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' 'ON THE INTEGRAL CONVOLUTION FOR
INVERSE G-TRANSFORMS

RUDOLF GORENFLO AND SEMEN B. YAKUBOVICH

Abstract We glve anew method for constructmg general mtegral convolutions
. by means of the theory of Mellin type G=transforms. -

As introduced in [1] and described in [2,3] the G—transform of a function

f (a:) is the following 1ntegral
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f*(s) = M{f(z); 8} = f; flzx)a*? d:r: is the Mellin transform [4] of the function
f(z),o = {s,R(s) = 1}, and the component of the p-and ¢- dnnensmnal vectors

(ap) and (ﬂq) aré complex parameters with’ the propert1es

1 .
§Rﬂj > —5,_? = 1,...,_m §Rﬁ1 <

1
2)

1 .
E,j =m+1 ey
b (@)

1
Ra; < _7—1 n, §Ra3>—§_y-n+1

These conditions guarantee tha.t ®(s) is holomorphlc in a strip symmetric to
the line R(s) = l. The notations R and & mean real part imaginary part,

respectively.
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The well ordered pair (c*,7*), Whefe ¢ =m+n- L‘%ﬂ, Y= QR(

M*u
2
I

B ﬂj) , is called the characteristic of the G—transform (1).

The present paper is devoted to the constructions of some operators, which
are called the convolutions ( £ g)(z) of two functions f (z) and g(z) belonging
to the special spaces 901 (L) [1]. These spaces are very convenient for the G-
transforms of type (1), and by the actions of these transforms on convolutions |

we can get, for example, the factorization equality

(@) = (@)@ (Co)w), ®)

where the operators Gt (t}ié"'inve'rse'_G.—'.tranﬁéi‘rﬁ), Gi, Gy are the G-tran-

sforms with the kernels 3%7), ®4(s), @s(s), respectively.

Note that the G—transform (1) includes all known integral transforms like

the Laplace, St1elt3es Hankel Mezjer tra.nsforms e.t.c. and their i inversions.

DEFINITION 1 [1]. Let c,v7 € R, and 2szgn(c) + sign(y) =2 0. Denote by
M, 2 (L) the space of functions: f (:1:), z >0, representable in the form

f@)= 5 [ F(e™ds, 250, @

where f*(s)|s]7e™1%* ¢ L(q), the space of complex-valued functioné-L_ebcsgue-

integrable on o, ¢ = {s|§Rs = }

- The space ﬂﬁc ,',(L) isa Ba.nach spa,ce Wlth the norm
. C e g .
W= [ el -
PROPOSITION 1. If
2 sign(c’ — ¢) + sign{y' — ) >0, L {6)

then
Mz (L) c ML) (7)
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‘PROOF. Suppose that inequality (6) holds. Then from (5) we have
I lomzyay = [ €27 sl

= / e 19|57 f* (s)| : |e”(‘5'°')|§_"|s;f"f:ds|,

<c / 1957 £ (ds| = Cllfllon=r
where the constant C is defined as |

C = SEE{GW(C-—C)'I98I|S|7—_1'} <+oo I

The finiteness of '-Ci follows from (6).. : _
PROPOSITION 2. If f(z), 9(z) € ML), then z% f(:c)g(a:) € EDTC min{ 27}(L)

PROOF. According to Deﬁmtmn 1 of the’ space QJTC 7(L) we can represent the
function A(z) =z 2f(:c)g(x) in the form

= s [ "']._.f;f*es*.(ﬂx‘_’?“_dé"dt; e
where 0, x 0, = {(5,8) € C* | &(s) = (1) = §).
By substltutmg T=s+1t~ '— we can wnte (8) L
h(z)——/ Frerdr, )
where o, = {r € C | (r) = }} and_ - o
F(r) =5 f fr =t )g*(t)dt for reon (10)

Consequently, . accordmg to Deﬁmtxon 1, we must show that h(z) €

. mc_mln{-y,2-y}(L) Le. .
~ eS| 1 . 1 :
F(r)|r|7e €L(5—doo,54ic0) if 420,
2y mel3(r)| - pf L s 1. e
F(7)|r|*7e e L 5-200,54—:00 if y<O.

We note that in the second case (v < 0}, from Definition 1 it follows that ¢ > 0.
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Let ¥ > 0. Using reprefsenﬁ'a.tion (9) we get the inequality
[ e ryar, |
< 271'_/ / “clg(")"'g(t)l‘s-i-t m—l'r|f (3)g™(t)ds dt|.
From f(a:), g(z) € M1 (L) we conclude that -
e“'g(’)llspf*(s) € L{c,) and ’mls“(‘)llﬂ"r *(t) € L(Ut)
Hence it is e\;ident that the last double integral,converges if

s exp(re(|S(s) + S|~ 13()] ~ 1)) Js+t = 27t < o
o (1)

It is not difficult to see that (llj is.eqﬁivalex;t to
sup  exp(me(|S (S)+~f(t)| -3 (S)I — s - 15+t|’|8|_7lt|'7 < co. (12)
(s,t)Eo. %o

