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_ STRONG CONSISTENCY OF LEAST SQUARES
ESTIMATES IN POLYGONAL REGRESSION WITH |
 RANDOM EXPLANATORY VARIABLES'

NGUYEN BAC VAN

) Abstract The sirong consmtency of generahzed jeast squares estimates in
" polygonal regression with random explanatory variables is established regardless
of the projection support under minimal moment restrictions. - .

1. Introduction

' "Regression ‘models with random’ explaﬂatory- variables arise in some im-
portant practical situations involving bipartite observations (X (2),Y (%)) on n
items, and also from the sampling scheme as exemplified in [5] by cross-sectional

data. Of particular interest are polygonal regression models, considered in [1]

k
)Y'(‘?)F,Zbi(X(t))QiIs(i)(X-(t))‘,lfe'(t). B )

where a prime denotes transpose and where Y (¢) are r x 1 response observation
vectors, e(t) residuals, b;(.)’s known I(¢) x 1 vector-valued functions on the
common range space H of X(t), ¢is unknown i(z) x r matrix parameters. S(z)'s
specified disjoint sets in ‘H, Ig(;) the indicator of S(Z). Constraints may be
unposed on the pa,rameters gi in order to ensure the smoothness to some order of
the regression. Models like these arise When the unknown regress:on function is
approximated by linear para.metnc functlons in every domain 5() and also when

the response variable follows a mixture of conditional distributions with linear
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conditional mean structure given the explanatory variable in sévefai domains
5(7), see [1], Sect:on 5. In (1], pp.30-31, we have defined conditional generalized
least squares estlmators (CGLSE), we shall now ca.ll them GLSE for short and
restate the deﬁmtmn in a more general form in Sect:on 3. The purpose of this
paper is to establish the strong cons1stency of GLSE, finite-sample properties of
which have been investigated in [1]. The moment restriction needed is necessary
and sufficient for the GLSE consistency umform with respect to the projection
support and espec:a,lly for the GLSE consistency in the extreme case ‘where
the projection support has the maximal dimension. For the same exireme
case, which necessarily arises when in the definition of least squares estimates |
the linear hull of the parameter range'comcxdeswwh the whole corresponding
Euclidean space, and for linear fixed-design regression models, Lai, Robbins and
Wei have established the strong c_onsi_éten(_:y of least squares estimates under

minimal assumptions on the design [4].

2. Notation and con\}entions

Together with notations and conventions as in (1.1) the following are also

to be used throughout the paper

(1) For matnces -

Flmte matrx w1th numerical elexﬁents = matrix all elements of whlch are '
finite. '

Mt = lmear space of all k X [ real matrices; f'(.) = tra;nspose of ‘matrix
functxon f( K= umt matrlx I, = r X7 unit matnx B

| ~ n.n. d = non- nega.tlve deﬁmte, p. d = pos:twe deﬁmte
¥or a,ny square matrix A:
_ Det A = :délté.rmiﬁan.t of A;,..TrrA = Trace of A.

. For a.ny rea.l matrlx C’ = (c, J)

lc”2 ZC.; S | - . (21)
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For y = (y1...yx ) € Mix1 and G C Myxr:

S I

For z = (z1...21) € Mgyt
vecz = (Z; 2;)’ € Mklxl- R

BRC = Kronecker product of matrices, see 6], 1b 8
Dlag (B,,z = 1 k) block dlagona.l ma.trlx o

- _(11) For hnear spaces _ _ - '

ImB image of a linear ma:pping By v
BG = 1mage by B of a set G

For a kxI real matnx C‘ andaset F C RI
CF = {C:.n T isﬂ lxl and :.':EF}

DunF d1mens1on of the llnear spa.ce F

M {C} = linea.r space genera,t_ed- by the columns of the real . -

matrix.C, also called range space of C (see [6], 1b.6).
L = orthogonallty symbol in an Euchdea,n space. .

For Mxi endowed with the inmer product (y; z) [y]’A[z] ‘A pid,,

Prf = orthogonal projector from M} ‘onto some.'siib'spa'ce. L.

Prp=pPrl. =

(iii) For random variables

I,(.) = indicator of the set S
CardA = carinality of theset A . - -
(22,3, P) = basic probability space.

13

(22

(23)

(2.4)

(25)

-. A'_(2.6)

Pa and E 4 = conditional probability and expectatmn given the event’ A

r.v. = random variable taking values in an arbitrary measurable space.
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a.s. = almost surely (sure).

. ddd = independent and 1dent1ca,lly distributed. _

h E( |£) = conditional expecta.tmn given the r.v.X a.t some value z.
PX = probability distribution of the r.v.X.
AlS={ANS:Ae A}

(iv) Topxcal notatmns

In this paper we w111 consnder a pa.:r of functmns X (t),Y(t) deﬁned for
te N,N ={1,2,...}. Therange space of X () is an arbitrary space_H wht_e_reas
Y (t) is r x 1 vector-valued. The index ¢ always ranges 1,..., k; k > 1 being fixed.
Disjoint sets 5(¢) are specified in H. Let us set

(T, T} = {t:1 € N, X(t) € $(i)}, T < Tp < ..
When T;; exists, j > 1, set
(Xu:Yu) = (X (TIJ)’Y(TU)) (2.7)

Let b(.) be an I(i) x 1 vector-valued functlon on S(z) and z( ) an r X r p.d.
matrix-valued function on H. Let a(z) € N and set

"s=a(l)+ .. +a(k) =Y 1)+ ..+ k). (2.8)

In the following block matrices short syfnb’olé b,-_,-’:f b.-(X,;j),' Zij = z(X.J) are

‘used and the second index j in a pair (¢j) always ranges 1;..., a(i).

- Ui =(Yige) = (Yo Yiam)-

Bl = (..b;;..),Z; = dzag(z,,), _
©Ci=2P(Bi® I,), Ti = a~(i)CIC:;

UL = (UL U,

B, = diag(B;...By),

Z, = diag(Zy, ..., Z),

Ca = diag(C1,...,Cx) = 23*(Bs © I),

A, = diag(a(i) iyt = 1,..., k),

T, = diag(T;) =C,A7'C,.
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These block matrices will be of constant use later, the affix a will be dropped

when no confusion is possible.

