence Wea.kly locally
compact) convex subset of the locally convex Hausdorﬁ space U.’ By [1, Coro-
llary 1.15] there exists v € U* such that for any r € R,{a € 4 : {a,v) > r} is
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weakly compact. Now if we consider a generalized Cauchy sequence (u);g; for

the weak topology with values in A, there exist 49 € [ and r € R such that
Vi > ip; {ui,v) 27

Therefore, all the u; with ¢ > 79 belong to a weakly compact subset U and the
generalized sequence (u;)ics has a cluster point in A which is also the limit of
(ui)ier- o |

It is tempting to apply Choquet% formula to the epigraphs of convex func-.
tions for obtaining subdifferential calculus formulas. Such a-method has been
partially applied in [10] for the subdifferential of the sum of two convex func-
tions. Here we consider the case of the supremum of a finite collection of convex

functions.

THEOREM bis. Let fi,--- , fn be lower-semicontinuous convex proper functions
on the locally convex space X. We assume that the ep:graph of thc Fenchel
_ transform of the upper envelope f = sup1<2<n f, is pomted and Weak wmpletc

At any point x € dom f, we then have
9f(x) = co (0fu(a) : fiulz) = f@)} + > N(dom fi,a).
: g i=1 .

PROOF. In the proof of Theorem, we have yet observed that the inclusion D
always holds. Let us prove the other inclusion. Take z € dom f and y € 8f(z).
The functional f* — (z,-} is bounded from below@)n' X* by the real number

—f(z) and reaches its infimum at the point y. It follows that

(v, F(2)) € E(f* = (z,)). (8)

Let us notice that E(f* —{z, ")) coincides with the weak* closed convex hull of -
the E(ff — (z,+)), 1 € i < n. Now, as E(f*) is weak® complete and pointed,
the same is true for E(f* — (z,-)). By [2, Corollary 6] we then have

E(f*--——- ($,>) = €O U E(f:‘ - (;i;’ )) + Z: as B(fF — (m,)) (9)

1<i<n
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- At this stage:let us recall (see e.g. [9]) that setting ¢; := f¥— (z,-} for each
t € {1,---,n}, as E(p;) is the epigraph of the asymptotic functional ‘

as i = Gdom yy - (10)
By:the lower-semicontinuity of the f; we also have
GO =file+) foramy i€{loin) (1)

As @p1,- *: 5 Pn are bounded from below (by —f(z)), as ¢; takes only.non

negative values :
(.0; >0= as %(0) for cmy L ;67{1;_- -ii"';’f_a}f e ag)
Fxom (10), (11) we deduce that - S L
A{z€ X*, as c,o,(z) =0}= N(domcp, ,0) (dom:fi,m-j.f . ('13)

Now by (8) and (9) there emst (y1,31), . (yn,Sn) respcctwely in E(npl)
E(tpn) Al > 0 s An > 0 with P /\ P = 1, (zl tl) (zn, n) respectwely‘.
in E(as ¢;),...,F (as cpn) such that C

(- f(w))—Zm,s; 42(;,,t)

In pm t1cular

) —f(m) = ZAtS‘I +th ConEL R I S |
2 Z_’\lﬁoz(yz)'l':zt

" >Z/\(f (yz)—-'w Yi )+Zf

>ZA( f(m)>+2n-'—f(a)+2t

It follows that Zi lt <0 But by’ (1‘3) all- the t are non negatlve “Hence we

have
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and, by (13),
z; € N(dom f;,x) for any i = {1,... n}.

It remains to show that for any ¢« = {1,--- ,n},
A > 0= oiyi) = —f(a).

For otherwise we have

I

—f(w) =30 e 2 D dipily) > D0 (= F() = — flx),
=1

=1 =1

which is absurd.

To conclude the proof it suffices to observe that ¢;(y;) = — f(x) entails, by

using Fenchel inequality,
—Hz) £ —filx) < £ (yi) — (2, 05) = wilyi) = - f(=),

that means
filz) = f(z) and y; € 8fi(x).
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