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MORE ON APPLICATIONS AND EXTENSIONS OF
P-COERCIVE VARIATIONAL INEQUALITIES*

DANG DINH ANG AND LE KY VY

Introduction

This paper is a sequel to our two earlier papers, written jointlv with K.
Schmitt [ASV1], [ASV3], where the concept of P-coerciveness was introduced
as an extension of the concept of compact-coerciveness due to Baiocchi. Gastaldi
and Tomarelli (cf. [BGT] and [GT]). In [ASV1] and [ASV3], the authors
restricted themselves to the case of Hilbert spaces. Several zipplica,tions were
given to obstacle problems, unilateral problems for elliptic equations. The
equations considered there were semilinear, whereas the theory developped in
[ASV3] could be applied to quasilinear equations, also.

The purpose of the present paper -is two-fold. First, we give applications
of the results of [ASV3] to some quasilinear problems. Seéond, since certain
problems can be appropriately formulated as variational inequalities only in
Banach spaces, we extend the concept of P-coerciveness to Banach spaces. Like
our earlier papers {ASV1], [ASV3], our present investigation was motivated by
the works of Baiocchi, Gastaldi and Tomarelli (loc. cit.).

This paper consists of two parts. Part 1 is devoted to applications of P-
coercive variational inequalities to quasilinear elliptic problems. In Part 2, the-
~ concept of P-coerciveness is extended to the case of Banach spaces, a sufficient
condition for existence is given for variational inequalities involving P-coercive
nonlinear operators in Banach spaces, and applications to quasilinear equations

are presented in a Banach space setting.

Received July 10th, 1994
*Expanded version of an invited lecture delivered by the first author at the First World
Congress of Nonlinear Analysts, Tampa, Florida, USA, August 1992 (cf. [AV])
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1. Applications to quasilinear problems in Hilbert spaces

We shall consider in this part some examples of P-coercive variational
inequalities involving essentially nonlinear operators. These arise from certain

quasilinear b(_itinc_laxy value problems.
1.1. EXAMPLE 1.

1.1.1. Let 2 C R® (n > 1) be a bounded domain. We consider the problem

. [VulP . .
— div (WVU) +Gu)=f . inQ, | (1)
dufon=0 ondR, | @)

Where f is given on Q,p > 0, and G(u) = Fo(u) + F(lu|)u w1th
Fy: R — R, increasing, continuous, Fy(0) =0,and . .
. F:[0,00) — [0,00), continuous and bounded.

. We formulate the problem as a variational inequality as follows. Put

o) = ] i%(ﬂdr; teR,

OB ] doeds @)
< Au,o->= f[lfl*g IPV V'U+F(|u])uv] T (8h)

Then it can be shown that Problem (1) (2) is eqmvalent to the fo]lowmg

varlatmnal mequahty

_ { < Au v—u> +ji(v) —j(u) > fn fv wu) VYo € Hl(Q) @
u € HY(Q), -

with 7, A given by (3a), (3b) respectively.

1.1.2. Since % is convex and continuous,“ We\h:.;we'that '

j+H Q) - RU {oo}

is convex and lower semi-continuous. Moreover, j > 0 but 4 is not semi-additive

in general.
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It is clear from the definition of A that A : H{(Q) — [H*(Q2)] and that A
is nonnegative. We verlfy that A is j-P-coercive om H 1) (cf. Sectmn 2.1,
[ASV3]). Let {z,,} be a sequence in H'(Q) such that

llenll = 00,z /lleml] = 0 in HY(Q)-weak, and  (5)
< Amm,wm > /||-"3m||2 ~0 (l| Il = ]| ||H1(9)) o
We prove that
hmsup||$m|| < A:cm,:cm > +_1(:cm)] >0. . (6)
m—oo0 BT

Suppose this is not true. Sznce j 2 0, we must have

| lim |[z,]| 7 < Awm, Tm >=0. (7
But o
lomli™ < Asmym > = lleml™ [ [l'i—’ﬁ;'—]— +F(I:cml)a= !
[ G/l el
o= [ Benllealll el |y ] FllenDlenl
o [Vmt?
Szl | e

| o ol 7+ VT
>0 (here Wm = T f|[zm]]).
By (5) we have ||a:m|| > 1 for all m suﬁicxently large Thus (7) nnphes that

[Veompt _ _
Jn, | it Nve = 0 ®

Putting Qr, = {z € Q/ |Vwip(2)] 2 1}, we have

[Vwn(z)P+? S 1/2|V'w1~n(:1:)|2 i z€Qn,
1+ |Vom(@)P." | 1/2.[Vwm(z)P+2 if z€0\Q,.