PROPOSITION 2.1. The following facts are equivalent:
(a) det T; > 0 or, equivalently, T; is p.d. for all i,
(b) T is p.d.,

(c) C’C is p.d.,
- (d) Rank C=lr,

(e} C determines a one-to-one map from R'" into E*".

PROOF. Since a(i)T; = C!C; is n.n.d., det T; > 0 means T; is p.d. The
positive definiteness of T' = diag(T;) is equivalent to that of all T;, or also to
that of all C;C,-,-or again to that of C'C. Since C'C is of order Ir x Ir and
RankC = RankC'C, (c) is equivalent to (d). Finally RankC = Ir means that,
for any ir x 1 vector z,Cz = 0 is equivalent to « = 0, hence (d) is equivalent

to (e). Q.E.D.

3. Generalized least squares estimates (GLSE)

We shall now give the defimtion of GLSE, starting fiom the data-bases
{(X(t),Y(#)),t =1,...,n} according to model (1.1). We first reduce the model

to a compact form.
ProrosiTION 3.1." Set
d(i) = CardS(i) N {X(1), .., X(n)}. (3.1)

Replace a(i) by d(i) in the topical notations 2 (iv) and then U,, B,,... will
respectively be replaced by U4, Bg,.... Then, when ali d(i) are positive, the

model (1.1) for t=1,...,n is equivalent to the model
Us=Byqg+e (32)

where ¢ = (q}...q})' is an | X r matrix parameter and e is some residual.

PROOF. Keep topical notations. Then the equalities (1.1) for ¢ = 1,...,n, as
a whole, are equivalent to Y}; = bi(Xi;)ei + €i;,5 = 1,..,d(i),2 = 1,...,k, ei;

o+
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being residuals. “The latter are rewritten as
Ul = (.. ql i )+e —q,B'—}—e,,z—l k

with residuals €!. These, as a' whole, in turn are rewritten as Ud =¢Bj+¢.

Q.E.D.

PROPOSITION 3.2. Let A, B, C, y, z be matrices and b some vector such that
- the following operations are meaningful. There holds o '
() (b® A)B = b® AB, -

(i) [ABC'] = (4© C)(B],
in pa.rtlcular [AB] = - (A® I)[B];

(m) vec(ABC') = (C ® A)vecB o
in partmular vec(AB) = (I‘®_=A)ve_c B; |

() ['[#] = (vecy)'vecz.

PROOF. Check (i) and (iv) directly. (ii) figures in [2], p.84, and (iii) in [3],
AL50. QE.D.

PROPOSITION 3 3 With notatmns 2 (W), Ra.nk B = 1 is equivalent to
RankC ' ' ) o

PROOF. From 2 (iv) it is seen that B and C are respectively of order s x'1 |
and sr X Ir, and that z(.) be-ing p.d., sois Z. Then for any I x r real matrix
-z, from Proposition 3.2 (ii), Bx = 0 means (B ® I.)[z] = 0 or, eﬁuivélently,
A BL)z]=0 which means C[x] = 0. Now-Rank B = ! mecans Bz = 0
“if and only if = = 0jx, or, _equwa,lently, Clz] = 0if and only lf [:c] = 01,.,(1 or
again, equlvalently, Rank C =1Ir. Q.E.D.

PROPOSITION 3.4. Let F be a finite-dimensional real vector space endowed
with an inner product v and u(.) be the induced norm. Let L be a subspace
and my some fixed vector of F.

(i) Then, for given U & F; there exists a unique element p = p(U) of the
aﬂ"ine mamfold L+ mo such that for every y € L+myg there holds

‘U(U p)<U(U y)
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We shall denote p(U) = Pr},, U and call it the orthogonal projection of U
on L + my.

- (ii) If Pr} is the orthogonal projector of F' onto L and Id denotes the identity
mapping of F, then

PryymU = PriU + (Id — Priyme. (3.3)
(iii) Let D be any set in F and Dy = {y — 2 : y,z € D}. If L contains Do
then L + mo and Pry . U remain the same for all mg € D.
This Proposition generalizes Lemma 5(i) and (ii) in [1}, the proof remains
the same. '
Proo¥F. (i) For U € F we have the deconiposition.
U=Us+W, Uy € L,%J_L
and, similarly, _
mo = ep + fo, € € L, foL L.

Hence Uy + fo = (Ug ~ ep) + mp € L+ my. For any y € L 4+ my we have
y=yo+ fo with yo =eo+(y—mo)€ L.

Hence U —y = (Us — o) + U — (Uo + fo)

with Up —yo € Land U — (U + fo) = Vo — foLL..

-Therefore by setting p = Up + fo, we have u(U —y) 2> u(U p) with equahty
if and only if Uy — yo = 0 or, equlvalently, y=Us+ fo=

(ii) Since Up = PrilU and fo =mg —eo = (Id — PrL)mo, (ii) follows.

(iii) For mg and m in D, we have m —mqg € Do C L, hence L+ m =

L+(m—mp)+mg=L+mg and from (1) we have
Pri U —Pri , U=m—mg—Pri(m—me) =0 QED.

We are now in a position to define GLSE in the model (1.1). First, using
Proposition 3.1 we reduce the model to the form Uy = Byq + e, then we apply
Proposition 3.4.
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DEFINITION 3.1. Let Q be the range of the parameter ‘g in My, ‘Definé
={Bug:q € Q} and Do = {y — z : y,2 € D}. Let ImB, be the. image of -
M;x, by the map'u — Bju,u € M;x,, Let L'be any: linear- subspace of ImBy

containing Dy. Denote m = B;q and consider the equation in §: -
P U =B (3.4)
where the left member was glven by (3.3) with: Py L explamed in (2.5).

