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SEPARABLE CALIBRATIONS AND MINIMAL SURFACES

HOANG XUAN HUAN

1. Introduction

The calibration method was studied systematically by Dao Trong Thi in
[D1, D2] and Harvey R., Lawson H.B. in [HL]. Various concrete calibrations
were used by many authors: Federer [F1], Berger [B], Dao Trong Thi (D1, D2},
Harvey-Lawson [HL], Dadok-Harvey-Morgan [DHM], Le Hong Van [L] ete... to
find minimal surfaces. In all but simplest cases,the determination of the comass
and the maximal directions of a p-covector 1s the main obstacle to apply this
method.

In this paper we study the p-covectors in R, Which can be expressed in the
form

Q=00+ el Aot + el Arer Al Qus

where R* = Vi @ --- @ Viaq is an orthogonal decomposition of R*, dim V;, =
pe 2 2fort <k Q€ AT(W,), ¢ =p— Z.pt,e"{/‘. 1s the unit p;-covector of
Vi, W,, = & Vifori < kand Wiy, = Viq,. t:[fllthis case the comass of {1 can be
ca,lcula.tec?l:z)y the formula ‘

190 = max "

and the maximal directions of Q can be defined by the maximal directions of
the terms, whose comass equal 2. On the other hand Federer in [F2] and

Harvey-Lawson in [HL] have proved the equality

lle Anil* = Nl Il
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when ¢ is decomposable (where R* = V @ W is an orthogonal decomposition
of R*, ¢ € A"(V) and 5 € A*(W).) This equality still holds when ¢ has the

expressions considered in this paper.

The author expresses hlS gratltude to ’Prof Dao Trong Th1 for hlS sc1ent1fic

advice. -

2. Forms and comass

In this section we recall some notions and facts of external algebra (for
details see [F2] and [G]) Let R" be the n-dimensional Euclidian.space, Ak,n
and AP the dual spaces of the k vectors and the L covectors respectlvely
Cons1der an. orthonormal basw el, . en of R“ | One can 1dent1fy the dualr
Basis ‘31: - er W1th e, en (up to thls pomt the symbol * only means
that We ars cons1dcrmg covcctors) An arb1trary p- form Lp in R" has a un1quel
expressmn Y = Za;e,, Where T = (zl, aiphl < 21 < ; zp 5 n a,nd
ei}' = e=1 A---Aej . The comass of a p—covector © is defined by ‘. '

el = sup {(e) e isiany unit simple p vector}
and the mass of a p-vector ¢ is defined by |
el = sup {e(e) : llell” =1}
Defioté by span(p) the ininimal subspace V'C B” such that ¢ € AP(V). Then
spaii (@) = {v € R" 1 i,(p) = 0} ‘The rank: ¢ ‘is the dimension’ of span (¢): .
Let ¢ and S be a differential p-form and a p -current in'd Riémarinian manifolds

M respectively. The comass of ¢ is defined by loll* = sup {o? : z € M) and
the mass of S is defined by o ' He

M(S) = (S el =1

If S is a surface of M, then M(S ): volume (§): Forieach p-vector p in R®

the set of maximal directions of §} is defined by

G(p)={e€ Apa: w(e) = ”(p”*, € IS umtsn’nple} T
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and called the set of p-maximal directions. If ¢ is a differential p-form in a

Riemannian manifolds M, then the set of p-maximal directions is given by
Gp) = U{G(wz) = leall” = llel"}-

A p-covector in R" can be considered as a parallel d1fferent1a1 p -form in R™.
Let ¢ be a p-form in V C R". Clearly ¢ can be considered as a p- form in R”
by 1dent1fy1ng,  with 7% Where 7 18 the orthogona,l prOJectlon of R*on V.

3. Separable forms
In this section we present a class of forms, which is the main -c:'bjlect of this
paper. One can determine easily the comass and the maximal directions of each
form in this class. The main reference is the beaut1fu1 fundamental paper of
‘Havey R. and Lawson H.B. [HL]. To begin this section we recall the Havey—

Lawson’s Lemma of the canonical form of a simple p-vector (see [HL] for the

proof ).

