ON THE SUBDIFFENTIAL OF AN UPPER ENVELOPE OF CONVEX FUNCTIONS

M. VOLLE

Abstract. We extend a Rockafellar's result for the subdifferential of the upper envelope $j = \sup_{1 \le i \le n} f$, of a finite collection f_1, \dots, f_r of convex proper functionals

on a locally convex Hausdorff topological space X. Assumming that f_1, \dots, f_{n-1} are finite and continuous at a point x_0 of X where f_n is finite, we show that, for any point x of X such that f(x) is finite.

(*)
$$\partial f(x) = \operatorname{co}\{\partial f_k(x) : f_k(x) = f(x)\} + \sum_{i=1}^n N(\operatorname{dom} f_i, x),$$

where co stands for the convex hull and $N(\text{dom } f_i, x)$ for the normal cone to the domain dom f_i of f_i at x. We also give an application of (*) to asymptotical analysis related to a result by Choquet, and prove that (*) remains true when the epigraph of the Legendre-Fenchel conjugate of f is weak* complete and pointed, and the f_i are lower-semicontinuous.

1. Introduction

Among the classical rules of subdifferential calculus ([4] [12] [13] [14]...) one of the most important occurs when the case of an upper envelope of convex functions is considered. Let us recall that given a Hausdorff locally convex topological space X with dual X^* , $h: X \to \mathbb{R} \cup \{+\infty\}$ a convex function, $x \in \text{dom } h := \{x \in X : h(x) < +\infty\}$, the subdifferential of h at x is defined as follows:

$$\partial h(x) = \{ y \in X^*; \ \forall u \in X : h(u) - h(x) \ge \langle u - x, y \rangle \}.$$

We now consider a finite collection f_1, \dots, f_n of convex functions on X with valued in $\mathbb{R} \cup \{+\infty\}$, and set $f = \sup_{1 \le i \le n} f_i$ for the upper envelope of the f_i . Assuming that f is finite and continuous at a given point x of X, there exists

Received February 15th, 1994

¹⁹⁹¹ Mathematics Subject Classification. 49 J 52.

Key words: Subdifferential calculus, convex duality, asymptotical analysis.

a formula for the subdifferential of f at x. This formula (see [4] [6] [16]...) says that

$$\partial f(x) = \operatorname{co} \left\{ \partial f_i(x); \ f_i(x) = f(x) \right\},$$
 (1)

where co denotes the convex hull. There is a more general formula due to Rockafellar [15, Theorem 4] that requires the nonvoidness of $\partial f_i(x)$ and also a qualification condition depending on x. Our purpose is to show that a general formula holds at each point of the space, and without assuming the nonvoidness of $\partial f_i(x)$, under the classical condition below

There exists
$$x_0 \in X$$
 such that $f_1 \cdots, f_{n-1}$ (are finite and) continuous at x_0 and $f_n(x_0) \in \mathbb{R}$.

Very simple examples (see [17]) show that (2) is not sufficient to ensure (1) neither the assumption of [15, Theorem 4]. Nevertheless, (2) leads to the classical Moreau-Rocafellar rule

$$\partial (f_1 + \dots + f_n)(x) = \partial f_1(x) + \dots + \partial f_n(x), \tag{3}$$

for all $x \in X$ (see e.g. [6, Theorem 1, p.200]), where the addition in the second member is the algebraic sum of sets.

We are going to show that (2) is also useful for computing the subdifferential of f at any point where f is finite. For doing this, we shall work in the spirit of [15] [11], and also use the normal cone to the domain of a functional (see e.g. [6]). Recall that the normal cone of a convex subset C of a locally convex space U, with dual U^* , at a point $x \in C$ is given by

$$N(C,x)=\{v\in U^*;\ \forall u\in C: \langle u-x,v\rangle\leq 0\}.$$

By introducing the indicator function I_C of C,

$$I_C(u)=0$$
 if $u\in C$, and $I_C(u)=+\infty$ if $u\in U\setminus C$,

the normal cone of C at x coincides with the subdifferential of I_C at x:

$$N(C,x) = \partial I_C(x).$$

Given a convex function $g: X \to \mathbb{R} \cup \{+\infty\}$, there is a fundamental relation between the subdifferential of g at $x \in \text{dom } g$ and the normal cone to the epigraph

$$E(g) = \{(x,r) \in X \times \mathbb{R}; \ g(x) \le r\}$$

of g at (x, g(x)); namely (see e.g. [3]),

$$\partial g(x) = \{ y \in X^*; \ (y, -1) \in N(E(g), (x, g(x))) \}$$
 (4)

We need to complete the above relation by the following observations.

