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A CHARACTERIZATION OF SOME CUBIC
(m,n)-METACIRCULANT GRAPHS

NGO DAC TAN

Abstract. It has been proved in [5] that if a graph G is isomorphic to a cubic
(m, n)-metacirculant graph MC(m,n,a, So, S1,...,S,) with Sy # 0, then G is
isomorphic to either a union of finitely many disjoint copies of a circulant graph
C(2¢,5), where £ > 1 and S = {1,~1,£} or a union of finitely many disjoint
" copies of a generalized Petersen graph GP(d, k), where d > 2 and k2 = +1 (mod
d). In this paper, we prove that the converse is also true. '

1. Introduction

All graphs cbnsidered in this paper are finite undirected graphs without
loops or multiple edges. If G is a graph, then we denote the vertex-set and.
the edge-set of G by V(@) and E(G);, respectively. For a positive integer n, we
write Z, for the ring of integers modulo n'and Z} for the multiplicative group

of units in Z,. ,
Let m and n be two positive integers, a € Z}, u = |[m/2| and S, 31, ey Sy
be subsets of Z, satisfying the following conditions: ' R
(1) 0 ¢ Sg = —Sg;
(2) a™S, = S, for 0<r< ;-
- (3) If m is even, then a*S, = —8,.
- Then we'define the (m, n)-metacirculant graph G = MC(m,n,a, Sy, 51, ...,
S,) to be the graph with vertex-set V(G) = {v; 14 € Zm,j € Z,) and
edge-set E(G) = {.v}vi’*’.’il 0.<r < pt € Zmyh,j € Zpny(h —j) € 'S, ),
where superscripts and subscripts are always reduced modulo m and modulo n,

respectively. The subset S; is called the (i +1)-th symbol of MC(m,n, a, Sy, S1,
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»Su).

The class of (m, n)-metacirculant graphs was introduced in [1] as a natural -
generalization of the Petersen graph for the primary reason of providing a class
of vertex-transitive graphs in which there might be some new nonhamiltonian
connected vertex-transitive graphs. Among these graphs, cubic (m, n)-metacir-
culant graphs are especially attractive, being ai the same time the simplest
nontrivial (m, n)-metacirculant graphs and those most likely to be nonhamilto-

nian because of their small number of edges.

Since the past ten years there have been many papers dealing with problems
of (m, n)-metacirculant graphs (see, for example, our References). In particular,
a characterization of graphs which are isomorphic to cubic (m, n)}-metacirculant
graphs with first symbol Sy # 0 has been started in [5] and one of the results

obtained there can be described as follows.

Let n be a positive integer and S be a subset of Z, satisfying 0 ¢ § = -8
(mod n). Then we define the circulant graph G = C(n, ) to be the graph with
vertex-set V(G) = {v; | i € Z,} and edge-set E(G) = {viv; |4,j €Za;(7—10) €

S}, where subscripts are always reduced modulo n.

For integers n and £k with n > 2 and 1 < k < n —1 we deﬁﬁe the
genera.lizéd Petersen graph G = GP(n,k) to be the graph with vertex-set
V(G) = {u;,vi | i € Z,,} and edge-set E(G) = {u; u,+1,u,v,,v.v,+k | i € Z,},

where subscripts are always reduced modulo n.
The following theorem has been proved in [5].

THEOREM 1 [5]. Let G = MC(m,n,a, Sy, Si, ... S,) be a cubic (m,n)—méta-
circulant graph with first symbol Sy # 0. Then its components are JSomorpInc
to each other and to some of the following graphs:

1) a circulant graph C(2¢,S), where£ > 1 and § = {1,-1,£}; -

2) a generalized Petersen graph GP(d, k), where d > 2 and k* = £1 (mod
d. _ _
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Thus, if a graph G is isomorphic to a cubic (m, n)-metacirculant graph
MC(m,n,a, S, S1, ..., S,) with first symbol Sy # §, then @ is isomorphic to
either a union of finitely many disjoint copies of C(2¢, S), where £ > 1 and
§ = {1,—1,£} or a union of finitely many disjoint copies of GP(d, k),

d>2and ¥ = +1 (mod d).

where

This paper is a sequel to [5]. We will prove here that the converse of
Theorem 1 is also true. Thus, with this result we will complete the characteri-
zation of graphs isomorphic to cubic (m,n)-metacirculant graphs with first
symbol Sy # 0, started in [5]. More precisely, we will prove the following
result.

‘THEOREM 2. A graph G is isomorphic to a cubic (m,n)-metacirculant graph
F = MC(m,n,«a,5,51,...,S,) with first symbol Sy # @ if and only if G is
isomorphic to either a union of finitely many disjoint copies of C(2¢,S), where
£>1and § = {1,~1,£} or a union of finitely many disjoint copies of GP(d, k),
where d > 2 and k* = %1 (mod d). ‘

We note that the above characterization has been used in [8] to classify all

cubic {m, n}-metacirculant graphs which are not Cayley graphs.