3.1. LEMMA. Suppose V is a linear subspace of R™ and ¢ is a unit simple
p-vector. Then there exist a set of orthonormal vectors ey, -+ ,e. 1n V, a set of
orthonormal vectors g1,--- ,9, in V' and angles 0 < §; < 7/2 for4 =1,--- k
(where k <r,s <pandr+s—k = p) such that

e ={cosbie —I—Sinﬁlgl)/\" - A (cos Orey —I—smﬁkgk)

Aegyy A /\e,./\ng/\ /\gs.' (3.1)

REMARKS. a) For the case dim V'= ¢ < ib, we can'take s = g and 0 < 6; < 7/2
for 7 < ¢ such that

e= (cosfBie; +sinfyg;) Ao A(cosbyeg +5inbyge) Aggra A---gp.  (3.2)

(If 8; = 0 (or w/2), then g; (or ¢;) is only a formal symbol). b) For the case
dimV = ¢ > p, we can take s = r = p and 0 < 8; < w/2for 7 < g such that.

¢ = (cosfie; +sinfg ) A+ A(cosbye, + éinﬂpgj,):l‘. | (3.3)

(If 8; = 0 (or 7/2), then ¢; (or e;)} is only a formal symbol).
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The followmg theorem is the main result of th1s sect1on

3. 2 THEOREM. Let R" =V & W (dlmV =q22) be an orthodonal decom-
. position of R* and @ = Q; @ e}, AQ; a p-form such that Q,,Q, are formsin W
(where €3, is a unit simple g-covector of V). Then

a) [|Qf]* = max (i l*, 1Q:]l)

b) IF " > 122", then G() = ()

c)If ||Q1|[* < |I€22]|*, then G(Q) = {ev A G(22)}

d) K || )* = [|R2]|7 and ¢ 2 3, then G(Q) = G(Q1) Uev A G(Q2)

e) If ||| = ||| and ¢ = 2, then G(Q) = G(1} U {ev A G(Q2)} U A(Q)
where A(Q2) = {(cosfe; + sinfg;) A (cosfez + sin ng) Ae, e € G(R) and
glAngEEG(QI) 0<6<n/2}.

ProoF. Let € be any unit s1mple p-vector and put ¢ in canomcal form (3 2) as

- in Lemma 3.1
€= (cosfie; +sinfigi) A+ Acosfyeq +sin 0,95) N Ggr1 As Ngp.
Then |
Q(e) =cos 8y ---cos 0, Qa{gg41 A~ Agp) +sinfy---sin 8,0(g1 A+ Agp)
<(cosfy -+ cosf, +sinfy - - - sinfg) max(|| 2 [|*, [|Q2][*)-
<(cos by cos 8, +sin b sinf) max(|[Qf7, |Q:1])
— cos(fy — 8) max(u 1", 19 ]) < max(I, 192 (3.4)

Therefore, [|Qf* < max (|| ]]%, [|€22 |*). The inverse inequalities are obvious. *
Thus '
19217 = max(|| Q" [|22]7)-

Case ||Ql||* < 192a]|*- Analogously, the inequalities in (3.!4) are equalities iff
”e = 2% AN

where ¢; belongs to G(Q2). .
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Case |||* = ||Q:||* and ¢ > 3. The inequalities in (3.4) become equalities iff
bp=---0=m/20r8 =---6,=0ande=g1A---Ag, € G(Q) or ¢ = ev A€
where €; = gg41 A:-- A gp € G(£23). Thus, '

G(R) = (1) U {ev A G(Q2)} U A(Q).

Case ||91||* = ||Q2]|* and ¢ = 2. The inequalities in (3.4) become equalities
iff 91 = 62 = @ and g1 AER Agp < G(Ql),g3 A ---A_qp S G(Qz) or € ¢
G() U {ev U G(£23)}. Thus

G(Q) = G() U {ev A G(Q2)} U A(R).
The theorem is proved.

The following proposition is the second application of Lemma 3.1

3.3. PROPOSITION. Let R® =V @ W be an orthogonal decomposition of R®
and 3,2 two p-forms on V, W respectively (p > 2). Put = @, + Q,, then

[ = max((|*, 19:1*).

Moreover, : .

&) |l > []", then G(R) = G(0)

b) If [4]|* = |11*,p > 3 then G(R) = G(4) U G(Qy)

c) Fl|||* = |19:]|* and p = 2, then G(Q) = {(cos e, +sin by 1) A(cos fey +
sinfgz) where e; Aey € G(1),91 A g2 € G(Q)}. |