ThlS inequality now is true since the assumption 72 > 0 and Definition 1 imply
¢ > 0. Take into account, furthermore, that

]-‘3 +t| |
|s1¢]7

S(s) + S < [S(s)] + [S (t)l

= —|7<oo, (s t) € 0y X 0y.
If 4 < 0, then instead of 1nequa,11ty (12) we must have

* sup exp(ﬂ0(|3(8)+d(f)l—| (S)I—IJ(f)I)) |3+t|2718|*7|tl 7 < oo. (13)

(s, t}Eo, %00

In this case from Definition 1 it follows that ¢> 0. ]':"‘-urther,= for "(s; if) € d,, X :-th‘,.
L+t = (14 275 < oo, fsl > I
e = L ST < oo > ol
|s +2[*7|s| 7t 77 = 227, |s| = |'5|- |
Thus inequality (13) holds 1f v < 0

The following Theorem 1 is obta.med in {1].



INVERSE G-TRANSFORMS . 149

THEOREM 1. The operator G in (1) with the characteristics (¢*,v*) iz defined
in the space EDTC_,}{(L) if and only if '
2sign(c+ c*) + sign(y ++*) > 0, (14)

and acts then as an isornorphism from M1 (L) onto ml. vty (D).

Note that in case ®(s) = 1 the representatmn mnverse to (1) takes the form

(4). Thus the identical transform is also a G—transform.

DEFINITION 2 [5]. We call the double integral
1 |
()@ = o [ [ e+ 0800808 (" tdsdt,  (15)

where o,, o, are the contours R(s) = 3 R() = 3 the G—convolution of the

functions f(z) and g(z).

Let (¢},7}), 7 = 1,2, be the characteristic of the G-transforms with the

kernels ®;(7), 7 = 1,2, and the corresponding complex parameters of vectors
(a3,), (83.), j=1,2.

Now to prove the equality (3) we have to understand its left part described
by the following definition of the G—transform (1) of a function f(x) with

:c"f(a:)'e IM~Y(L) = 93?0",5,/\ € R (similarly for subspaces M_2(L)).

DEFINITION 3. Let A be a real constant and z* f(z) € ML), ie.
P(e) = / 17+ Na ()

where f*(7 + ) € L(o,). Then the G—transform with the kernel H (1) of the
function f(z) is interpreted as follows

(Gf)(:c)——A H(r+M\)f" (T+)\).‘B dr

[

=57 [ HOPe

R(ry=2+3

(17)
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- . We note that, if H(7)f*(7) is analytic-in the strip

—e+min {l —+;\}<§R(’r)<e+max {l 1-{—)\} -. e>0,

2’2 2’2

and H(7)f*(r) — 0 uniformly as | (1')| —» 00 in the strip, then by the Cauchy
theorem G-transform (17) coincides with the G—transform deéfined by (1), whose

mteg,ral contour is the line or = - {reC H§R(1')

THEOREM 2. Let f(z),g(z) € M;L(L). Let the kernels ®,(s), @2(t) satisfy

condition (2), and the kernel ®(s) satisfy the conditions
CR() > —L,  F=12.,m
Rla) <0,  F=1,2.0m
R(e;)>—5 J=nr+l.wp

| ®(5;) <0, i=m+1, .0

Let, further, the following inequalities hold: . o
2 sign(c+c}) Fsign(y+73) 20, 7= 1,2,
2 signf{c + &) + sign(¥*) 2 0,
where -

C & =min{c},} + ¢
P—1q

o+ 4" =min{y + min{], 72 }, 2(y + min{yl, 2 P} +9" + =~

2

Then G- convolutjon mtegral (15) exists and @ 3 ( f=* g)(w) belongs to
=1

PROOF Condatlons (19) 1mp1y that G; —transforms 3 = 1,2, exist and

(D)) € Tk (D (C20)(®) € My i (L)

By Proposition 1 we have |

(Glf)(x) (029)(:5) € 9ﬁc+mm{c" c;‘ ,‘H-mm{“ll ,‘rz (L)

(18)

(19)

)

i (L) Moreover we have factonzatmn property (3) for (f * g)(a:) '
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Further, by arguments similar to those of the proof of Proposition 2, we conclude

from the representation

i (f*g)(e) = 2—};] o(r + %)F(f)x‘*-dr, T (2
with ' o ' _ o | :
F(i)=§%]§1 (T—t-i— )@2(t)f"‘ (T—t+1) (t)dt for 7€ o,
that. . : N
503 / F(T)a: Tdr = z3 (Glf)(a:) (ng)(:}:) | . . (23)
and . . : .

23 (G1f)(2)(G2g)(z) € ime+mm{c1,cz},nrunw+rrun{-f1n,,} 2(-f+mnn{~mz}}}(5)

From representation (21) it follows that =7 ( f* g)(ac) is the G-transform (1) of
the function 2% (G, f)(z)(G2g)(z) with the kernel ®(7+7) and the characteristic
pair (¢*,v*+ 17;1) Thus, by Theorem 1 and by conditions (19) and (20) integral
(21) converges absolutely and z % (f * g)(z) €. smc+c .(L).