This and (8) give

lim f |Veom[? = | VwmlPt? =0,
= Jlim e, | Vel

M-
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But since p > 0, we have, by Holder’s inequality,
. /  [Vwnf? '<"|§|'p"/('p-'i-2)(‘/‘ 1vu',;1|p+2_,2/('p+2)'_'
O\ Qom T 1V o

Thus EMm—co fo [Vwm|? = 0. On the other hand, from (5) and the compact-
ness of the embeddmg HY(Q) — L?(f2), one has hmm_.,x, Jq w2 = 0. Hence
llwml| = 0 (m — oo) which contradicts ||wm|| = 1,Vm. This contradiction
proves (6) and the j-P-coerciveness of A. '
We verify next that A is pseudo-monotone of H(Q).
Indeed, one has A = Ay + A, with

~ Vul?
< Aju,v > = ./9 T _IVUP'.VHVU’

< Agﬁ,v > = /F(Iul)uv, w,vE HYQ).
Q

By direct computation, we have

|[Vu|PVu  |Vol|PVu |

(1+|Vu]7’ 1+ Vol _
]Vu|”+2 - |vv|p+2 | IV’GP S |V'U|P

T 14 |Vul T 14 Velp 14 |Vulp | 14 |VolP

= (1+ [Vaf) 7 (1 Vol") T (I Vu] ~ [Vo])?|Vu [P |Vl +

+ (IVu| = [Vo)(|Vul+ — [nuP*) > 0.

)(V — V'v) >

)IVu||Vol

Thus A, is monotone on H 1(9)

One can venfy, in the usual way, that Ay, Ay (and hence A) are continuous |

and bounded. Moreover, if uy — u in'L?(Q2), then
Agtim — Agu in [H'(Q). (9
Consider now a séquencé {um}in HY(Q) such that

um —u  weakly in HY(Q), o (10)

1iriisup < At — AUyt —u > :5 0. - (11)
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We show that
Lminf < Atm,tpm —v > > < Au,u—=v> , Vo€ H{(Q).
Indeed, by (10) we have up, — u in L%(Q) and by (9) ~
- Agum —Au— 0 in [HY(Q)]'. .
Since {upn,} is boundeti, this gives
< Agum—Azu,unlfu> —0 _(m—r ). (13)

Then, by (11)
limsup < Ajty, — Aju, U, —u > < 0.

Since A; is pseudo-monotone (in fact, it is monotone), this implies that
Hminf < Ajump,um ~v> > < Aju,u—v >, Yoe H(Q).

This and (13) give us (12). Thus A is pseudo—monbténe on H(Q).

We can check that A is in general not coercive or monotone on H!(Q).

1.1.3. Now, by the convexity of ¥ we can show that the following limits exits:

Y= = lim 1(t)/t € [~o0, 00

t—+oco

Applying the abstract result in [ASV3] (Theorem 3, [ASV3]), we have the

following

ProrosiTion. If
|2~ < /f < |Qp* (I : Lebesgue measure of Q), - (14)
Q

" then (4) has a solution.

PROOF. Indeed, let {un} C HY(Q) be such that ||un|| — 00, un/||un]| — w
weekly in H'(R2) and

limsup Jua||™! < Aun,un > Joo(w) < / f. (15)
Q
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(see [ASV1] for a definition of Joo). Since joo > 0, this implies that
lim ||ug||™? < Atn,ua > =0.

Using argument similar to those in 1.1.2, we.can conclude from this equality
that

Lm ] |an; =0 (wn-un/nunu)

n—eo

Since w, — w weakly in H'(2), we have

f |Vwl? < liminf / |Vw,|? = 0.
Hence Vw = 0in £, a,ndwER Oneha.s
[ g .0 |¢(tw)

- Jeo(w).= lim

t—o0
|QpTw - if w>0,‘

=40 if w=0,

lewrw £ w<o

co{W) = f fw

Tn view of (14) and (16), this holds if and only if w=0. By the corollary of
Theorem 3 [ASV3], (4) has a solution.