PROOF. Let € be any unit sixriple p-vector and put € in canonical form (3.3) as

in Lemma 3.1
€= (cosbie; +sinbyg1) A--- A(cosbye, +sinb,g,)

where 0 < §; < 7/2, e1,---,¢e, and ¢1,-+- , g2 are orthonormal vectors in V

and W respectivly. Then

Qe) =cosby---cos 8, Q(er A+  Aep) =sinby---sin,Q(g1 A-+- Agp)
<cos(By — Oy) max(jQu]|*, |Q2]*) < max(IQ|* 12[*). - (3.5)
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Hence ||Q[* < max(||Q,]*, ”Qz [I*). The inverse 1nequa.l1ty is clear . Therefore,
(2" = max([|: 1", [|Q2]]*). N | -
Case ||Qu||* > [|Q:]*. The inequalities in (3.5) become equalities ey A-e-A ep
belongs to G(£1) and 6; = ... = §, = 0. Therefore, G(Q) = G(Q).
Case || |* = [IQ2]]*]| and p > 3. The inequalities in (3.5) are equalities iff
b=--=6,=0, esA---Ae, € G()

or

br=--=0=7/2, g1 A---Agp € G().
It follows that G(Q) = G(Q1) U G(£2,).
Case [|4||* = ||Q:]|* arnd p = 2. The inequalities in (3.5) are equalities iff
61 =0 =6 and e; A e, € G(fh), o1 A g2 € G(§2). The proof is complete.
REMARK. For the case when . and 2, are decomposable forms, Propdsition
3.3 is Harvey-Lawson’s result (see [HL])
3.4. DEFINITION. A given p-form Q is said to be separable with respect to V

(or V-separable) iff 2 can be expressed as in Theorem 3. 2.

3.5. THEOREM. Let ¢ and ¢ be V-separable. Then *(p a.nd @ /\ Y are also
V—separab]e ( Where *(p is the * Horge of p).

PROOF Smce = p1 + e} A 2, we get that *p = *(pz + eV A (*(,ol) (where
Hpis ¥ Horge of piin V ). Therefore, *p is separa.ble with respect to V. On
the other hand, since 9 = z,bl + et Aty we have '

‘P A ¢ =1 Ay +he’le Aoz A + (—1)rv1¢2)

where r = ( degree ofpy).( dim V). It is ev1dent that @1 A 91 and o2 A 1 +

(- 1)’"991 A thy are covectors in V+ . Thus, ¢ A is V- separable. The theorem
is proved.

Now, we consider an orthogonal decomposition of R®; R* = V; @ --- @
Vit1, dm V; > :27for ¢t < k. Theorem 3.2 can be extended as follows.
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3.6.: THEOREM. Let Q b¢ a p-form in R™ which can be expressed in the form
Q —Ql—i-ev /\Q2+ +er AQH.l
Whereﬂ E/\q,(W), q,mp Edijtforz<k—}—1 W @Wforz(k
and Wk.{.l = Vk+1 . Then < 7
e — max(u | ,z<k+1) and G(n)—G(n')‘

where ' is obtamed from Q by deletmg those terms correspondmg to 9 -such

that |]1° < 12" |
PROOF. With k =1 this statement is just Theorem 3.2. Suppose theorem has
been proved for k = m — 1. Let us show that the statement is valid for k = m.
Indeed, we can expréss Q as follows
Q= Ute At e A A AQmi1) =D + el AT
where Q= Qo + -+ + ey, Ao Ael AQmyr.
From Theorem 3.2 we have |]Q|| = max("QlH* ||.Q II*). But by 1nduct10n
12)* = max (JJQ]*, 2<i<k+ 1) a,nd G(Q) G(Q ).
Therefore,

et = max(“Q J1<i<h+ D and G’(Q) G(Q") B

3. 7 DEFINITION A given p—form is said to be- sepa.ra.ble w1th respect to-
(V1,--+, V&) iff & can be. expressed as in Theorem 3.6. In this case, ) can be
called (V1,--- , Vi)-separable. ' '

3.8. THEOREM. Let'Q be a (Vi,--- , Vi)-separable p-form in R™." Then the
following assertions hold. 7 R _

a) For any q-form in R™,Q A 5 is also (Vl, -, Vi)-separable in R**™.

b) Ifn is (Wy,- -+ ,Wi)-separable in. R™, then 2 An is (Vi,2:- iy
Wh,- -, Wj)-separable in R*+™, :
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¢) Ifn is (Vh,--- , Vi)-separable in R™, then Q@ A is also (V1,- - - , Vi)-sepa-
rable.
Proor. We can v_erify immediately' by definition. Let us prove the assertion
a). From “ I S ' .
QA=A+, AQaAn+- - +el, A Aey, Ak A,

it follows that Q A 7 is (Vi ,Vk)-separdble. The proofs of b) and c) are
analogous. ' B ' o :
Now, suppose that R* = V; @ :+- @ Vi is an orthogonal-.de(',omposition of
R". For any multi-index I = (i1, ,iq) we denote by e} the p-form e} =
ey, Ao A e¥, where p = |I| = J%:J dim V;.
3.9. DENIFITION. '
a) A p-form Q is said to be simply separable with respect to (V1,--- Vi) if

