ON CONVERGENCE FOR SOME DIFFERENTIAL OPERATORS OF DISTRIBUTIONS

HOANG DINH DUNG

The convergence of classical differential operators was considered by several authors (see, for instance, [1-4]). This work deals with the convergence for some differential operators of distributions.

1. Convergence of distributional differential operators

Let Ω be a connected set in the real n-dimensional space \mathbb{R}^n . We consider the following differential equations of distributions

$$P_{\varepsilon}(x,D)v^{\varepsilon}=f^{\varepsilon}, \qquad \qquad (1)$$

where

$$P_{m{arepsilon}}(x,D) = \sum_{|lpha| \leq m} a^{m{arepsilon}}_{lpha}(x) D^{lpha}$$

is a family of differential operators of order m with coefficients $a_{\alpha}^{\varepsilon} \in C^{\infty}(\Omega^{*})$. Here $\Omega^{*} = \Omega$ if Ω is an open set, $\Omega^{*} = \Omega \setminus \partial \Omega$ if Ω is a closed set, $\partial \Omega$ is the boundary of Ω ; $f^{\varepsilon} \in \mathcal{D}'(\Omega)$ - the space of distribution in Ω , $\varepsilon > 0$, α are multi-indices; and

$$\mathcal{D}^{\alpha} = \frac{\partial^{|\alpha|}}{x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}}, \quad |\alpha| = \alpha_1 + \dots + \alpha_n.$$

Like in the classic analysis theory, it is easy to prove the following:

LEMMA 1. Suppose that when $\varepsilon \to 0$ the sequences $\{u^{\varepsilon}\} \to u, \{f^{\varepsilon}\} \to f$ in $\mathcal{D}'(\Omega), \{a^{\varepsilon}_{\alpha}(x)\} \to a_{\alpha}(x)$ in $C^{\infty}(\Omega^*)$. Then the distribution u satisfies the

following equation

$$P(x,D)u = f, (3)$$

where $P(x, D) = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$.

We now consider the convergence for the solutions of generalized Cauchy Problems. Let V be a closed convex acute cone, $\Gamma = \mathrm{int} V^*, V^*$ is the conjugate cone of V. Let M be a Γ -like surface and M^+ a region lying above M (see [5], Section 4.4). Similarly [5] we use the term Generalized Cauchy Problem for the operators $P_{\varepsilon}(x,D)$ with the sources F^{ε} to describe the problem of finding a generalized solution u^{ε} in $\mathcal{D}'(\overline{M^+})$ of the equations

$$P_{\varepsilon}(x, D)u^{\varepsilon} = F^{\varepsilon},\tag{4}$$

where $P_{\varepsilon}(x,D)$ are the hyperbolic operators relative to the cone Γ of order m, $F^{\varepsilon} \in \mathcal{D}'(\overline{M^+})$.

The Cauchy problem for a differential operator with variable coefficients and the right hand side $f \in H_{(k,s)}(\overline{\mathbf{R}_n^+})$ is considered in [6]. It is clear that all solutions of the classical Cauchy problem are contained among the solutions of Generalized Cauchy Problem.

The next theorems are followed by combining Lemma 1, Schwartz Theorem on a weakly bounded set and the theorem on a convergent sequence of linear functionals:

THEOREM 1. Let $\{F^{\varepsilon}\}$ be a sequence of functionals from a weakly bounded set $A \subset \mathcal{D}'(\overline{M^+})$, i.e. $(F^{\varepsilon}, \varphi) < C_{\varphi}$ for all $F^{\varepsilon} \in A$ and $\varphi \in \mathcal{D}(\mathbf{R}^n)$, here C_{φ} are finite constants depending only on φ . Suppose that $\{a_{\alpha}^{\varepsilon}(x)\} \to a_{\alpha}(x)$, $\varepsilon \to 0$ in $C^{\infty}(M^+)$. Then the sequence of solutions $\{u^{\varepsilon}\}$ of Generalized Cauchy Problems (4) converges to a solution u of following Generalized Cauchy Problem

$$P(x,D)u = F, (5)$$

where the distribution F is the limit of the sequence $\{F^{\varepsilon}\}$.