By (15) we also hé,vg that

1.2. EXAMPLE 2.
Let © be as in Example 1.
1.2.1. Consider the following boundary value problem :

Find u # 0 defined on §) such that |
|Dul?

A(mﬂ_@)fﬂ“)::f n 2@, 0D
Au=0on 0%, - . . (18)
8, |AulP _

where p > 0 and F(u) = o), 6w = (Togpaisz Jo [D7u? = ilullm@-
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. Remark that because H?*({2) is a Hilbert space, ¢ is differentiable on -
H2()\ {0} and that < F(u),v >= I|UI|I}§(9)(U v)2(q), where <..;. > denotes
the dual pairing between H () and [H Q).

It can be shown that the system (17)- (19) is equxvalent to the following

variational inequality
{ < Aup—u> +4(v) - 9(u) > [ fv—u), Yo € HX(Q),

20
u € H3(Q), (20)

where < Au,v >= fﬂ lJ_H—ALI—pAuAv

1.2.2. Note that ¢ is convex and contlnuous on H 2(9), and that A: H 2(Q)
#2(@)]. : -
We prove that A is ¢-P-coercive on H?(). : :
Indeed, let Py, Py : HY(Q) = R, Py = P; = 0. Hv € HYQ), ||v]lm2@q) =1
and A > 1, then

A< AQw),v > +P0(U) + Pl(v) +¢(v) 2 1?5(”) = ||v]ie(e) =1

By the rema.rk followmg the deﬁmtlon of P-coerciveness in [ASV3] thls
proves that A'is ¢ Péoercive. '

Asin Exarnple 1, we can verify that A is continuous, bounded, nonnegai:iire
and monotone on H 2(Q) | ‘ o

We remark that although ¢ is semi-additive on H 2(f)), A is not compact-

coercive in the sense of [GT]. Indeed, we have
H=ker A={ve H}Q)/ < Av,v> =0}
| ={veHXQ)/ Av=0 inQ}

is a closed, infinite dimensional subspace of H2%(). Then we can choose a
sequence {wm} in H such that ||jwnl||g2) = 1, Vm and that {'wm} does not

contain any convergent subsequencc, Put _

Um = MWy, m=1,2,3,...
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We have |[vm||gz) =m — (m — o). Since Avm = mAw, = 0 in £, one
has, for vg € H*(Q),m €N,

| Avg, [P

é-Av,’n,.v,,‘; —- ’U(t > ] mAUmA(vm — ‘Uo) = 0

Then
omll5 (< v m = 0>+ = oIy $om) = 1. ¥
But by the choice of {om} and {wm}, we see thal R

{”m/“”m“flz(ﬂ)} = {wmf
has no convergent subsequent in H*(Q). Hence A 18 not compact-coercive on
H2(9)-
1.2.3. Let H = {v e H%Q) [/ bw = 0 in 2} be the set of all harmonic

function en Q. Then a sufﬁczent condition for the existence of a solution of (20)

is that P
A fw < nwnm(m, Vo €1\ {0}, (21)
Indeed, suppose {u.n} and w sat1sfy condltlon (18) in Theorem 3 [ASVB] We
have

0 < limsup ||u"”H2(n) < Aun,un > < hm”unHHz(mf fw 0.
Then | o ': o |

lim ={.
- nmo g Hunllgz(g)Jrl/—\wnI”

By arguments sifnilar to those _followmg (8), we obtain, from this equality, that
hm/ IAwnlz =0, (wn = un/””n”H%ﬂ))

Since (u 'u) — fﬂ Aulv is a nonnega.twe, contlnuous b1l1nea.r form on H 2(Q) |

we have, from "wy, — w in H?(Q)”, that .

f |Aw|2 < Jiminf / |Awn|? = 0.
Q Q
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Hence Aw =0in £, i.e.,
w € H. (22)
Since ¢oo = ¢, from (18) of [ASV3] (with j = ¢), one has

$(w) < [ﬂ fu.

By (21), (22) this can happen only if w = 0. Hence our result follows from the
corollary of Theorem 3 {ASV3].

REMARK 1. The boundary conditions in Examples 1 and 2 can be replaced by

inhomogeneous or unilateral ones. These lead to variational inequalities similar

to (4) and (20).