Q) can be expressed as follows
Q=" ase}, where dim_-xg; 2 for j <k
b) A (V;, . ,Vm_)-se.parable p-form (m < k):
Q=01 +--Fep, Ar-Aey, AQmp

is called E-separable if every §; is simply separable with respect to a suitable
decomposition of W; (\'vhere W; is defined as in Theorem 3.6). This expression
is called afi canonical form of 2. h

For an arbitrary E-separable (or simply separable} p-form with a canonical
form, we denote by Q the p-form which is formed from Q by deleting the terms
corresponding to {; such that ||| < [[Q}*( or lar] < |I2]*)- |
3.10. THEOREM. Let Q be a simply separable p-form with respect to
(Vi,++- , Vi) in R™. The following assertions are valid

2) |19|* =max (jar]) and G(?) = G(Q). |

b) For any ¢-form 1 in R™, the comass and maximal directions of (p+q)-form
Q2 Anin R® x R™ are defined as follows '

I Aql* = 120 Inll*, G(QAn) =G(Q) AG(n).
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¢} If p is even, then Q9 is also simply separable for any q.
d) If rankQ = n, then *Q is also simply separable with respect to

(Vi Vo)

PROOF. Since the proofs of assertions c) and d} are straightforward, we shall
omit the details here. We will prove a) and b) by induction.

With k& =1, then Q is decomposable and the assertions are tr1v1a.l Suppose
the statement has been proved for k = m — 1. Let us show that the statement
is valid for k = m. A

In fact, @' = e}, A Y are}, + 3, are} where I = (iz,++ ,4,) when I =

1€ 1¢1
(1,42, ,%4). Put Q; = Y are;and Q2 = Y aze}, . Then 2, and 9, are
1¢1 el
simply separable with respect to (Vz,-- Vk) By induction
10" =max(lasl, 1€ 1) end G() = G(),
“92”* =max(|a;|, le I) and G(Qz) = G(ﬁz),

12 A nll* =" lnll* and  G(Q:An) = G(U)AG(n), i=1,2.
It follows from Theorem 3.2 that

I9)* =mex(a;) and G(Q)=G(@),
12 A9 =2/l and G(Q A7) = G AGH):

The theorem is proved. -

REMARK. Using Theorem 3.6 and assertion a) we can define the comass and

the maximal directions of an E—separable form.

Nowr let R* = V @ W be an orthogonal decomposition of R®, {1 an E-
separable p-form in V' (with respect to (Vi,---,Vi) and 5 an a.rb1trary g-form

in W we will prove the following theorem is valid

3.11. THEOREM .:. .Tﬁé following assertions hold:
~a) QU Agl* = |Ql*In]* and G(R A7) = G(2) A G(n).
'b) If p is E-separable then 2 A 7 is also E-separable
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c) If p is a (p+ q)-form in W, ﬂlen QAR+ p]* = In‘ﬂ»X(IIQll llnll"‘ lefl*)
and GIAADUG(e) C QA+ o). - -

PROOF. Since the proofs of assertions b) and c) are stra.lghtforward from deﬁ-
nition and Theorem 3.2, we- shall omit the details here.-We will prove a);

Case k = 1. Wehave 2 = +6V1 Ay, where V = V; + Vs, and Q1,8 are
simply separable in V. It follows from Theorem 3.10 that ||Q;An||* = ||Q4]|*||7(]*
and G(9i An) = G(S%) AG(n) for i = 1,2. By Theorem 3.2 we have

1€2 A il = [QY*|nl* and G(Q A n) = G(2) A G(n)

- Suppose the statement has been pro\;ed for K = m — 1.. Let us show that
the statement is valid for. k. = m. Indeed,

Q/\TF =M An+ey A(Qz+:--+ej, Aeo-ely AQmy1) An
Put Q' = Q2 R eV2 A e{,'”- A Qpg1. By induction , We hé,vé
||91 A ’?ll* = ||91|] ||’?|| and G(91 An) = G(ﬂl) A G(W)

I Aqll® = e ||n|| and G(Q' Am) = G() A ).