Then any solutlon g will be called a generallzed least squares (GLS) value"}

of ¢ and, if .unique, a GLSE for g.

PROPOSITION 3.5. GLS values for g always exist and are independent:of m
provided all d(i) given by (3. 1) are pos:t:ve A GLSE for q. emsts 1f and on]y‘___
if, all (d(J) being positive, Ra.nk Bd = l

PROOF. When all d(z) are posﬂ:we from topical notations 2 (iv}, Uy, By and Z,4
are defined. From Pr0p051t1on 3 4 ( ) the left hand side of (3.4) is an element-'l
of L+m. But L+m C Ide sirice L° c Ide and'm € D C ImB,;. The left-
hand side of (3.4) belonging to Im By, there always exists some value § in. My,
satisfying the equatlon (3 4) If o is a solutmn of (3 4), then q is a solution if
and only if By§ — quo Bd(q — qo) =0 or, equlva,lently, G = Go + h, where h
is an arbitrary ! x r real matrix such that. Bdh =0. ' '

The solut:on is umque when and only When Bdh 0 enta:ls h 0 or,

S T s

equxvalently, Rank’ Bd AR

From PrOposmon 3 4(111) 1t follows that the solutlons q of (3 4) are 1ndepen-.z'

dent of riiwhen' m varies in D.* Q E. D

REMARK 340 n the topmal notatlons 2 (1v) let us use a part:cular function
z(.) such that z(z) = d; Y(2)I, for z c Sy, 1, ., K, whiere d;(.)is & kriown'

positive function on 5(). Then, setting

| o Vi= dzag{d (X,J),j =1, s5d(5)}, V.= dzag(Vl, Vi), .
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we have Zg = V™1 ® I,. From Proposition 3.2 for v and y in the range space

of Uy we have

[v]'Zaly] = [ (VT @ Iyl = [u] [V™y] =
= (vec u) vec (V) = (vec u)' (I, ® V vec y.

Thus, for this choice of function z(.), the inner product used for defining the
projection in the range space of U coincides with the inner product used in [1]
for defining conditional GLSE, see [1], formula (33), p.30.

Hence Definition 3.1 includes conditional GLSE examined in [1].

REMARK 3.2. Consider the extreme case L =ImBjy; in Definition 3.1. Then
L+ m = L since m = Byq € L. Hence equation (3 4) becomes PrL‘Ud Bag.

In particular, if the function z(.) equals I, for all z € H, then the preceding
equation is written as PrilU; = B44. In [4], for linear fixed-design regression
models, just least squares estimates given by this simpler equation were

examined.

4. Expression of GLSE error

In this section, we will solve equation (3.4) in § — ¢. In the sequel, the
following notations will be used, see (2.2), (2.3).

e=Us—Bag (see (3.2)),  ¢=4d(1) +ot dik);  (41)

'[G]" 1/2[15] with G in M.x;, the range space of Ud,

[r] = 1lz[e] with h € M;xr;

g = ChA7 [h] with Ag = dzag(d(z)fd(,),) by replacing a(i} by d(z) in topical
notations 2(iv) throughout.

PROPOSITION 4.1. The equation (3.4) defining GLS values § is 'equivalent to

Calg — q] = JCab, - (a2).
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where J is the orthogonal projector from R°™ onto [G] according to the inner

product u'v(u,v € R°") and where b is defined by the equality
L CLATICb =g o | (4.3)

Particularly, in the extreme case L = ImBy, GLS values § are defined by the
equation

Cali - q] = Cab. N

PROOF. Since no confusion is possible, Wie shall drop the affix d. By rewriting
the left-hand side of the equation (3.4) according to Proposition 3.4(ii), we see

‘that this equation becomes
PriU +4(Bq— PrfBg)=B§ - (see (2.5)),

q_r; .equ-i__valently, . | o S D .
B(G—g)=Prfe. (4.5)
By the isomorphism y - [y], the linear space M., endowed with the inner
product (y,z) = [y]'Z[z] passes into the vector space R°™ with the same inner
product, the orthogonal projector PrZ is transformed into the projector Pr[ZL]

of R°" and, by using Proposition 3.2 (ii), the equation. (4.5) becomes
BeL)i-d=Pfld - (46

The a,utomorphzsm [y] — 5z [v] of R°" transform R°™ with’ the inner product
[v)' Z[z] into R°" with the inner product [u]’ [v],[] = Z'/2[y},0 = = g/ 2[2:]‘ the
orthogonal projector Pr[ I) is transformed into the orthogonal pro_]ector Prl
i.e.. Prig) by (2.6), since [G] is the image of [L].

{a]p

With the topical notations 2(iv), the equation (4.6) is-thus transformed into
 the equivalent one

C[q - 9'] P""[G] lh]': o | ‘(4 7)

since [h] is the image of [e] by the a,utomorphlsm By considering B and C
together as matrices and as mappings, with the mapping B from My, into

"M, and the mapping C from R'" into R°", the inclusion I CImB with ImB =
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BMy, is tz;ansfermed by the product transformation y — [y] — Z1/2 [y] into
the inclusion I L S i
(Gl CCRY = M{C). - (sce (2.4)),."
for C=ZY*(B®I,). In partlcular when L = ImB then (Gl = M{C} From
(4.8) we > have S S - :
PT[G][h] = PT[G]PTM{C} [h]

But there exists some vector b € R’ such that
PTM{C}[h] o . (4 9)

hence (4. 7) is rewritten as (4 2). Now (4.9) is equwaIent to ( [h] C’b)_LM {C}.
For any vector y € R*" with ¢ = d(1) + ... + d(k), let us write ¢' = (y}---yk)
with y; € R*I", Recall that Ay = dzag(d(z)]’d(il,).and that, from 2 (iv),
C = diag(C;). | -

Then 1t is seen that the relation yJ_M {C} is successweiy equwalent to the

following ones
C'y =0; C'y, =0 for all i
d"l( )C'y, =0 forall % C" AJly = 0
the d(i)’s bemg assumed to be positive cons1dermg Prop '3.5. Hence (4.9) is

equivalent to

L C'AZY (R -Ch) =0

or again to (4.3). Finally, when L = ImB then Cb €' M {C} = [G] hence
JCb = Cb and (4:2) bécomes (4.4)- Q.E.D.