2. P-coercive variational inequalities in Banach spaces

There are many problems that can be appropriately formulated as varia-
tional inequalities only in Banach spaces. Some of these involve noncoercive

nonlinear operators.
2.1. AN ABSTRACT RESULT,

2.1.1. Let (V,]].I]) be a reflexive Banach space, V' its dual and let < .,. > be

the pairing between V and V'. We consider the following variational inequality
<Auv—u> +jw)—jw)> < fiv—u>, WweK,

o (23)
u € K.

Here, fe V', AV = V'is bounded, hemi-continuous and pseudo-
monotone, j7:V — R U {co} is a convex, lower semi continuous functional,
J(0) =0,K = D(j) = {v € V/ j(v) < o0} is closed and convex in V.

Let ||.]lo be a norm V', equivalent to [|.||, such that V’ with the dual norm
||-|[3 corresponding to ||.[|p is strictly convex (these norms ||.|[o always exist by
Theorem 2.6, [L]}. Let @ : [0,00] — [0,00) be a continuous, strictly increasing

function such that

®(0)=0 and @(r) >0 as r — co.
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We denote by J = J(@,]|.[o):V — V' the duality mapping corresponding
to @ and {}.l}o, i-e. ' '

< Jw)yu> = 1@l and NTN5 = 2(lelio)- -

We know (Propositions 2.1 - 2.4, [L]) that J exists uniquely, is bounded,
henn contmuous monotone and coercive on V. Moreover (cf the proof of
Proposxtlon 2.4, (L), J is continuous from the strong topology of V to the
weak-star topology of V.

. The operator A 1 is said to be §-P- coercive with respect to J if the following
condition is-fulfilled: o T

There exists vg € K such that for all sequences {v,} C K satisfying :

(@, loall o0,

(1) H'nnH‘2 < Avp,vn > — 0, 7

Y e _ (24)
(i) wa = vn/llvall = w wealdyin V. and,
e : .. . < J(wp),w> =0, Vn.

We always have

limsup ||va|| 7} [< Avn, U0 — v0 > +i(vy )] > 0.

=00

REMARK 2.

(a,) " V is a H11belt space and J I is thc 1dent1ty mappmg of V (I is the
duality mapping correspondmg to ||. HO = ||| and ®(r)y=r, T E [0 oo)) then
the above definition reduces to that presented in [ASV3]. ) )

Indeed, if J is wealkly continuous (i.e. Jis continuous from the weak topology
of V to the weak-star topology of V', this holds in the pa,rtlcular case'J =1 ) .

then the condition (24 iii) is equivalent to:
Wy -v,,/“vnn-—*{) wea.kly 1nV . (24 111)

It is clear tha,t (24 iii ) => (24 111) Conversely, 1f (24 111) holds then by the weakz

continuity of J we have

J(wa) — J(w)- weak” in V'
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Thus 0 = < J(w),w > = ®|jwl|o)|[w]|o, i-e., w = 0 and we obtain (24 ii").
The conditions (24 i,ii,iii’) are exactly those in the definition in [ASV3] the

P-coerciveness in Hilber spaces.

(b) Our definition of P-coerciveness strictly contains that of compact-
coerciveness of Gastaldi and Tomarelli ([GT]).

In fact, suppose A is compact-coercive in the sense of [GT] and that {v,,}
satisfies (24). If (25) does not hold, i.e.,

limsup |jvn || 7' [< Ava,vn —vo > +i(vs)] <0
Then there exists € > 0 such that
llonll M < Avn, v — v > +i(va)] £ C, Vn.

By the compact-coerciveness condition, there is a subsequence {v,,} C {v,}
such that the sequence {w,, } strongly converges inV. Together with (24 iii),
this 1mphes that J o

Wy, — w (strongly) in V.
Then J(w,, ) — J(w) weak* in V', and 0 = < J(wg, ),w > — < J(w),w > = 0.
Hence w = 0, ie., w,, —» 0in V "(strong). This contradicts the fact that
||wa. | = 1,Vk and proves (25).

We have shown that if A is compact-coercive then it is j-P-coercive with
respect to any duality mapping J. Example 3 to be given latter provides an
example of a P-coercive operator that is not compact-coercive in the sense of

[GT).

2.1.2. As for the case of P-coercive variational inequalities in Hilbert spaces,

we have the followmg:, suﬂiment cond1t10n for the e\mfencc of a solution of (23).