LEMMA(see, for instance, Durier [5, Lemma 3]). Let g be a convex function on X with values in $\mathbb{R} \cup \{+\infty\}, x \in \text{dom } g$ and $(x,t) \in E(g)$. Then, for any $(y,s) \in X^* \times \mathbb{R}$,

a)
$$(y,s) \in N(E(g),(x,t)) \Rightarrow s \leq 0$$

For any $(y, s) \in X^* \times]-\infty, 0[$,

b)
$$(y,s) \in N(E(g),(x,t)) \Rightarrow t = g(x)$$
 and $-\frac{y}{s} \in \partial g(x)$.

For any $y \in X^*$,

$$(x, 0) \in N(E(g), (x, t)) \Rightarrow y \in N(\text{dom } g, x).$$

PROOF. a) Let $(y,s) \in N(E(g),(x,t))$. As (x,t+1) belongs to E(g), we have

$$0 \ge \langle x - x, y \rangle + s(t + 1 - t) = s.$$

b) Let $(y,s) \in N(E(g),(x,t))$, with s < 0. As N(E(g),(x,t)) is a cone, we have $(-\frac{y}{s},-1) \in N(E(g),(x,t))$. On the other hand, as $(x,g(x)) \in E(g)$.

$$0 \ge \langle x - x, -\frac{y}{s} \rangle - (g(x) - t) = t - g(x),$$

so that t = g(x). Therefore, $(-\frac{y}{s}, -1) \in N(E(g), x, g(x))$, and, by (4), $-\frac{y}{s} \in \partial g(x)$.

c) Let $(y,0) \in N(E(g),(x,t))$. For any $u \in \text{dom } g,(u,g(u)) \in E(g)$, so that

$$0 \ge \langle u - x, y \rangle + 0(g(u) - t) = \langle u - x, y \rangle,$$

or, in other words, $y \in N(\text{dom } g, x)$.

2. A general formula

Let us return to the convex functions $f_1, \dots, f_n : X \to \mathbb{R} \cup \{+\infty\}$ verifying the condition (2), and to their upper envelope $f = \sup_{1 \le i \le n} f_i$.

THEOREM. Let f_1, \dots, f_n be convex functions on the locally convex space X with values in $\mathbb{R} \cup \{+\infty\}$. Assuming the existence of $x_0 \in \text{dom } f_n$ such that f_1, \dots, f_{n-1} are finite and continuous at x_0 , we have, for any $x \in \text{dom } f$,

$$\partial f(x) = co \left\{ \partial f_k(x); \ f_k(x) = f(x) \right\} + \sum_{i=1}^n N(dom f_i, x).$$

PROOF. Condition (2) amounts to saying that the same and the same

int
$$E(f_1) \cap ... \cap \text{ int } E(f_{n-1}) \cap E(f_n) \neq \emptyset$$
,

and we then have ([17, Proposition 1, p.205], see also (3)) for any $x \in \text{dom } f$,

$$N(E(f),(x,f(x))) = \sum_{i=1}^{n} N(E(f_i),(x,f(x))).$$
 (5)

Let us take $y \in \partial f(x)$. By (4) and (5), we have

$$(y,-1) = \sum_{i=1}^{n} (y_i,s_i),$$

with $(y_s, s_i) \in N(E(f_i), (x, f(x)))$, for any $i \in \{1, \dots, n\}$.

By Part a) of the lemma, all the s_i are nonpositive. Hence there exist $p \in \{1, \dots, n\}, i_1, \dots, i_p \in \{1, \dots, n\},$ and possibly points $j_1, \dots, j_{n-p} \in \{1, \dots, n\}$ such that $s_{i_k} < 0$ for any $k \in \{1, \dots, p\}, \sum_{i=1}^n s_{i_k} = -1, s_{j_\ell} = 0$ for any $\ell \in \{1, \dots, n-p\}$. By Parts b) and c) of the lemma we then have

$$-\frac{y_{i_k}}{s_{i_k}}\in\partial f_{i_k}(x),\ f_{i_k}(x)=f(x)\quad \text{for each}\quad k\in\{1,\cdots,p\},$$

$$y_{j_{\ell}} \in N(\text{dom } f_{j_{\ell}}, x)$$
 for each $\ell \in \{1, \dots, n-p\}$.