2. Proof of Theorem 2

The necessity is clear by Theorem 1. We prove now the sufficiency.

Assume first that G is the union of ¢ disjoint copies of C(2¢, S), where £ > 1
and § = {1,-1,¢}. Set m=¢t,n=20a=1,5 =5 = {1,-1,£} and §; =
=8y, =0 (= |_m/2j ). Now it is easy to verify that m,n, &, Sp, ..., S, satisfy
conditions (1)-(3) in the definition of (m,n)-metacirculant graphs. Therefore,
we can construct the (m, n)-metacirculant graph F = MC(m,n, 1, S, S1,

..y Su) with the parameters chosen as above. It is clear that F' is a cubic (m, n)-
metacirculant graph with first symbol Sy # 0. Now let V(C(2¢,5)) = {v; | j €
Zae},

Go, G,y ...y Gra
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be ¢ disjoint copies of C(2¢,5) and f; be an isomorphism of C(2¢,S) onto Gi.
Let ¢ : V(G) — V(F) be the following mapping :

P(Fi(0)) = v},

where 1 = 0,. —1and j=0,..,n— L. It is not difficult to see that ¢ is an

1somorphlsm between G and F.

~ Assume now that G is the union of ¢ disjoint copies of GP(d k), where
d > 2 and k? = 41 (mod d). Let ¢t = 2*b with b odd. Set m = 2b and n = 2%d.
Choose subsets S, S1,...,Sp of Zn as follows: Sp = {2%,n — 2%}, S o= .. =
Sy—1 = @ and Sy = {0}. In order to construct an (m, n)-metacirculant graph
F = MC(m,n,a,Sy,...,Sp) we must choose an appropriate element a € Zg.
We distinguish the following two cases. |

(1)@-00ra>0butklsodd _ _ ,

In this case, we take & = k. Since k2 = 41 (mod d), we have o® = xk
(mod d). Moreover, by definition ged(a,d) = ged(k,d) = 1. Ifa =0,
then n = 2°d = d. Therefore, @ € Z%. If a > 0 but k is odd, then
gcd(@ 2%) = gcd(k 24} = 1. Therefore, we again have a € Zx. We show
now that m,n,a, Sy, Si,..., Sp satisfy conditions (1)-(3) in the definition of

(m n)-metacirculant graphs. Conditions (1) and (3) are tr1v1ally satisfied. Let
a® =id £ k and k? = jd £ 1. We have

a™ S, = ()28 = (id £ k)*So
=((1*d £ 2tk + 7)d £ 1)5 :
= {+(2d + 2tk + jn + 2%, F(*d £ 2ik + j)n —2°} .
= {2% n —2°} (mod n).
So, a““So = So. It is also trivial t-hat.a’"S'j = Sj_for all j = 1,2,...,b. 'i’hus,
_condition (2) is also satisfied.
.(ii) @ > 0 and k is even.
Since k € Z}, this case happens only 1f d is odd. Take o« = d + k. Then

ged(a,d) = 1. Since d is odd and k is even, a is odd. Therefore, ged(a,2%) = 1.
Thus, a € Z*. Moreover, from k* = +1 (mod d) it follows that a® = +k (mod



A CHARACTERIZATION - 65

d). Asin (i) we can show that m,n, a, Sy, ..., $j satisfy conditions (1)-(8) in the
definition of (m, n)—metacirculant graphs. '
‘Thus, 1n 1 both cases we can construct the (m n)-metac1rcu1ant graph F' =

MC(m,n, «, Sy, ... Sb) with the para,meters chosen correspondmgly in each

case. Moreover, 1t is clear that F' is a cubic (m,n)- meta,cucula,nt graph with

ﬁrst symbol So % B.
Now let V(GP(d, k)) = {u,;, vz | @ € Za},

0 0 0 -
Gy, G,y Glayg,

1 A1
GG?G].’""G2°—17

be t disjoint copies of GP(d, k) and fJ’ be an isomorphism of GP(d, k) onto
G;. Let ' = MC(m,n,a, Sy, ..., Ss) be the cubic (m, n)-metacirculant graph
we have just constructed in the preceding paragraphs. Let ¢ : V(G) — V(F)
be the following mapping : ‘

(Io(f_;(ux)) = v(i(j+2“z)cr")7
i bt
(P(fj(vz)) = 'U((-I;'_gaz)ai):
where: =0,1,...,6—1;7 =0,1,...,2° - 1;2 = 0,1,...,d — 1 and « is chosen as
in (i) and (i), respectively. It is not difficult to see that ¢ is an isomorphism

between GG and F.

The proof of Theorem 2 is complete.
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