THEOREM 2.1. Let A bo nonnegatwe and j- P coercive with respect to a duality
mapping J. Suppose that the following condition holds:

If w € reK is such that there exists a sequence {u,} C K with |ju,|| — o
and

tUnf[|unf| — w | weakly in V, and
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. lim sup Hu,;H"IA < Ay, tn > +ioolw) € < fLw >, (26)

then 7
_w € rekk, max{0,jeo(w)} < — < fv> and (27

.....

< 4u:n,_,w >=0 foru subsequencc {um} C {ua}

Then (23) has a solution.

Proor. The proof of tlus théorcm is Sii‘iiil&i‘ to that of Theorem 3 [ASV 3.
Hence we only ske,t.c_h a bricf outline of 1t. -
For € > 0, consider the regularized variational inequality :
< Aug,v —ue > tE< J(ue)yv — ue > +35(v) — j{ue) 2
> f,v’_u;>' wek, (28)
- u, € K- '

“Since A is pscudo 1110110ton(, and since J is monotone and hemi- continuous',

A +¢eJ, by Remark 2.12, [L}, is also pseudo—monotone We have morcover

H“Ho—_l_k Au,u > +e < J(u)_,u)? +i(u)] 2
2 ea(lfulio) + lellg (< Dyu > +a),Vu €V

for some L € V',a €R. Since ®(]jullo) — oo as Hu[lg—-+ oo, A+ €7 is coercive
on V. Hence (28) always has a solution-u. € K.

‘We prove that {ue} (e.> 0, small}is bounded in V: Suppose by contradlc-:
tion that there:is a sequence {ex} \ 0 such' that J|usl] = |Jue. [l = 00, 7 — v

By choosing a subsequence, we can assume furthermore that
Wy = un/lluull —w wea.ldy in V.

Substltutmg v = 0 1nt0 (28), 1e1na,rk1ng, that < Jue),ue > > 0 cmd d1v1dlng
both - sides of (28) (with e = s,,) by HunH and then letting n — o0 in the-
inequality thus obtained, we see that w safisfies (26). By hypothesis, (27) holds
for w. Now, substituting v = ua, £ A € K (A >0)into (28), we have:

Enp < '](uﬂk)’w > +A—1j(unk + Aw) - A_.]J(unk) 2 < fyw >,
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and
ey < Fun )0 > At~ W0) = X V() 2 — < frw >
Letting A — co, we obtain .. |

< Atngu,, >

Enp < J(unk):w.j 2 < f,'z > "]oo(w) 2 :Hmsup “'U. “
g

>0,
and © .
—€n, < J(Un )y w > > — < fw0 > —joo—w) > 0.
Then < J(us,),w) > =0, Vk.
. By direct computation, we have, for all k,

< J(wn,)yw > = &(|fun, 17 [B(1) ™ < J(un, ), w > = 0.

On the other hand, as in the proof of Theorem 3 {ASV3], one has
kl-i-rrgo ||um=].|_2 < Aty , Un, > =0, |

Thﬁs the sequence {up,} satisﬁes the ‘c;)n.ditions (24 iji,iid). By the j-P-

coerciveness of A with respect to J, we can conclude that

: HmsuP““n_k'rl[‘( Aunk?_uﬂk — Y > +J(uﬂk)]>0 e (29)
Next, substituting v = v, € K into (28) (with ¢ = ¢,. ), dividing both sides of

the inequality by ||un,|] and letting & — oo, we have

limsup |, [[ 7 < Aty g — 0 > (1, )] <
< lim < =l || Vo0 + w0, > = < fow > <.
This contradicts (29) and proves the boundedness of {u.} (5 > 0, small).
The remainder of the proof proceeds along similar lines as in the proof of
Theorem 3 [ASV3].

From Theorem 2.1, we dédubq, _the‘following:;:' C
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COROLLARY 2.2. Let A be nonnegative and j-P-coercive with respect to J.
Then one of the two following conditions is sufficient for the existence of a
solution of (23) : ' | '

(i) (26) does not hold for any w € rcK.
 ({)w=0 is the only element of rcK that satisfies (26).
We consider now some examples of P-coercive variational inequalities 1n
Banach spaces.
2.2. EXAMPLE 3.