"我好好,我们的我就像不到"爱女

Therefore,

$$y \in \sum_{k=1}^{p} -s_{i_k}(\frac{y_{i_k}}{-s_{i_k}}) + \sum_{\ell=p}^{n-p} N(\text{dom } f_{i_\ell}, x),$$

and, a fortiori,

$$y \in \operatorname{co}\{\partial f_k(x): f_k(x) = f(x)\} + \sum_{i=1}^n N(\operatorname{dom} f_i, x).$$

It turns out that the reverse inclusion

$$\partial f(x) \supset \operatorname{co} \{\partial f_k(x) : f_k(x) = f(x)\} + \sum_{i=1}^n N(\operatorname{dom} f_i, x)$$

always holds. To see this, set K to be the set of indices $k \in \{1, \dots, n\}$ such that $f_k(x) = f(x)$ and consider, for each $k \in K$, $y_k \in \partial f_k(x), \lambda_k \geq 0$ with $\sum_{k \in K} \lambda_k = 1$, and also $z_i \in N(\text{dom } f_i, x)$ for each $i \in \{1, \dots, n\}$. It must be proved that $\sum_{k \in K} \lambda_k y_k + \sum_{i=1}^n z_i$ belongs to $\partial f(x)$. Now we have, for any $k \in K$, $u \in X$,

$$f(u) - f(x) \ge f_k(u) - f_k(x) \ge \langle u - x, y_k \rangle,$$

and consequently,

$$f(u) - f(x) \ge \langle u - x, \sum_{k \in K} \lambda_k y_k \rangle.$$

Moreover, for any $u \in \text{dom } f = \bigcap_{i=1}^n \text{dom } f_i$, we have

$$\langle u-x,z_i\rangle \leq 0, \ \forall i\in\{1,\cdots,n\}.$$

It follows that for any $u \in X$,

$$f(u) - f(u) \ge \langle u - x, \sum_{k \in K} \lambda_k y_k \rangle + \sum_{i=1}^n \langle u - x, z_i \rangle.$$

In other words, $\sum_{k \in K} \lambda_k y_k + \sum_{i=1}^n z_i \in \partial f(x)$.

REMARK. In the case when f_1, \dots, f_n are finite and continuous at x, one has $x = \bigcap_{i=1}^n$ int dom f_i , so that for each $i \in \{1, \dots, n\}$, $N(\text{dom } f_i, 0) = \{0\}$. We then recover the classical formula (1).

the first of the second of the second of

3. Application

Now we give an application of the previous theorem to the asymptotical analysis of a closed convex hull. Given nonvoid closed convex subsets C_1, \dots, C_n of the locally convex Hausdoff space U with dual U^* , we are going to apply the theorem in the case when $X = U^*$ is equipped with a topology compatible with the duality between U^* and U. We also take $f_i = \mathfrak{S}_{C_i}, 1 \leq i \leq n$, where, for any nonvoid subset A of U, \mathfrak{S}_A denotes the support function of A which is defined for any $v \in U^*$ by

$$\mathfrak{S}_A(v) = \sup\{\langle u, v \rangle; \ u \in A\}.$$

We then have (see e.g. [9])

$$\overline{\operatorname{co}} A = \partial \mathfrak{S}_A(0).$$

The domain of \mathfrak{S}_A is the so called barrier of A

$$b(A) := \text{dom } \mathfrak{S}_A.$$

When A is closed and convex, the negative polar cone of b(A) is known to be the asymptotic cone of A:

$$N(b(A),0) = \text{ as } A := \bigcap_{\lambda>0} \lambda(A-a), \text{ for every } a \in A.$$