PROPOSITION 4.2, Set Ty = = ChA;S ~1Cy. Then, whenever the GLSE exists, it

satjsﬁes the formu]a, ‘
fa—ql= (T-lcd “’2)(A“’2JA1’2)(A“’20 Ty ‘)g - (4.10)

PROOF. On account of Proposition 3. 5, the d(i)’s are always assumed to be
positive, then a GLSE § exists if and ouly if Rank Bd = |, or, equivalently,

Rank C4 = Ir considering Proposition 3.3. From topical notations 2 (iv), by



122 R .. 'NGUYEN BAC VAN

replai:ing a(i) by. d(i) in.T, we obtain Ty. Then, from Proposition 2.1, the

positive definiteness of Ty is equivalent to the existence of the GLSE 4. From

now on, drop the affix d. Multiplying both sides of (4.2) by C'A7! and replacing

b by .T__lg.from (4.3), we get IR |
T[4 — g = C’AleCT g=C ATV (A P TAY A PeT Yy

Hence (4.10) follows. Q.E. D.

Let us quote some well-known facts

PROPOSITION 4.3. Let A,B,C be rea.l matnces such that the product AB exists.
Then (see (2 1)) . i R ‘

(i) llfitl!2 =TrAA,

(i) ||AB|]? < ||A][*]|BII%,

(111) Tr(A ® C) = TrA.TrC if A and C are square matrices.

We w111 now evaluate the Euclidean d1sta,nce between the GLSE ¢ and the

true value ¢ of the parameter in the model (1 1)

PROPOSITION 4.4. Whenever the GLSE ex:sts, there holds

|1g - tif‘ll2 < I(TrTy Z d(y)d"l(f))HGH_z-, - (41
frg=1
PROOF. Apply Proposiﬁon 4.3 (ii) to the _'fight—hand side of (4.10) repee,tedly.
Notelthe_,t', by d;qpping d, we have B _ . -
ITic A PP = 147 oT | =
C=TrTICAPNCT =TT,
by using Proposition 4.3 (1). Write J as a partitioned ma.tﬂx J= (J fg), f,g =
1., k, where Jg, is an d(f)r x d{g)r matrix. For A;tll_z ="diag(d*/2()) L3yr),s

we have

AP IAL =@ NPT frg =Lk
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Hénce .0 v oo o o

HA-I/ZJMH” Z d-l(f)d(g)nw S (e12)
f,y—_

Recall that (see [6] 1c 4(v)) the orthogonal pro_]ector J Pr[G] is a symmetric
and idempotent. matrix with -M{J} = [G], and that:for idempotent matrices .
(see [6],.1b.7) we have TrJ = RankJ:. But-RankJ = dim A {J } dun[G] From-

the inclusion (4.8) we have -
 dim[G} < dim M{C}= Rank C <r.}"
since O is-of order. (cr, Ir}); see notations (4.1). Therefore & ool wo oo
||Jfg||2 < ||J||2 LTI J = TPy = Trd < i

Thus the expresssmn (4 12) is bounded by lr Zf o=1 d(g)d‘l(f) Hence (4 11)7_
7 follows Q E D . o '

In this section, (X (¢),Y(¢)),t = 1,2,..., are i.i.d. copies of a pa.:r (X, Y)of
r.v’.s Y is r x1 vector-valiled, whereas X ‘takesvalues in aniarbitrary measurable
space (H,A). Disjoint sets S(¢) € A with P(X € S(i)) = p; > 0 i = 1 k _
are specified. From nota,tmns 2(111) for each w E Q let us denote - i

d(n w, z)-_-CardS(z) N {X(l) X(n)} = {8.1):
48 =.5(1). +i Sk o Lot i Do I
Topxca.l notatlons 2 (lv) wﬂl be used and when a(:) a.nd the aﬂix a are mvolved |

they W1ll be repla,ced by d(n w z) and the afﬁx d respectlvely, so we W1ll ha,ved "

Td,Cd, etc further write |
(X,,Y) = (X,l,Y,I) 1n (2 7) (5.2)

We will first describe the d1str1but10n features of the sequence (X,l, Y,l) (th,_

l2)a
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PROPOSITION 5.1. Let A € A with P(X € A) > 0. Let V be a vector r.v. such
that EI4(X)) exists. Then the equali_ties

E(f(X)IB(X))—-E(VIB(X)) for every BEA|A (5.3)

define a A]A ‘measurable function f(.) on A, up to a PX - equivalence. We
willl call f(x) a restricted on A conditional expectation of V given X at x.~
Further, for P-almost all w € {X(w) € A} we have

f(X) = E(VIA(X)IX) = Exen(VIX), (5.4)

. where the last member denotes a conditional expectation given X relatively to

the probability measure P(x¢ 4)-

PROOF. In the probab111ty space (£,7, P) set G = {w : X(w) € A} € J..
' It suffices to consider some coordinate VD of the vector Vv, deﬁned on the
new probability space (G, 3|G, Pg), where Pg = P/P(G) on J|G. The new
expectation, denoted by EgVi, exists since E(Vola(X)) = P(G)EgVp. For
BC A we have ' '

E(VoIB(X)) = E(VOIB(X)IA(X)) = P(G)Eg(VoIp(X)),
and sumla.rly, | | o ,
E(f(X)Ip(X)) = P(G)Ec(f(X)p(X))-

Thus, for Vg the equé.liti_es (5.3)"b-ecomé=:. Eg(f(X)IB(X)) = Eg(VoIp(X)) for
every B € A|A, and then, as known in conditioning theory, they define a A]A-
measurable function f(z) on A, f(z) is defined up to a pX -equlva,lence and
is the well known condltlonal expectation Eg(Vs|r) of Vo given X at z €A
relatlvely to the new probability space (G, J|G, Pg). Therefore, for P- almost_
all w € {X(w) € A} = G we have

(X) = EG(Vo|X) = E(XeA)(VulX) (5.5)
On the other hand, rewrite (5.3) for Vg |

E(f(X)Ia(X)I5(X)) = E(VoIa(X)Ip(X)) forevery B€ A.
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Then, for P-almost all w € {X(w) € A} we have
F(X) = fF(X)IA(X) = E(VoLa(X)1X),

from which and (5.5) we get (5.4). Finally, when E(V;]X) exists, it will satisfy
(5.3), hence in this case f(z) coincides PX—a.lmost everywhere with E(Vy|z)
on. A, and then f(z) is indeed E(Vg[.'c) restncted on A. We will call f(z) a
restricted on A conditional expectation of Vy given z, whether E(V{;|X ) exists
or not. Q.E.D.