THEOREM 2. Suppose that the sequence $\{u^{\varepsilon}\}$ of solutions of Cauchy Problem (4) converges to a solution u of Cauchy Problem (5) in $\mathcal{D}'(\overline{M^+})$, then the sequence of right-hand sides $\{F^{\varepsilon}\}$ in (4) is a weakly bounded set in $\mathcal{D}'(\overline{M^+})$.

REMARK. The previous results can be extended to the convergence for differential operators in the space of temperate distributions.

2. Convergence of mixed distributions

DEFINITION. A mixed distribution on an open set $\overset{\circ}{\Omega}$ is a continuous positive homogenous and convex or cocave functional on the space $\mathcal{D}(\overset{\circ}{\Omega})$.

From this definition it follows that any convex distribution [8] is a mixed distribution.

Denote by $\tilde{\mathcal{D}}(\mathring{\Omega})$ the set of all mixed distributions defined on $\mathring{\Omega}$. Suppose \tilde{f} and \tilde{g} are in $\tilde{\mathcal{D}}(\mathring{\Omega})$, we define their sum and product with a scalar as follows:

$$(\tilde{f} + \tilde{g}, \varphi) = (\tilde{f}, \varphi) + (\tilde{g}, \varphi),$$

 $(\lambda \tilde{f}, \varphi) = \lambda (\tilde{f}, \varphi),$

where $\varphi \in \mathcal{D}(\overset{\circ}{\Omega})$ and λ is a real number.

The mixed distributions \tilde{f} , \tilde{g} are said to be homothetic if their linear combination $(\lambda \tilde{f} + \eta \tilde{g})$ belongs to $\tilde{\mathcal{D}}(\mathring{\Omega})$ for any real numbers λ and η . This means that the set of all homothetic mixed distributions on Ω is a linear set which is denoted by $\tilde{\mathcal{D}}_H(\mathring{\Omega})$. It is easy to verify that \tilde{f} and $D^{\alpha}\tilde{f}$ are homothetic.

Let us define convergence in $\tilde{\mathcal{D}}_H(\mathring{\Omega})$: a sequence $\{\tilde{f}_k\}$, k=1,2,... in $\tilde{\mathcal{D}}_H(\mathring{\Omega})$ converges to $\tilde{f}\in \tilde{\mathcal{D}}_H(\mathring{\Omega})$ if for any basic function $\varphi\in \mathcal{D}(\mathring{\Omega})$ $(\tilde{f}_k,\varphi)\to (\tilde{f},\varphi)$, $k\to\infty$. In this case we write $\tilde{f}_k\to \tilde{f}, k\to\infty$ in $\tilde{\mathcal{D}}_H(\mathring{\Omega})$. The linear set $\tilde{\mathcal{D}}_H(\mathring{\Omega})$ equipped with this convergence is called the space of homothetic mixed distributions. $\tilde{\mathcal{D}}_H(\mathring{\Omega})$ is obviously a vector space. Note that arguing as in proof of the completeness of the space $\tilde{\mathcal{D}}_H(\mathring{\Omega})$ [8] we can show that $\tilde{\mathcal{D}}_H(\mathring{\Omega})$ is a complete space.

The definitions of differentiation, integration, multiplication by functions, convolution, ... of homothetic mixed distributions are analogous to that of convex distributions [8].

We now consider differential equations of homothetic mixed distributions:

$$P_{\varepsilon}(D)\tilde{u}^{\varepsilon} = \tilde{f}^{\varepsilon},\tag{6}$$

where $\tilde{f}^{\varepsilon} \in \tilde{\mathcal{D}}_{H}(\Omega)$, $\{P_{\varepsilon}(D)\}$ is a family of differential operators of order m with constant coefficients C_{α}^{ε} :

$$P_{\varepsilon}(D) = \sum_{|\alpha| \le m} C_{\alpha}^{\varepsilon} D^{\alpha}, \qquad \sum_{|\alpha| \le m} |C_{\alpha}| \ne 0.$$