By assuming that

$$\mathfrak{S}_{C_1}, \cdots, \mathfrak{S}_{C_{n-1}}$$
 are finite and continuous at a point where \mathfrak{S}_{C_n} is finite, (6)

and by virtue of the relation

$$\sup_{1 \le i \le n} \mathfrak{S}_{C_i} = \mathfrak{S}_{\overline{co}} \bigcup_{i=1}^{n} C_i, \tag{7}$$

Make the second of the second of the

the theorem, which we apply at the origin, says that

$$\overline{\operatorname{co}} \bigcup_{i=1}^{n} C_{i} = \partial (\sup_{1 \leq i \leq n} \mathfrak{S}_{C_{i}})(0) = \operatorname{co} \left\{ \bigcup_{i=1}^{n} \partial \mathfrak{S}_{C_{i}}(0) \right\} + \sum_{i=1}^{n} N(b(C_{i}), 0)$$

$$= \operatorname{co} \left\{ \bigcup_{i=1}^{n} C_{i} \right\} + \sum_{i=1}^{n} \operatorname{as} C_{i}.$$

We can then state

COROLLARY 1. Assume that C_1, \dots, C_n are closed convex subsets of a locally convex Hausdorff space satisfying the condition (6). Then

$$\overline{co} \bigcup_{i=1}^n C_i = co \bigcup_{i=1}^n C_i + \sum_{i=1}^n as C_i.$$

REMARK. Assuming that U^* is barrelled, (6) is equivalent to (cf. [14])

int
$$b(C_1) \cap \cdots \cap$$
 int $b(C_{n-1}) \cap b(C_n) \neq \emptyset$.

That is, in fact, equivalent to the following assertion (cf. [7, Proposition 3, p.206]): For any $x_1 \in as C_1, \dots, x_n \in as C_n$ such that $\sum_{i=1}^n x_i = 0$, one has $x_1 = \dots = x_n = 0$.

The formula given in Corollary 1 has been established by Choquet [2, Corollary 6] in a slightly different context: The closed convex sets C_1, \dots, C_n were assumed to be included in a given weakly complete pointed (i.e. containing no line) convex set. Let us interpret condition (6) in such a framework. For doing this, we have to use the Legendre-Fenchel transformation. Recall that the Fenchel conjugate of a function $g: U^* \to \mathbb{R} \cup \{+\infty\}$ is given, for any $u \in U$, by

$$g^*(u) = \sup_{v \in U^*} \{\langle u, v \rangle - g(v)\}.$$

Of course, an analogous notion holds for the functions defined on U. By the Moreau-Fenchel duality Theorem, any convex lower-semicontinous functional $f: U \to \mathbb{R} \cup \{+\infty\}$ coincides with its bi-conjugate : $f = f^{**}$. In particular, the

Fenchel transform of the support function of any subset A of U is nothing but the indicator function of the closed convex hull of A:

$$(\mathfrak{S}_A)^* = I_{\overline{co}A}.$$

The proposition below is a step toward the assumption made by Choquet. It involves weakly locally compact pointed closed convex sets and their support functions ([1], [8]).

PROPOSITION 1. Let A_1, \dots, A_n be nonvoid subsets of a locally convex space U whose dual U^* is equipped with the Mackey topology. The following properties are equivalent:

- a) $\mathfrak{S}_{A_1},...,\mathfrak{S}_{A_n}$ are finite and continuous at a point of U^* ,
- b) $\overline{co} \bigcup_{i=1}^{n} A_i$ is locally compact and pointed.

PROOF. Let us observe that a) amounts to saying that $\sup_{1 \le i \le n} \mathfrak{S}_{A_i}$ is finite and continuous at a point of U^* . Now, by (7) and [1, Corollary 1.15] this property is equivalent to b).

As a consequence of Corollary 1 and Proposition 1 we get

COROLLARY 2. Let C_1, \dots, C_n be nonvoid closed convex Hausdorff space. Assume that C_1, \dots, C_n are included in a weakly locally compact pointed convex set. Then

$$\overline{co} \bigcup_{i=1}^{n} C_i = co \bigcup_{i=1}^{n} C_i + \sum_{i=1}^{n} as C_i$$

In fact one can also deduce the above corollary from the result of Choquet ([2, Corollary 6]) by noticing the following

PROPOSITION 2. Every pointed closed locally compact convex subset of a locally convex Hausdorff space is weakly complete.