99.1. Let @ be a bounded domain in R™, let 1 < a < oo and let f be defined

on 1. We consider the D_irichlet problem for the following quasilinear equation
'—div(a(u)Vu) =f inQ _ (30}

with _ _
w=0 ondL, (31)

where. 77 ‘
a(u) = [1+( jg e L 2

Using Green's formular, we can formulate (30)-(31), in the usual way, as the

following variational inequality : _
(< Auyv > = Jo fu, WWE Wy ¥ (82), ( )
32
u € Wy ().
Here f € L¥(Q) (o id the conjugate exponent of a) and A is defined by
< Au,v > = ] a(u)VuVv, u,vE€ Wo ().
Q
We consider on Wy *(§2) the usual norm :

”“” = ll“l‘w;.u(g) = (/ﬂ qu.l"‘)l/"‘_

By direct veriﬁca.tion,‘ we can see that

A Whe(@) » W (@) (= W @)
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is continuous and bounded.

A is moreover monotone on W,**(22). Indeed, we have, for u,v € Wy *(Q),

|[Vul*~2Vu  |Vy|*~2Vy
- - =I( — Vu—-V
< Au— Av,u—v > /Q(l'i'”u”a—l 1+||"’]|a_1)( u — Vo)
1 S || s 721 1 2 A 171 112

B o 71 R Tl |7 S B ol 17 [ Emb W o 1 s

el = (ol ] = el
T AR+l 2

2.2.2. We prove that A is ; P-coercive with respect to any duality mapping J,

but is not compact-coercive in the sense of [GT]. -

For v € W)**(Q), we first have that

< Avyy > = (14 o]0y ]g Vol  (33)
| = (1 + [o]|*) " Jolf=.

Suppose {v,} C Wy **(Q) satisfies (24). From (33) and the fact that |[v.|| —

o0 as n — co0, we have, for vg = 0,

lim sup ||ve||” -1 . Avg, v > = hm (1 + |loall® 1)|]Un“a—1 —1>0.

n—o0
Hence, we have (25) and thus the P;cderciveness of A on Wa*(2). |
Remark now that since Wy '*(Q) is infinite dimensional, there exists a
sequence {w,} in Wy**(Q) with |jwa|| = 1, Vn, such that {wn} does not contain
any convergent subsequence. Putting v, = nw,,n = 1,2,3,..., one has [|w,|| —

oo and for all vy € W, '%(Q), by Holder inequality,
lim ['unH 1 < Avpy v, —vg > < Hm(1 + [Joa]]* ) |va||¢

+1im(1 4 anll""l)llvnlla *llool| =1 +0=1.

But {||va||vn = va} has no éonirergerit subsequence in W, (). Hence A is

not compact-coercive.
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2.9.3. Applying Theorem 2.1, we see that a sufficient condition for the existence

of a solution of (32) is that

| o Nt <1 (34)

In fact, if w satisﬁes.(2.‘6), then
of| < lrming |} enl ™ nll = 1

and by (33) we have

1=l < Avnun > < < fyw > <ol < A1k

This contradicts (34) and proves that there is no w € W, () that satisfies

(26). Our existence result follows from Corollary 2.2.
EXAMPLE 4. |
9.3.1. Let 1 < a < co and let F be increasing on R, F(0) =0.

We consider the following Neumaim—type quasilinear problem
' { —div[(1 + |Vul?)*/2 7 Vu] + Fu)=f inQ,

35
(14 |Vul?)*/2"'0u/On =g on an, (39)

with f and'g given respectively on Q) and 0.
We formulate (35) as a variational inequality.

As in Example 1, we put -
| t
H(t) = / F(tau), t€ R, and
0
j(v) = J(la,b(v(m)) (v defined on §1).

Then ¥ is convex, nonnegative and continuous on R. Moreover ¢ = F if F'is

continuous. We then have, for u,v defined on 2,

| Few- W< [[10) - $00) = i) = 5w
Q Q

Now, let v be defined on § by (35),

- /ﬂ div [(1 + [Vu?)*/> 7 Vul(v — ) + /9 Flu)(v—u) = ]Q f(v—wu).
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But
| /9 div [(1+ [Vl Vo — u) S
- fa a+ VU)o — u)Bu/n — fﬂ (14 [Vu2)*2 1V uT (o ~ w)

= / g(v - u)— /(1 + [Vu?) 2190V (v — u).
% Q
These imply that
<Au,v—u>_.—[—j(u)—j(u)2,.<h'u_—‘u> - (36)

with < du,v > = [o(1+ |V’u|2)"'/2 'VuV, and <hv>=f, fo+ fan gv-
" Suppose conversely that (36) holds for all v deﬁned on Q Let w be deﬁned
on . Substituting v = u + 8w, 0 < § < 1, into (36), we have