’

i1d.rv.’s (X(¢),Y(t)). The following assertions hold' SRR

(i) The family {(X;;,Y:;),7 = 1,2,...;¢ = “1,...,k} is.a.s. defined and is an’
independent family. : ; I

(ii) For each fixed (z,J) the P—d1str1but10n of (X,J, Yi;) coincides with the
" Pixesti) - d:stnbumon of (X,Y).

(iii) If: Y is vector-valued and E(YIs(X)) exists, then. setting f(X) =
E(YIs(X)|X) a.s. we have ' :

PROPOSITION 5.2. Let (X.],Y,J\ be defined by (2. 7) from the sequence of

f(X:;) = E(Y;;1X;)  a.s. for each ﬁxed (z _1)

Assertlons (1) and (11) are contamed in Theorem 2 of [1]. We will g glve an

independent proof.”

PROOF Wlth notatmns 2(iv) and from (5 1) for each i we have

d(nwz)—Card{J J>1T,,<n} Hence
{T,J<oo for all _]—12 } {d(nwz)—»oo as n—»oo}

In view of P(X € S(z )) >0 we have
P{d(n,w,i} = o0 ‘as” n — oo} =1 -for each™ i.
Hence it follows that P{T;; < oo for all (i,5)} = 1.

‘Thus, from (2.7) the family {(X;;, Yi;)} is a.s. defined.
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Consider arbitrary positive integers'a(i) and % disjoint sets in IV
{1y ey Ria(i) Jr i1 < Mz <oz =14, k,
and their union M. Denote
'- A(M ) "-—‘;-{Tif =“'n.¥j§?_ = 1k:r =1, -‘--,a(i)},
= {X(ni;) € 8(),i=1,..., k55 =1, e a{i) ),

k
= ﬂ{X(t) ¢ S(1) forall t¢ M, and together t< n,-a(,-)}. :
Then A(M) - A’ n A" P(A(M)) = P(A’)P(A")) Further, denote K(t) =
(X (&), Y (1)), Kij = (Xi5, Yig), K = (X, ).

Then, for arbltrary measurable sets B;; in the range space of K we have - .

PA(M){K,_, EB,_,,%-—-I k ¥ ——1 a(z)}— :

2 PP A PAA (K (i) € Bigyi < Fj Sali)}P(A")
E a(i)

=TI1I P(xeso))(K € Bu)

i=1 j=1

by notmg that K (n,J) are mdependent coples of K. Now, we have

1= P{T;j < 00,1 = 13_"'1k;j = 1,...,0,(1:)} ZP(A(M))’

the sum extendlng only over the class of sets M w1th P(A(M )) > 0 Hence |

- P(Ki; € Bijyi < < k,j < a( )) =
= ZP(A(M))PA(M)(K:J € Bu;z <k ] S a’(z))

E afi)

=] H Pixesin(K € Bij)- -

i=1 j=1
This equality proves assertion’ (ii) and completes the the ‘proof of assertion
(i). To prove (iii), apply Proposition 5.1." Since E(Y Is(X)) exists and 5() ¢
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3, E{Y Is)(X)} exists too and from (5.4) we ha,ve '
E{st(g)(X )IX }= E(xes(.))(YIX ) - (56)

for P-almost all w € {X(w) € S(z)} Set f(X) = E(YIs(X)|X). Since
YIgi)(X) = YIs(X)Ig;)(X), E{YIS(.)(X)|$} c01nc1des with f(z) on S(3),
therefore from (5.6) -

f(X) = Eixesun(Y1X) (5.7)

for P-almost all w € {X(w) € S’(z)} Now, from (ii) the P-distribution of
(X,J,Y,_,) comc1des with the P Xeg(;)-dlstnbutlon of (X,Y), hence (5. 7) is
equivalent to f(X,,) = E(Y;;|Xi;) as. Q.E. D

The behaviour of T; may be seen from the following four propositions

PROPOSITION 5.3. Let u and v be random matrices of which v is n.d.d. Then
E(|[u|{*Trv) is finite if and only if E(uu' ® v) exists and is finite.

PROOF. For a random n.n.d. matrix F, it follows froin Schwarz inequality that
EF exists and is finite if and only if ETrF is finite. From [3], A1, 49, uu' @ v

is n.n.d. and from Proposition 4.3
Tr(uw' @ v) = Truu'.Trv = ||u||*Trv,

hence our assertion follows. Q.E.D.

PROPOSITION-5.4. Let b be a t x 1 random vector and u anr X r p.d. random
matrix. Assume that E(bb' @ u) exists and is finite. Then E(bb' ® u) is
n.n.d, moreover it is p.d. if and only if the probability distribution of b is

not concentrated in any proper subspace of R*.