PROOF. Let A be a pointed closed locally compact (hence weakly locally compact) convex subset of the locally convex Hausdorff space U. By [1, Corollary 1.15] there exists $v \in U^*$ such that for any $r \in \mathbb{R}$, $\{a \in A : \langle a, v \rangle \geq r\}$ is

weakly compact. Now if we consider a generalized Cauchy sequence $(u)_{i\in I}$ for the weak topology with values in A, there exist $i_0 \in I$ and $r \in \mathbb{R}$ such that

$$\forall i \geq i_0; \langle u_i, v \rangle \geq r.$$

Therefore, all the u_i with $i \geq i_0$ belong to a weakly compact subset U and the generalized sequence $(u_i)_{i \in I}$ has a cluster point in A which is also the limit of $(u_i)_{i \in I}$.

It is tempting to apply Choquet's formula to the epigraphs of convex functions for obtaining subdifferential calculus formulas. Such a method has been partially applied in [10] for the subdifferential of the sum of two convex functions. Here we consider the case of the supremum of a finite collection of convex functions.

THEOREM bis. Let f_1, \dots, f_n be lower-semicontinuous convex proper functions on the locally convex space X. We assume that the epigraph of the Fenchel transform of the upper envelope $f = \sup_{1 \le i \le n} f_i$ is pointed and weak* complete. At any point $x \in \text{dom } f$, we then have

$$\partial f(x) = \operatorname{co} \left\{ \partial f_k(x) : f_k(x) = f(x) \right\} + \sum_{i=1}^n N(\operatorname{dom} f_i, x).$$

PROOF. In the proof of Theorem, we have yet observed that the inclusion \supset always holds. Let us prove the other inclusion. Take $x \in \text{dom } f$ and $y \in \partial f(x)$. The functional $f^* - \langle x, \cdot \rangle$ is bounded from below on X^* by the real number -f(x) and reaches its infimum at the point y. It follows that

$$(y, -f(x)) \in E(f^* - \langle x, \cdot \rangle). \tag{8}$$

Let us notice that $E(f^* - \langle x, \cdot \rangle)$ coincides with the weak* closed convex hull of the $E(f_i^* - \langle x, \cdot \rangle)$, $1 \le i \le n$. Now, as $E(f^*)$ is weak* complete and pointed, the same is true for $E(f^* - \langle x, \cdot \rangle)$. By [2, Corollary 6] we then have

$$E(f^* - \langle x, \cdot \rangle) = \operatorname{co} \bigcup_{1 \le i \le n} E(f_i^* - \langle x, \cdot \rangle) + \sum_{i=1}^n \operatorname{as} E(f_i^* - \langle x, \cdot \rangle).$$
 (9)

146 M. VOLLE 1994 A. C. C.

At this stage let us recall (see e.g. [9]) that setting $\varphi_i := f_i^* - \langle x, \cdot \rangle$ for each $i \in \{1, \dots, n\}$, as $E(\varphi_i)$ is the epigraph of the asymptotic functional

as
$$\varphi_i := \mathfrak{S}_{\text{dom }\varphi_i^*}.$$
 (10)

By the lower-semicontinuity of the f_i we also have

$$\varphi_i^*(\cdot) = f_i(x + \cdot) \quad \text{for any} \quad i \in \{1, \dots, n\}.$$
 (11)

As $\varphi_1, \dots, \varphi_n$ are bounded from below (by -f(x)), as φ_i takes only non negative values:

$$\varphi_i \ge 0 = \text{ as } \varphi_i(0) \text{ for any } i \in \{1, \dots, n\}.$$
 (12)

From (10), (11) we deduce that

$$\{z \in X^*; \text{ as } \varphi_i(z) = 0\} = N(\operatorname{dom} \varphi_i^*, 0) = N(\operatorname{dom} f_i, x). \tag{13}$$