LEMMA 2. Suppose that the sequence of fundamental solutions $\{\tilde{E}^{\varepsilon}\}$ of operators $P_{\varepsilon}(D)$ converges to \tilde{E} , $\{\tilde{f}^{\varepsilon}\} \to \tilde{f}$ in $\tilde{\mathcal{D}}_{H}(\Omega)$ and $\{C_{\alpha}^{\varepsilon}\} \to C_{\alpha}$, $\varepsilon \to 0$. Then \tilde{E} is the fundamental solution of operator P(D) and the sequence of solutions of the equations (6) $\{\tilde{u}^{\varepsilon}\}$ converges to a solution \tilde{u} of the following equation

$$P(D)u = f, (7)$$

where $P(D) = \sum_{|\alpha| \le m} C_{\alpha} D^{\alpha}$.

PROOF. The solution of Equation (6) can be written in the following form, which is analogous to that of Convex Distributions [8]:

$$\tilde{u}^{\varepsilon} = \tilde{f}^{\varepsilon} * \tilde{E}^{\varepsilon}, \tag{8}$$

where \tilde{E}^{ε} is a fundamental solution in $\tilde{\mathcal{D}}_{H}(\Omega)$ of the operator $P_{\varepsilon}(D)$.

It is easy to verify that if $\{C_{\alpha}^{\varepsilon}\} \to C_{\alpha}$ and $\{\tilde{E}^{\varepsilon}\} \to \tilde{E}, \ \varepsilon \to 0$, the homothetic mixed distribution \tilde{E} will be a fundamental solution of the operator P(D). Hence, passing to limit in (8), by virtue of the continuity of a convolution for its components, we obtain

$$\tilde{u}^{\varepsilon} \to \tilde{u} = \tilde{f} * \tilde{E}.$$

The last equality shows that the limit \tilde{u} is a solution of Equation (7).

We now consider Generalized Cauchy Problems for operators $P_{\varepsilon}(D)$ with the source $\tilde{F}^{\varepsilon} \in \tilde{\mathcal{D}}_{H}(\overline{M^{+}})$:

$$P_{\varepsilon}(D)\tilde{u}^{\varepsilon} = \tilde{F}^{\varepsilon}. \tag{9}$$

THEOREM 3. Suppose that $\{C_{\alpha}^{\varepsilon}\} \to C_{\alpha}$, $\varepsilon \to 0$. Each of the following two conditions is necessary and sufficient in order that the sequence $\{\tilde{u}^{\varepsilon}\}$ of solutions of Problem (9) converges to a solution u of the following generalized Cauchy problem

$$P(D)\tilde{u} = \tilde{F} \tag{10}$$

- a. $\{\tilde{F}^e\}$ is a sequence from a weakly bounded set in $\tilde{\mathcal{D}}_H(\overline{M^+})$;
- b. The sequence of fundamental solutions of operators $P_{\varepsilon}(D)\{\tilde{E}^{\varepsilon}\}$ is a weakly bounded set in $\mathcal{D}_{H}(\overline{M^{+}})$; where F is the limit of $\{\tilde{F}^{\varepsilon}\}$.

PROOF. The solution of problem (9) can be written in the following form

$$\tilde{u}^{\varepsilon} = \tilde{E}^{\varepsilon} * \tilde{F}^{\varepsilon}.$$

Hence we have

$$(\tilde{u}^{\varepsilon}, \varphi) = (\tilde{F}^{\varepsilon}(x), (\tilde{E}^{\varepsilon}(y), \gamma(x)\beta(y)\varphi(x+y))), \tag{11}$$

or

$$(\tilde{u}^{\varepsilon}, \varphi) = (\tilde{E}^{\varepsilon}(y), (\tilde{F}^{\varepsilon}(x), \gamma(x)\beta(y)\varphi(x+y))), \tag{12}$$

where $\varphi \in \mathcal{D}(\mathbf{R}^n)$, γ and β are any functions in $C^{\infty}(\hat{\mathbf{R}}^n)$ that are equal to 1 in the neighbourhood of supp \tilde{F}^{ε} and of supp \tilde{E}^{ε} respectively.

By virtue of (11) and (12) the theorem now easily follows.