It follows from Theorem 3 2 that -

0 Al = max (ol 12l
= Il max (o, 19°1°) = b2l

and G(Q A n) is determmed by G(Ql A n) and. G(ev A Q’ A 77) as mentmned
above. It is stra.lghtforwa.rd tha.t G(Q A 1]) = G(ﬂ) A G(n) Thxs completes the-

proof

3.12. THEOREM Let @ be V-separable Then V C :spane. In part:cu]a.r if
is szmpIy separable with respect to (Vl, Vk) then & spa.n @ = V1 EB GB Vk

PROOF. Let ¢ be any normal vector of R" such that ze(gp) = 0., Put ein the
canonical form as in Lemma 3.1 with respect to V: e = cosfe’ + sin 89 where
e’ € Vand g€ V1. When ¢ = e, Ay + 0, then ze(cp) =cos@ig(el) AQy —

sinfeyy Aig(1) +sin8ig(Qy). Since dim V > 2, it follows that when i,(Q) = 0
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then cosf =0 and e € V. Thus V C span ¢. Obviously, it implies that if ¢
is simply separable with respect to (V3,--+ ,Vi), then spanp =V, & --- @ Vi

4. Other properties of separable forms

Let  be a non-zero p-form in R". The action of the group S0, over R*

induces an action over p-form {2 as follows:

A(Q2) = A*Q for any A of SO,.
We denote by T'(2) the isotopy group of 2 and obse.rve the following fé,ct:
4.1. THEOREM. T(Q)) = SO, if and only if p = n.

PROOF. If p = n, then it is clear that T(Q)-= S0O,. We suppose that p is
smaller then n. Consider an arbitrary p-vector € of G(2). Thus, ¥(e) = ||2||*
and € = e;' A -+ A e, where e1,--+ , €, are orthonormal. Since p < n, one can
take a normal vector e such that e,e;,--- , e, are orthonormal and define the
transformation A € SO, as follows: A(e) = e; and A is identical action on
( span(e,e;))t. Put h=eAez A---Aep, then

(k) = A() = 4*%e) = |2
Hence, h € G(2). Now, we take
V2 V2

Thus, ¢ is unit simple and Q(¢') = lzé(Q(e) + Q(R)) = vV20(e) = vV2||Q]|*. But
Q(€') < ||2]]*, then ||Q||* = 0 and Q = 0. This is impossible. Thus p = n.

(ex+e)Aes A---Aep.

6’:

Now, let V be a g-dimensional subspace of R*,¢ € SO, a transformation

on V. One can consider ¢ as a transformation on R™ by extending it identically
on VJ' .

4.2. THEOREM. A p-form Q) is V-separable if and only if Q is SO,-invariant
on V.

PROOF. Let @ be separable with respect to V. Then @ = O + e}, A {2g,
where ©; and Q5 are the forms in W = V<. It is obvious that ; and Q5 are
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50,-invariant; Therefore, Q@ is SOg-invariant on V. Conversely, suppose that.
 is SO,-invariant on V" and ey, -- ,€; are an orthonormal basis of V.. .We :
choose vectors eg41," -+ , €, such that e;,--- ,e, form an orthonormal basis of
R"™. Then  can bé expressed as follows ' |
Q= 65 A A Ay
t<p ’
where ¢+ 1< j; Snfori<tand Qj .. ; € AN (V). -

Smce Qis SOq 1nvar1ant on V, then Q;, ..; is also S0,-invariant on V

Jt

for every (_11, +,51). It follows from Theorem: 4.1 that Qj ... j, = ( for every
(j1,+++ ,J¢) such that 0 < p —t < ¢. Therefore, § can be expressed in the form.

- 0=+ 6’{) A Qg‘.'
The theorem is proved |

- Now, we conmder an orthogonal decomposmon of R™:
‘R “VlEB @Vk,dlmV,—q,forl'(z<k

4.3. THEOREM. A p-form 2 is Sunply separable W1th respect to (Vl, - Vi) if
and only if Q is S04 X -+ X .S'ng invatiant:

ProoF. If Q) is simply separable, then obviously Q is SO, X -+ % 50g,-
invariant. Assume that Q is SOy, X -+ X SOy, -invariant. We will prove that 2
is simply separable with respect to (V4,- ., V&). With % = 1 this statement is
just. Theorem 4.1. Suppose the statement has been proved for k=m—1. Let -
us show that the statement is valid for k=m. : L

Indeed, since Qis § Oql-mvanant on V1, it follows that Q Ql + evl /\ 92-‘
by Theorem 4 2. But Q is. .S'O.;rz Xooe X SO mvarxa,nt on V bt Vin, then_‘
2, and Q, are also SOQ2 X +rr X SO —1nvar1&nt By induction Ql and {2, are
simply separable w1th respect to (Va,:+ , V). Thus, Q is sn'nply sepa,ra,ble-
with respect to Vi, , V. "This’ completes the proof. '
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4.4. LEMMA. Let @ = Q; + e}, A Q2 be a separable form with respect to V.,
Then for any normal vector e of V', we have Q; = te(e* A Q).