Now, by (8) and (9), there exist $(y_1, s_1), \ldots, (y_n, s_n)$ respectively in $E(\varphi_1), \ldots, E(\varphi_n), \lambda_1 \geq 0, \ldots, \lambda_n \geq 0$, with $\sum_{i=1}^n \lambda_i = 1, (z_1, t_1), \ldots, (z_n, t_n)$ respectively in $E(as \varphi_1), \ldots, E(as \varphi_n)$ such that

$$(y, -f(x)) = \sum_{i=1}^{n} \lambda_i(y_i, s_i) + \sum_{i=1}^{n} (z_i, t_i).$$

In particular, the state of the expectation particular, the back of the control of the entire of the control of

$$\begin{array}{lll} \text{The first point } \lambda_i x_i + \sum_{i=1}^n \lambda_i s_i + \sum_{i=1}^n t_i \text{ in any and } s_i \cdot (\cdot, x) = 0 \text{ for all } i \text{ in } i \text{ in } j \text{ i$$

It follows that $\sum_{i=1}^{n} t_i \leq 0$. But by (12) all the t_i are non negative. Hence we have

$$t_1=\cdots=t_n=0,$$

and, by (13),

$$z_i \in N(\text{dom } f_i, x) \text{ for any } i = \{1, \dots, n\}.$$

It remains to show that for any $i = \{1, \dots, n\}$,

$$\lambda_i > 0 \Rightarrow \varphi_i(y_i) = -f(x).$$

For otherwise we have

$$-f(x) = \sum_{i=1}^{n} \lambda_i s_i \ge \sum_{i=1}^{n} \lambda_i \varphi_i(y_i) > \sum_{i=1}^{n} \lambda_i (-f(x)) = -f(x),$$

which is absurd.

To conclude the proof it suffices to observe that $\varphi_i(y_i) = -f(x)$ entails, by using Fenchel inequality,

$$-f(x) \le -f_i(x) \le f_i^*(y_i) - \langle x, y_i \rangle = \varphi_i(y_i) = -f(x),$$

that means

$$f_i(x) = f(x)$$
 and $y_i \in \partial f_i(x)$.

ACKNOWLEDGEMENT. The author is grateful to Michel Valadier for helpful remarks.

References

- [1] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, 1977.
- [2] G. Choquet, Ensembles et cônes convexes faiblement complets, C.R.A.S. Paris 354(1962), 1908-1910.
- [3] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, 1983.
- [4] A. Dubovicki, A. Milyutin, Extremum problems in the presence of restrictions, Comput. Math. and Math. Phys. 5(1965), 1-80.
- [5] R. Durier, On locally polyhedral convex functions, International Series of Numerical Mathematics, 84 (1988), 55-66, Birkhäuser Verlag.
- [6] A. D. Ioffe, V. L. Levin, Subdifferential of convex functions, Trans. Moscow Math. Soc. 26(1972), 1-72.
- [7] A. D. Ioffe, V. M. Thihomirov, Theory of Extremal Problems, North-Holland, 1979.
- [8] J.-L. Joly, Une famille de topologies et de convergences sur l'ensemble des fonctionnelles convexes, Thèse d'état, Grenoble, 1970.
- [9] P.-J. Laurent, Approximation et Optimisation, Hermann, 1972.
- [10] C. Lescarret, Sur la sous-différentiabilité d'une somme de fonctionnelles convexes semicontinuous inférieurement, C.R.A.S. Paris 262(1966), 443-446.
- [11] B. Mordukhovich, Nonsmooth analysis with nonconvex generalized differentials and adjoint mappings, Dokl. Akad. Nauk BSSR 28(1984), 976-979.

- [12] J.-J. Moreau, Fonctionnelles convexes, Collège de France 1966.
- [13] B. N. Pshenichnyi, Convex programming in a normalized space, Cybernetics 1(1965), 46-57.
- [14] R. T. Rockafellar, Extension of Fenchel's duality theorem for convex function, Duke Math. J. 33(1966), 81-89.
- [15] R. T. Rockaffelar, Directionally lipschizian functions and subdifferential calculus, Proc. London Math. Soc. (3) 39(1979), 331-355.
- [16] M. Valadier, Sous différentiel d'une borne supérieure et d'une somme continue de fonctions convexes, C.R.A.S. Paris 268(1969), 39-42.
- [17] M. Volle, Sous différentiel d'une enveloppe supérieure de fonctions convexes, C.R.A.S. Paris 317(1993), 845-849.

UNIVERSITY OF AVIGNON
DEPARTMENT OF MATHEMATICS
33, RUE LOUIS PASTEUR
84000 AVIGNON, FRANCE