PROOF. Let v be any #r X 1 non-random vector. Equivalently, v = vecV, where
V is an r Xt non-random matrix. Applying Proposition 3.2 (iii) and (i) we have
!B @ uyv = o' (B @ u)vecV = v'vec(uVhh') =
\ =v'"(b @ uV)vech=v'(b ® uV)b =v'(b@uVb) =
=0'® b’V'u)v' =(b' @ t'V'u)vecV = vec(b'V'uVb) =
= (VH)'uVb



128 . .. NGUYENBACVAN . ..~
which is non-negative and which vanishes if and only if Vb = 0 since w'is p.d.
Hence, by taking expecta.tmn, E(bY ® u) is n.o. d -
Then, det (E bb’ ® u) —0is successwely equwa.lent to
(EIV 72 0), E(b'V'qu) = 0
(EW%O),VI)—-O a.s.;
(There exists a 1 X ¢ non-null and non—random row Vp), Vob =0 a.s. Q. E.D.

PROPOSITION 5 5 Assume that X,l, i%y--. are Ll d cop1es of the .. X Let
b; (X,) and z(X ) ber.v.’s of Whmh b; ( ) is I(z) x1 vector-va]ued and z( ) is p.d.

matrix-valued. Then under the condition

CBLPTX <o (538)

with topical notatlon 2 (w), the matrix T; tends a.s. to E{bi(X; )b’ (X; )®z(X )}

as the non- -random, a(z) —» +00. Moreover, this limit Lj is P« d. if

‘The probability distribution of bi(X;) is not concentmted
in any proper subspace of R, e (5 9)

PROOF. From notations 2(iv), writing bi; = b(Xi;), zij = #(Xij) we have
(B; ® I,-)Z: = (...(bi_,‘ ® I,.)z,-j,.;.)f—'-::(.'_..b,-,- ® z,-,-..__.) R (5.10)
by usmg Proposmon 3.2 (1) theindex 3 ranging 1,:..,a(¢). Hence

a(;)T _(B’®I)Z(B ®L-) L
= ( b,_.'. ® Ir._..)(...blj ] Zifes )’
Thus .

e ey
T; = a7 () Y b (Xu)b'(xu) ® Z(Xu)

=1
From Proposition 5.3 condition (5.8) means E‘{‘B,-(X OY(XG) ® 2(X;)} exists and

‘is finite.
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. From.Kolmogorov strong law of large numbers, as the non-random a(i) —
+00,T; tends a.s. to the asserted limit. The condition (5.9) ernsuring that the
limit is p.d. follows from Pr0p051t1011 5.4. Q E.D.

PROPOSITION 5.6. Let g(a( ) w) be some matnx functlon of w and a non-

random integer-valued variable a(z) -

) Ifg(a(z),w) —'0 a5 as a(i) — +o0, then g{d(n,w,?),w) — 0 a.s. as
n — 4o00. _
(i) If g(d(n,w,1),w) — 0 for some w as.n — +oo, then g(a(i),w) — 0 as

a(i) — +oo, providing d(n,w, 1) — +00 as n.— +oo0,

PROOF.
- (i) Set F' ={w: g(a(),w) does not tend to zero as a(i}) = +oo},
G = {w: g(d(n,w,i),w) does not tend to zero as n — +oc},

Q={w: d(n,w, i) — +00 as n — +o0}.
Con31der some w € G ﬂ Q’ Then
(3e > 0), (3{nm(W)} - +00), Ilg(d(nm,w i), w)ll > em =1, 2

.Smce w € Q’ d(nm,w z) — -|-oo as m — +oo For the cons1dered w put
Um = d(nm,w z) then there hoIds

(Ele > 0) (El{am} — —l—oo), Hg(am,w)H > e,m=1, 2

This means the conS1dered weF,ie. G n Q’ C F Hence G C FU (Q Q’)
But P( — Q') = 0 since P(X € S(z)) > 0, con51der1ng (5 1) Thus (i) follows.

(11) For the consuiered w there holds
(Ve > 0) (Hng(w)) (Vn > ng) |[g(d(n w, z) w|] < e.

From (5.1), as n increases d(n, w, i) is non-decreasing, hence d(n,w,i) >
d(ng,w,1) for n > ng(w), moreover, whenever d(n,w,) increases, it increases

by the unit. But, from assumption, w € § hence as n ranges no(w), no(w) +
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1,...,d(n,w,?) ra.nges'd(no,w,.i),d(no,w,i) + 1,... ad infinitum. Therefore by
-putting ao(z) = d(no,w, 1) for the considered w there holds

(Ve> 0) (Jao(2)), (Va(ZJ > ao(#)), llg(ala), )l < ¢,
Wh1ch means g(a(z),w) — 0 as a(i) — +00. Q. E D.
- Next, we will give a result on the existence of GLSE generalizing Theorem
4 in [1], p.27. '

THEOREM 5.1. Consider the condition
{ The F(xes(iy) — distribution of the assumed r.v.b;(X) is not (5.11)

concentrated in any proper subspace of R!() i =1, ... k.
and the event { the GLSE § exists as soon as the sample size n is sufficiently
large}. Formally, this event is

Q= {w: Hﬁg(w),Vn > np, the GLSE § exists}.

Then Py = 1 or 0 according to (5.11) which is satisfied or not,. respectively.

ProoF. By impliéitiy assuming that b;(.} is A|S(¢)-measurable, from Proposi-
tion 5.2 (i) and (ii), b:(Xi), bi(Xiz), .- are i.i.d copies of b;(X;), see (5.2), and
the P-distribution of b;(X;), which coincides with the.P( Xe S(;))-distribhtion of
~ 5;(X),is not concentrated in any proper subspace of RIG). when in the first part
_We suppose that condition (5.11) is satisfied. Accordmg to notations 2 (1v),
:from Corollary 2in [1] p-27, there holds ' ' '

P(Raunk BE =1(i)) 71 as a(z) non-random T +o0.
Since B, = diag(B;) we have Rank B E:-;l Rank B;. Hence, with I =
1(1) + ... + I(k), there holds - |

N P(Ra_nk Ba = 1).= P{ﬂ(Rank B; =1(i))} = [[ P(Rank B; = I(3)) 1 1

as the non-random a = (a(1),..., a(k) T oo, the B}s being independent in view

of Proposition 5.2 (i).