PROOF. We choose an orthonormal basis of V: €1, - €4 such that e; = e. Then
Q=Ql+e*/\e;--~/\e;/\92 and e*AQ =e*AQ;.
Hence, i.(e* A 2) = Q4.

4.5. THEOREM. Let Q be separable with respect to both V; and V2, where
Vi NV, # {0}. Then Q is separable with respect to W = V; + V.

Proor. Let Q =, + e’{,l Ay = Q) + e"{,z A%, where Q, € are two forms in
Vit and 94, Q) are two forms in Vit Takihg a normal vector e of Vi NV, | we
get Q1 = Qf =i.(e* AQ). Then Q is a form in V& NV,: = (Vi + Vo)t =wi,
On the other hand, put Q' = Q — 4, then

Q' =l Ay =€}, AQ,

we will show that Q' = e}y, A 5, where 7 is a form in W, The statement will
be proved by induction on codim V; in W.
Suppose that codimV; = 1. Let e be a normal vector of W such that

e 1 Vi. Then ' can be expressed as follows
Q' =ep, Ay =€}, Ale* An+m2),

where 7; and 72 are two forms in W+, Let us show that n2 = 0. In fact,
e = fi + fz where f; € V} and f, € V3. On the other hand

ff/\Q’:fl/\e"{,l/\Qg=0,
f*/\Q':fz/\e*/\Qg=0.
Thus, _
EAY = Ay A= LA+ HAQL =0.

This follows that 1, = 0.
Now, supposec the statement has been proved for codimV; = k in W. Let
us show that the statement is valid for codimV; =k+41in W.
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Indeed, for an arbitrary vector e of V; such that e ¢ V3 we denote by V; =
.{g € Va,g L €} and W' = V; + V{. Then Q is V;-separable and codim V; = k
in W', By induction Q is W'-separable. But codim W' =1in W = W' + V5.
Then 2 is W-separable. The theorem is proved

4.6. LEMMA. Let ) be a non-zero k—fofm ;'n VandV = W+ Ve, dimVi =
g>3, k<m= dimV. IfQ is separable with respect to both V; and V3, then
i V2

PrOOF. Without loss of generality, we can suppose dim V3 > dim V5. Since Q
is V;-separable, we get ¢ <k <m S 2g and Q = + ey, Ay where §2; and
92 are forms in VJ- ‘
Assume that @, #0. As¢< k= degree of Q; < dim Vit = dim V; < q,
we have dim V3 =k =g and @ = pey, + Aej, . But dimVy 2 3, it follows
from Theorem 3.2 that R |
G(QY) C {C‘Vi,eVlJ.}. - (41)

Analogously, we get Q.= p'ey, + Me}, . and
L Al
G(Q) C {ev, ey } - - (4.2)

Since Vi NV, = 0, it follows from (4.1) and (4.2) that ¥; 1 V5.
Assume that ; = 0 ‘We have

Q—-eVAQg—-Q'-{—eV 2 A,

where Q] and Q.’ are forms in Vit It follows from Theorem 3.2 that G(Q) =
ev, A G(£;) and G(2,) C G(R) or ey, A G(Q}) C G(Q). Let G(Q}) C G() =
ey, A G(Q2), then V} C span(§]) C V;-. This implies V4 L V2. On the other
hand, when ey, A G(§2%) C G(9) there exists a unit simple k-vector € of G()
such that e = ey, A€y = ey, A&y, &1 € G(Q2), & € G(Q;). Since k < m
there exists a normal vector e of V such that eAe # 0. But V=W+W
~ then there exist two vectors f1 € V1, f2 eV such that e = fi + fa. Moreover,
eAe= fihe+ fzAe= fi Ney, Aeg = fa Aey, Aep = 0. This is a contradiction.
The proof is complete. - |
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4.7. THEOREM. . Let a p-form Q be separable with respect to both V; and V3.
If dim V2 3, then Vi L' V; or ) is separable with respect to V = Vi + Va.