Further, in accordance with Definition 3, we have

NIH

@ (g =2 / LY Y l)ﬁ(r)x-fdr

. 3(r+1) (24)
= :1;71': lf (T)xhrd"" = (Glf)(m) (ng)(:r;)

Theorem 2 is completely proved.

THEOREM 3. ‘Let the conditions of Theorem 2 be fulfilled and let ®(s) be the
Mellin transform of some functmn w(t) € L(R+) Then for convolutjon (1 5) we
have the Parseval equahty

dt

(f * 9)(z) = / fp(t)(Glf)( )(ng)( )= >0 (29)

Moreover, if for the characteristics (cJ,'TJ )s 3 = 1,2, the inequality

- 2sign(ci) + sign(y; —1) >0, j=1,2, -~ (26)
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holds and if f(z),g(z) belong to M (L) N L(Ry,z"%) (L(R_,_,:c'li‘) is the
space of functions summable with the weight x—%), then convolution (15) can

be represented in the form -

(fre)= [ ] (2.%) f(u)g(v)d“‘”” 250, (27)

where . :
. S(z,y) = (211'3)2/ / <I>(s+t)<§1(s)¢=2(t)a:"" _‘dsdt

PROOF. Representations (25) and (27) are easily obtained from the Fubini
‘theorem, which is applicable by the conditions of Theo'rem_ 3. '

The G—-transform (1) includes many particular cases of integral transforms

of convolution type treated in [3], for exa,mple'

1 The modlﬁed opera.tors of fractlona.l caiculus

(mﬂfa;xj“-ﬂf) () =G1:1( | ) [F()(z)

- S 103 A R
. Da) Jo -(:r"—t)l—ad't" %(."?0.’

BT 2P ) (2 o1 fo+B8Y Nz

(5, f)()G(ﬁ)[f()]()
o fye?

I‘(a+n)(dx) f (m_t)l o— n,dt’
~n<Rx L0, n=[-Ra]+1,

(ijf”f) (z) =G7 (a;é )'-[}(u)](r) N

LR el 1)
I‘(a) (t e —dt, Ra>0.

12 The operators of the modified Laplace transform a.nd thelr inverses:
(e Az7f) (m);=Gé:‘1’( ) Yle) == f e“‘f)f(t)t‘“'ldt,
o —a -I 1+ ——
enaen) @) =a3a (0wt = o7 [T e e
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(=431 @) =G‘i;ﬁ (&) [f(_uj](_x),
(@) @ =6k () e

‘3. The operator of the generahzed Stieltjes tra,nsform

(@)1 -+2)4} - U)o = Gii( )[f(u) @) / ”f;‘))@%f-

4 The operator of the 1/} —transform

;Gn(oll ) [f(u)](a:) { []lFl(a;b )}[f(u)]

—I‘[ ]/ Fy ab———) (u)?,

Now we give some examples of the convolutions (15) and their factorization
properties. If, for example, f(z), g(z) € L(Ry,z~%), we can write the following

convolution (28) in the form (27) and obtain its factorization property

(FronE =2 [ [Tk (2\/ ”) f (“)9(“)&;? @)

(AT'(f * 9)4)(#) =(A4 £)(=) (A49)(2). ©
Here Kg(z) is the Macdonald functlon [2]

' More general convolutmns may be reduced by using two- d1mens1onal 1ntegra,1
operators (27) with Appel functions F;, F,. These functions have the integral

representations
(@88 A |
T[ 7’ ]Fl(a,ﬂ,ﬂ';vl;—w,—y)
1

1 o—-s—t,B—s,8"—1ts,t _
= —-—(27”,)2 / / T [ p ﬁt ] ™%y ds dt,
Ty v Oy 71 — 8= . S - ’

[ ﬁ’ﬂ:!FZ(a ﬂﬂ:'}'la'h? —Z, y)

—s—t,f3—-sp8 —1,5t] '
> / / [ B B ] Ty ds dt.
(2‘“) M-smM—t
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For convenience we will use Slater’s notation {3]

o] Hete)
By s By T(B1).-T(Bg)
The following convolutions (29) and (30) with their factorization properties are
meaningful under appropnate conditions on the parameters and functions (see
Theorern 2 and Theorem 3). | . - S

(Fede) =T K ﬁ’ﬁ']/ [ n( aﬁﬁvi,é%'——)f(u>q§v)d“d”

(29)
Cany vt L 1)((fw)(-'»"))—{1“([3)(1+~'L") ﬁ}(f(x)){l“(ﬂ )1+ )77 Y (g(2)).

(re9)=1]" b ﬂ]] / Pa(a, 8,805~ ——)f(u)g(v)d”d"

» (30)
717 71

.(—jc_‘“‘_A._Ilr’f“_((f,*g)(a.:)) T
={r [i | iei-0} o) {r [i | ECEe Tm)} o
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