LEAST SQUARES ESTIMATES IN POLYGONAL REGRESSION 131

Therefore _ :
(Ve > 0),(F a1, ..., ak))-(Va > (a1, ..., ax)), (5.12)

P(Rank B, =1)>1—-¢e.
Reblace a(z) by d(n,w,1), then denoting
Qa,n) = {w: d(n,w,i) = a(i),i = 1,...,k},
we have

P(Rank B, = I) >P{ Z - Qa,n)N(Rank By =1} >
a>(a’1» 1“k) .

> Y P(ﬂ(a,n)).Pg(a,n)(Ra'n;k B, =1).

a>(ai,...,ax)
But, on account of Theorem 1 (i) and (ii) in [1], p.8. the Pg(a ny-distribution
of the family {Xi;,¢ =1,...,k,7 = 1,...,a(d)} coincides with the P-distribution
of the same family according to Proposition 5.2 (i) and (ii), therefore B, being

function of this family, we have
Pg(a,ny(Rank B, =1) == P(Rank B, = )
and from (5.12)

P(Rank Bi=1)2(1—¢) >  P(Q(a,n)>

‘a>(a1,0.,a8)
> (1 - &)P{d(n,w,i) > ai,i =1,... k}
By letti.n'g- n — 400 and passing to the limit we have
| liminf P(Rank By =1)> 1 — ¢
ft;»:: every e > 0, hence lim,_,o, P(Rank B4y =1) = 1. Now consider
Qo = {w - Elm(w) Vn > m, Rank By =1} =

= U ﬂ {Rank Bd = I} “ | (5.13) .

m=1n=m
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Put A, = (oo, {Rank Bs = I}, then the sequence {An} is non-decreasing.
Hence P() = limp—oo P(Ay). Further, since Rank B; = Zf Rank B;
is non-decreasing as (a(1),...,a(k)) increases and since d(n,w,i)’s are non-
decreasing as n increases, it follows that Rank B; is non-decreasing as n

increases. We thus have

Am = () (Rank By =1) = {Rank By =l for n = m}.

n=m
Hence limm_oo PAm = 1 and P = 1. Since Rank B, = [ or, equivalently
Rank B; = I(i) for each i, entails a(i) > I(i) > 0, the event {Rank B; = 1}
entails all d(n,w,t) are positive and, from Proposition 3.5, is equivalent to the
existence of GLSE. Thus the first part is proved. Now suppose (5.11) is not
satisfied. Then from Corollary 2 (ii) in {1], p.27, there is some index 7 such that
the event {Rank B; = [(z)} is a null one for every non-random a(¢) > 0. Hence

(Rank B, =) is a null event for every non-random a > 0. Smce
(Rank Bg=1) = Z  Qa,n) n (Rank B = 1)
a>(I(1),...,1(k))

(Rank By = 1) is a null event, hence so is

U m(Rande—l) Q.E.D.

. m=ln=m
REMARK 5.1. If the vector b;(X;) lies a.s. in some m(z’)—dimensional proper
subspace of R with a basis {ul, m(,-)}, then denoting by u the I(z) x m(z)

matrix (%1..um(i)), We have
b,-(X,') = uc;i(X;) a.s.,

where ¢;(.) is an m(z) x 1 vector function. Hence we have the better parame-

trization . - - o -
 U(Xag = (X' = (Xi)fi,

where the new matrix parameter f; = u'g; is only of order m(z) x r, with

m(z) < I(i). Thus Assumption (5.11) is natural for a rational parametrization.
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The following theorem gives an upper evaluation of the GLSE error norm
in comparison with residuals. We first note that for Xi = Xa, in view of

Proposition 5.2 (i), in Proposition 5.5 the condition
7 E|o(X)IPTr=(X;) < 00,1 =1,..,k
is equivalent to

Exesaylllb(X)PTr=(X)} < o0,i=1,...,k. (5.14)

THEOREM 5.2. Together with Assumption (5.11) also assume (5.14). Then
there exists a finite positive constant R such that a.s., as soon as the sample
size is sufficiently large, for each subspace L involved in Definition 3.1 the

corresponding GLSE § exists and
sup g — qll < Rllgll,

where g = C1AT'Z ;/ ?[e] (see ( 4.1}) and supy, is taken.over the set of subspaces

- L involved.

PROOF. Under the terminological phrase “a.s. as soon as the sample size is

sufficiently large” we always mean the following logical proposition
(3F, PF = 1)(Vw € F)(3no(w))(Vn = ny).

From Proposition 2.1 and 3.3, the equality Rank B; = l is. equivalent to the
positive definiteness of T;. Hence, from (5.13) in the proof of Theorem 5.1,
a.s. as soon as n is large Ty is p.d. From' Assumptions (5.11) and (5.14)
and Propositions 5.5 and 5.6 it follows that Ta tendsra,.s. to the p.d. limit
Ly = 'diag(L;,i =1,..,k) as n — +00, where L; is the a.s. limit of T; in
Proposition 5.5. Therefore Tr(T; ') tends a.s. to Tr(L;!) as n — +oo. On
the other hand, in Proposition 4.4, with d(i) = d(n,w,?),p: = P(X € S(i)),
the ratio d(g)d~'(f) tends a.s. to p,p;! as n — +00. Now the rigﬁt-hand
side of (4.11), Proposition 4.4, which will be written briefly as K 2||g]|?, is quite

independent of the subspace L involved in Definition 3.1 besides Proposition
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4.4 is valid as soon as Rank Bg = I considering Proposition 3.5, hence by using

the a.s. event §}g given by (5.13) we have successively
(Ve € Do), (Fm(w)), (Vr > m(w)), Rank By =1,
(Vw € Qo), Bm(w)), (v = m(w)), 11§ — gll < Kljgll,

the latter is also valid for supy, ||§ — ¢ since by the former m(w) is independent
of L. From above K 2 tends a.s. to a finite positive consta,nt as n — oo,

besides K2 being mdependent of L hence we can manage so that
(EF C Qo, PF =1),(Vw € F) (Bm{w)), (¥n 2 m{w)), K <R,
where Risa sultable finite positive constant. Therefore
(3F,PF=1),(Vw e F), (Elm(w)),
(vn > m(w)),sup|ld - qlf < Rllg]l. QED.
We now state the strong conssistency of GLSE. |
THEOREM 5.3. Let, in the model (1.1), (X(¢),Y(t),t =1,2,...) be i;i.d. copies

of a pair (X,Y’). Let E{YIs(X)} exist, and assume

E{Y'IS(X)IX} Zb’(X)q,IS(,)(X) as. (5.15)