PROOF. Put W = V1, dim W = m and take an ortﬁono:ma.l basis ej, - -
of W. Then {2 can be expressed as follows,: o

) €m

Q=01+ e} A€l Ay g
t<p '

where Q;, 0 i J-,' are forms in:V and separable with respect to both W, Vs for
any (j3,-- ,Jj¢). By Lemma 4.6 it follows that V1 L V2 or £; and-(}; ... ;, are
separable with respect to V for any (j1,--- ,jt). Thus, Vi L V; or Q is'separable -
with respect to V. The theorem is proved. o
. Evidently, if Q is simply separable with respect to (Vi;- . + V&), then ) is
also separable with respect to V; for any ¢ < k. : :
4.8. DEFINITION. Let Q2 be simply separable with respect to (M1, , V&) where
dimV, > ... > dim V. The expression of  with respect to (Vq,---,Vi) is
said to be extremal'if for every ¢t < k'there is not'any subspace V # T;ft, VicV
" such that Q is separa.ble with respect to V. . ) '

4.9. THEOREM. Supposeé that Q has two extremal expressions with respect to
(Vy,+-+, Vi) aad (Wi,-++ ,Wi). Then k = ¥ and" dim V; = dim W, for every
t < k. Moreover, we can reorder (Wy,+-+ , W) such that W, = V, for every t
with dim V; > 3. ' '

PROOF. By Theorem\-.?»- 12, if .d.im Vt— d1m W = 2 for every t < k a,nd
3 < K, then'k = k" = - (rank Q)/ 2. The statement is ewdent |

Let  dim V; >'3.' We will prove that there exists a W such that Vi=W,.

Indeed, it follows from Theorem 4.7 that V; L W; for-any ¢ < k' or there
exists a W, such that Q is (V; + W,):sepacable. But V; C. Wi +--- + Wi,
then the first case is impossible. On the other hand, the expressions of 2 with
respect to (V4,++- , V) and (Wi, , W) are extremal, then V; = W,. By the
same argument we get that if dim W; > 3, then there exists a V; such that
Wi=V;. But Vi+ -+ Vi = Wi+ + Wi = span @, then k = k' and
dim V; = dim W; for every t < k. Moreover, by reordering (Wy,--- ,W;) we
get Vi =W, for dim V; > 3. This completes the proof.
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~ 5. Some special cases

In order to illustrate the set of separable forms, we consider some examples.

5.1. COMPLEX CASE.

Let C™ = R?" be a n-dimensional complex space with the complex structure

J. Any (p,¢)-form Q in C™ can be expressed as follows
Q=) arxdz, A+ Adzi, Adzg, A+~ Ndzg, = ReQ+i ImQ.
PROPOSITION. Suppose that 0 has an expression of the form -
Q=efAJel A Q1 + Qs

where 1 and Q9 are forms in C*~! = (el,Jel)"‘ . Then Re Q and Im ) are

separable with respect to V = span (e, Je,). In particular, if
Q=Y ardz, Adz;, A+ ANdzi, Adz,;

then Re § and Im () are simply separable with respect to (Vi,--- , V) where

Vi = span (e;,Je;),zi = ej +iJej.

PROOF. Since ) = e} A Je] A Q; + Q;, then-evidently Q is SO,-invariant on h
V and so are Re (1, Im Q. It follows from Theorem 4.2 that Re Q and Im Q
are Sepé,rable with respect to V.- |
Let
Q=Y ardz, Ndzi, A+ Ndzi, Adz, .

Obvicusly, 2 is SO, X- --x 50;-invariant on V;+---+V, and soare Re £, Im Q.
In view of Theorem 4.3 we get that Re  and Im  are simply separable with
respect to:(V1,..., Va).

REMARK. For the case O is a (p, p)-form in this theorem, the comass of Q has -

been determined by Le Hong Van in [L].
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5.2. CASEp=20Rp=n-—2.

PROPOSITION 1) Let Q be a 2-form on R" Then Q™ is su:np]y separable for
m < n. o

ii) Let' Q be a (n — 2)- form on R“ Then Q is szmp]y separable or {} = ¢* A Ql
'where Ql is s1mp1y separable ande L span (Ql)

PROOF. 1) Let be a 2-form. Ev1dently there ex:sts an orthonormal basis of
R" : e1,--+ ,ep such that

Thus, Q is sunply sepa.rable By ;The_o_rem_3.10 we get that Q™ is simply
separable for m < n.

i1) Let be a (n — 2)- form Then *Q is a 2—form and can be expressmn in

the form

*Q:AlefAe;+---+Ake;k_1 /\é;k, kE<n.

for an orthonormal basis e;, - - - ,en= of R*. Put Vi = span (egs—1,€2¢) fort <k
and W=(V;+--- 4 Vk)‘L_. If dim W > 2, then Q = %(*) is simply separable
‘with respect to (Vi,:++ , Vi, W). If dim W =1, then Q = e* A, where e is a
normal vector of W, §, is the *Horge of *§ restricted on WL, Evidently, £,
1s simply separable with resspect to (V4,---,Vi). This completes the proof.
5.3. CASEn="5,n=7. S

PROPOSI’_I‘ION. An arbitrary form in R® is simply se"paiab]e and an arbitrary

separable form in R” is E-separable.