< Au,w > -!-f [z/;(u-!—éw) P(u)] > < hyw>.
Letting 8 — 0 and cons1denng —w instead of w, we arrive at
< Au,v > —I—/ Flu)w =< hw > . (37)
Q

With w € C§°(R), applying Green’s formdla we obtain from (37) —div [(1+
|Vu|?)*/2~1Vy] 4 F(u) = f in Q (m the dzstrlbutlonal sense), i.e., the first
equation in (35) holds. '

Now, applying Green’s formula again, we have, by: this equation,

< Au,w > -l-/ (1 |Vu2y* 2 1wdu/on + ] Flu)w = / fuw.
an it Q

Comparing with (37), this.giv’es - _
f (1 + ]Vulz)"/z"l(au/an)w =/ qw, Yw.
an - Jaa
Hence, we have the boundary condltlon in (35).

These arguments show that (35) is (formally) equwa.lent to

{<Au v—v> +3(v)—j(v)><hv.—u> VUGW“”(Q) (38)

u € WLe(Q).



68 D.D. ANG and LK. VY

9.3.2. Note that A: WH*(§2) — — [Whe(Q)]' is continuous, bounded, and
nonnegative and, moreover, h € (Wt c‘(Q)] if f € LY (Q) a.nd g € L°‘ (69)
On the other hand, since the mapping
£ (L8171 E R,
is the gradient of the convex functional

£ o (14 €2)%/%, E€RT,

we see directly that A is monotone on Whe(Q).

We check the j-P-coerciveness of A.

Let {vn} C Wie(Q) satisfy (24). Suppose by contrad1ct10n that (25) is
false Then since A j > 0 we ha,ve |

lim anll__—l < Avg,vp > =0.
(In what follows, ||.|| denotes the usual norﬁlltc;f' Wwhe(Q)). By (24 i), this
implies SRR ' S
lim ||va]|™* <"Avn,‘vn >=0. (39)
Consxder the case 1 < a2 We have

R ‘V”"nl 1—&/27 -‘.a X
oall™ < Avavn > = [ (e Tl

= [ {+ lvwnl w, %
= ) e+ ww |’

‘Vwﬂ‘ 1—af2 a
f(1+lv vl

()Tl + [ A2}l
Qn o\Qn
(1/2)*/%( ] (Venl? + / [Tl

(here Q, = {z € Q/|Vwa(z)| < < 1}) _
From (39) and Holder’s mequahty (remarkmg that & < 2) we obta.m .,

fim |an|°’ lim IVw,J“ =0.
ﬂ-—-).OO n—r00 g\ﬂ"
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Thus S _
lin f Vo, |* = 0. (40)
2 S

n—eoe

Since wp, — w in WH*(Q)-weak, we have .
wy, — w (strongly) in _L“(Q)-. | | (41)
On the other hand, since the functional |
oo ([ [7o]yire
- Je
is convex and continuous on WH*(Q), we have, by a well-known result,

(/ |V, /e < liminf(] |Vw,[*)/* = 0.
Q ) Q
Hence Vw = 0 a.e. in £, i.e., w € R, and

lim | [V(wn—w)|* = 0.
Q

n—oo

This and (41) imply that w,, — w strongly in WbH*(Q) and J(w,) — J(w) in
[WH*(Q)) weak*. Then < J(w),w > = lim < J(wn),w)> =0, ie, w=0.
Hence w,, — 0 in W1%(Q), which contrad?;ggo the fact that ||w,]| = 1, Vn. This
contradiction proves (25) in the case l1<a<?.

Now, if & > 2 then

ol | = < Avnyvm > [foa]|= /Q Voul =2 [V ? = |[va]| / Vol

- / Vewn]®.
] Q

Hence (14) also follows from (13) in this case. The remainder of the proof
proceeds along similar lines as for the case 1 < a < 2.

We have proved that A4 is § — P-coercive with respect to any duality mapping
J- . : . .

Finally, j : WhH(Q) ~RU {oo} is convex (by the convexity of ) and lower

semi continuous (by the continuity of 1). But j is not semi-additive in general.
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2.3.3. In view of Theorem 2.1, we see that if
ol < [ £+ [ g<ion,
then (38) has a solution in Wh*(Q).

“The proof of this -proposition,' which is similar to those of the previous

examples, is omitted.
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