) Ci=1 - .
Then under the condzt:ons (5. 11) and (5 14) supy |G~ q[| — 0 a.5. asn — +oo
if a.nd onIy 1f o “ ‘

'.'E(XGS('-)'){b"(X)®z(X)Y} exists, i=1,..,k, = {(5.16)

sup L bezng taken over the set of all subspaces L mvo]ved in Deﬁmt:on 3.1 of
GLSE g

PROOF. Wlth notations 2 (iv)', consider

| CLA7 2 = diag{a™Mi)(B) ® 1) Z:).
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By denoting
e; = U; — B_:'qz', ¢a = U, — Bag = (_8'1--_-8%)',
bij = bi(Xi;), zi5 = 2(Xi;),
there hold | |

[ei]’ = (---Y."j - bi‘j‘l:‘---): [eo]' = ([61]'---'[%}-'),
CoA 21 es] = (0™ (@) e] Zi(Bi @ I,)...),

and on account of (5.10)

: a(i) :
T (@Dl ZdBi @ Ir) = a1 (@) D _(Vi; — b;00)(b; © 7).
i=1

From Proposition 5.2 (i) and (ii), (X1, Yi1), ... are P-i.i.d. hence, by Kolmogo-

rov strong law of large numbers,

the existence and vanishing of E(b;(X,-) ® 2(X))(Y: — ¢ibi(X:)),i = 1,..., k,
- - (5.17)
are necessary and sufficient for C;AQ‘IZj/ ?leq] to tend a.s. to the null vector
as @ = (a(1),...,a(k)) increases indefinitely. Replacing a(i) by d(r,w,i) and
applying Proposition 5.6 we see that, with notations {4.1), Claim (5.17) is
equivé,lent to asserting g — 0 a.s. as n — +oo. On the other hé.nd, using

Proposition 3.2 (i) and (ii) we have
(5:(X:) @ 2(X))Y; = bi(XD) © 2(XDYs |
(3:(X:) ® 2(X))qibi(X:) = b @ zglbi = (b © 2g1b)[I1] = |
= [bibigiz] = (Bi(XB(X:) © 2(Xa))[ai): (5.18)

From Proposition 5.3 Assumption (5.14) means the existence and finiteness of
E{b:(X:)bi(X:) ® 2(X;)} for all's, hence it entails

_E{(Bi(Xg)_®z(X,-))qu?(X,-)} exists and is_ﬁnit;e, i= 1,...,.k, (5.19)
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since gls are non-random. Further, the conditional structure (5.15) is equivalent
- to

E(Y\X) = W(X)gs a5 i =1,k (5.20)
indeed (5.15) entails (5.20) by Proposition 5.2 (i.ii-), conirel-"sely the P-distribution
of (X;,Y;) coincides with the P(x¢ s(i)-distribution of (X ,¥Y) and by (5.4),
Proposition 5.1, E(XGS(:'))(YIX) = E{YIS(:')(X)I_X-}P(XES(i))”a-S-: hence (5.20)

is equivalent to
BY Iy (X)IX} = B Iso(X) a5 i = Lok,
then (5.20) entails (5.15) since Y'Is(X) = £y Y'Isi)(X). B
Let us now prove our assertion. First, condition (5.16) is equivalent to
B{((X:) @ (X)Vi) exists, i =Loonky  (5:21)

considering (5.18). Then the structure (5.15) and condition (5.16), equivalently,
the structure (5.20) and condition: (5.21) entail

E(b (X:) © 2(X:))Y; =E{(b:(X:) ® 2(X; ))E(Y X))
=E{(h: ® z(X ))gibi}-

From (5.19) the last member, hence the first are finite.. Hence Claim (5.17) is
fulfilled. Thus ¢ — 0 a.s. as n — +oo. By Theorem 5.2; supy ||§ — ¢} = O
a.s. as n — +oo. Let us prove the converse.. From Pr0p051t10n 4.1,in the
extreme case L =ImBy, GLS values are defined by the equation C’d[q —gq] = C4b,
therefore C/ Adlcd[q g] = C&Adlcdb ie. by (4 3) Td[q q] = g Hence, from
Proposmon 43

lgll* < Hq —ql*Tr(TH < 1§ - qlf? (TT Ta)’, (5.22)

see (3], Al 70 Under Assumptlon (5 14), from Pr0p051t10ns 5.5 and 5.6, Ty
tends a.s. to a finite limit as n — +oo, hence so is TrTy. By assumption
g is strongly consistent, hence, from (5.22), g — 0 as n — 400, which from
above is equivalent to Claim (5.17). On account of (5.19) it follows that

E(b;(X;) ® 2(X;))Y: exists or, equivalently, condition (5.16) is satisfied. Q.E.D.
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REMARK 5.2. From the proof, the above main theorem can be stated more
concisely and formally as follows.

The GLSE, defined according to model (1.1) and Definition 3.1 on the basis
of i.i.d. observations on a pair (X,Y’) satisfying Assumption (5.11) and (5.14)
is strongly consistent uniformly in L on the set of all subspaces L involved if

and only if the representation

bi(X) ® 2(X)Y = (bi( X)Bi(X) @ 2(X))gi] + s,
Exesipri =0, =1,..,k (5.23)
holds.

Especially, under the polygonal conditional mean structure (5.15), the repre-
sentation (5.23) is equivalent to the existence of E(x¢s(i)n{bi(X)®2(X)Y},i =
1.k
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