PROOF. In view of Proposition 5.2, the case {2 is form in R® is clear. Let Q be
separable in R7. Then = ey AQy + 8, dimV > 2, 2, and §2, are the forms
in VL. But dim V<L < 5 then §, and (1 are simply separable. The proposition

is proved.

6. Minimal surfaces in almost-product manifolds.

The prior calibrations were used by H. Federer [F2] and M. Berger [B].
The calibration method was introduced first by Dao Trong Thi [D1, D2] and
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later studied in deep by Havey-Lawson [HL] in order to study globally minimal
currents and surfaces on Riemannian manifolds. Thé principle of this method
can be described as follows. A current S in a Riemannian manifolds M is
homologma]ly mimimal if and only if there emsts a closed form 2 such that the
tangent space S of § belongs to G(Q) almost every where. In this case we say
that S is calibrated by € or Q calibrates § on M. A differential closed p—form
is said to be a calibration. Thus, a p-form in R"isalsoa parallel calibration in
R". If a surface S is a minimal current, then it is also & ‘minimal surface.

To use this method, the main- obstacle is the computation of the comass
of © and the determination of the set G(Q). The results in previous sections
enable us to study minimal currents and surfaces in a,lmost-;iro:dﬁct ‘manifolds.
In particular, we obtain the following results. s
6.1. .T}I.E':IOREM. Lét @ and ¥ be two 'aiﬁ.'eré:":rlﬁal. forms on M such that

span (¢z) L span (¥.) and ¢, or ¥, is E-separable at every z € M. Then

lle A" < lIsPII"lthI*,-_

In particular, if ¢ and 1 ‘are two calibrations on M and N respectively such
that ¢, or ¢y is B- separable at every x € M or evezy y € N then ¢ /\ Y is a
calibration in M x N and ' ‘ T )

lio A9l = el I, Glonw) = G(sp,.) AG(Y).

PRQOF.__ In(_v_i:ew of ;'I_‘heorem, 3.11 we get that -

llsoz Az = lo=l* I ]|* for z e M
Thus, |
||<P N 'J’ll = sup ||<Pz|| A ||¢z||* = sup ||z *|[eb= ll*

"< sup [l sup (12 ll* = llel* "
On the other hand, if ¢ and 4 are calibrations on M and N respécti{fely as
* mentioned above, then A ¥ is a calibration on M x N. Moreover, oz A
Pyll* = llozll" lbell* and G(ez A¥hy) = G(#2) A G(3,) at every (z,y) such that
Jl%l] = ||‘P||* and [[¢by{|* = ||9[|*. Hence .

e Al =llel BT, GloAy) = Gle) AGW).
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6.2. THEOREM. Let S and T be two minimal currents in M and N respecti-

vely, If S is calibrated by a calibration ¢ such that Pz is E-separable for every'
xEM then S % T is ininimal in M x N. '

PROOF. : Si_nce T is miﬁimal in N ,' then there exists a calibration which

calibrates T on N (see [D.2, Theorem 3. 6]). It follows from Theorem 6.1 that

Gl AY) =G(p) A G(¢) On the other hand, s, € G(p) and ? € G(¢) at
_ —_

every (,y) € § x T. But (8 X T)(s4p = 52 X Ty Then (5 x T, ,) belongs

to G(p A ) for every (z,y) € S x T. Hence § x T is minimal in M x N. The

theorem is proved.

6.3; EXAMPLES.

Ezample 1. Let S be a p-complex surface in R?? ~ C" and T any minimal
~ current in N. Then § x T is minimal in R** x N. Indeed, S is calibrated by
Q1? where (2 is Kahler form. By Proposition 5.1, § is simply separable. In view
of Theorem 6.2 S x T is minimal.

Ezample 2. Let S be a (n—2)-dimensional current of a n-dimensional manifolds
M, T an arbitrary minimal current of N. By Proposition 5.2 and Theorem 6.2,
S x T is minimal in M x N.

Ezample 3. Let S be a minimal current in R®, T an arbitrary minimal current
in N. By Proposition 5.3 and Theorem 6.2, § X T is minimal in R® x N.

REMARK. The above examples are also valid for the case that S is a surface

and T is a minimal surface calibrated by an arbitrary calibration 1.
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