Finally, we give an example for the convergence of solutions that has been mentioned in Theorem 3. In [9] we have constructed the exact solution for Problem of air pollution described by the following equation (see formulae (1'), (24) in [9]):

$$\frac{\partial F}{\partial t} - \lambda \Delta F + \overrightarrow{V} \cdot \nabla F + \sigma F = f, \tag{13}$$

where F=F(x,t) - the concentration of pollutant, \overrightarrow{V} - the wind velocity, $\lambda=\lambda(x)$ - the diffusion coefficient, $\sigma=\sigma(x)$ - the rate of chemical decay

transformation and f = f(x,t) - the power of source. If the considered region is unbounded, the concentration of pollutant vanishes at the infinity and the density distribution of masses f is a mixed distribution, the solution of (13) has the following form (for $f = f^{\varepsilon}$, $E = E^{\varepsilon}$):

$$F^{\varepsilon} = f^{\varepsilon} * E^{\varepsilon} + [I(x) \times \delta(t)] * E^{\varepsilon}, \tag{14}$$

where E^{ε} is the fundamental solution of the differential equation corresponding to (13) (see the formula (20) in [9]) of the considered problem (for $\overrightarrow{V} = \overrightarrow{V}_{\varepsilon}$, $\lambda = \lambda_{\varepsilon}$, $\sigma = \sigma_{\varepsilon}$), I(x)- the initial condition, $\delta(t)$ - the Dirac distribution. When the distributions f, I are continuously differentiable functions this solution has the form (see (34) in [9]):

$$\begin{split} F^{\varepsilon} &= \int_{0}^{t} \int_{\mathbf{R}^{n}} \frac{f^{\varepsilon}(\xi,\tau)}{[4\lambda_{\varepsilon}\pi(t-\tau)]^{\frac{n}{2}}} exp\{-[\sigma_{\varepsilon}(t-\tau) + \frac{|(x-\xi) - \overrightarrow{V}_{\varepsilon}(t-\tau)|^{2}}{4\lambda_{\varepsilon}(t-\tau)}\} d\xi d\tau + \\ &\qquad \qquad \frac{\theta(t)e^{-\sigma_{\varepsilon}t}}{(4\lambda_{\varepsilon}\pi t)^{n/2}} \int_{\mathbf{R}^{n}} I(y) exp\{-\frac{|x-y-\overrightarrow{V}_{\varepsilon}t|^{2}}{4\lambda_{\varepsilon}t}\} dy. \end{split}$$

From the last equality we see that when $\lambda_{\varepsilon} \to 1$, $\overrightarrow{V}_{\varepsilon}$ and $\sigma_{\varepsilon} \to 0$, our solutions converges to a solution of the Cauchy problem $\frac{\partial F}{\partial t} - \Delta F = f$ (see the solution (7.1) Section 15.7, p.256 in [5])

REFERENCES

- [1]. S. Spagnolo, Sulla convergencza di soluzioni di equazioni paraboliche ed elliptiche, Ann. Scuola N. Sup. Pisa 22 (1968), 571-597.
- [2]. J. L. Lions, Sur quelques questions d'analyse de mécanique et de controle optimal, Les presses de l'Université de Montréal (1976),.
- [3]. V. V. Zikov, S. M. Kozlov, O. A. Oleinik and Ha Tien Ngoan, Averaging and G-convergence of differential operators, Uspechi. Mat. Nauk, USSR 34 (1979), 65-133 (Russian).
- [4]. J. L. Joly, Sur la propagation des oscillations par un système hyperbolique semi-linéaire en dimension 1 d'espace, Comptes Rendus Acad. Sc., Paris 256 (1983), Série 1, 669-672.
- [5]. V. S. Vladimrov, "Generalized functions in mathematical physics," Mir Publishers, Moscow, 1979.
- [6]. L. Hörmander, "Linear partial differential operators," Springer-Verlag, Berlin, 1976.
- [7]. L. Schwartz, "Théorie de distributions, 2 vols," Hermann, Paris, 1950-1951.
- [8]. Hoang Dinh Dung, Distributions convexes, Preprint, Inst. of Math., Hanoi, n. 89-12.
- [9]. Hoang Dinh Dung, On the problem of air pollution, Preprint (1993).