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A VARIETY OF APPLICATIONS OF A THEOREM OF
B.H. NEUMANN ON GROUPS

T. SOUNDARARAJAN AND K. VENKATACHALIENGAR

Introduction

B.H. Neumann [N1, N2] proved the following theorem: Let G be a group,
and G, ..., Gy be subgroups of G. If GG is a set union of a finite number of cosets
of the G; irredundantly then G; N...N G, is of finite index in G.

It is an interesting fact that this simple looking theorem is extremely useful
for Galois theory [S1, S3]. It appears to be useful for group rings slso [P]*. In
this note our main purpose is to point out its utility in a variety of subjects like
Banach spaces, curves, division rings, projective geometry, Riemann surfaces

and vector spaces.

Before starting let us observe that it is easy to derive from the above theorem
the following statement: If a subgroup H of G is contained in a set union of
finite number of cosets of Gy, ..., G, irredundantly, then H is contained in a set
union of finite number of cosets of G1N...N G, (since H Na;G; = 0 or b;(HNG;)

for some &;).

1. Applications to vector spaces and projective geometry

PROPOSITION 1.1. Let F' be an infinite field and V a vector space over F. If
V = (Vi + vi), Vi are subspaces (not necessarily distinct} and v; € V then

V = V; for some 1.
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*The authors warmly thank Dr. Jairam for bringing this book to their knowledge.
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PROOF. Suppose V # V; for any i. We may assume that the union is

irredundant and for each ¢,

vi ¢ |J(V; +v)).
J#
Suppose all the V; are equal to V;. In this case we may assume v; ¢ V; for: > 2.
Then there exist a,b in F with a # b such that avs, bv; both belong to V; + v;
for the same 7. Then (a—b)ve € V; and hence v € Vi, a contradiction. Suppose
among the V;, therearer > 1 distinct- dﬁes. ‘Then by the theorem of Neumann,
if U = NV; then (U, +) is of finite index in (V,+) and so V = U (U + w;),
which by the above argument leads to a contradiction. Hence the proposition

follows.

PROPOSITION 1.2. Let V bea vector space over an infinite field F and vy, ..., v,

be n distinct elements of V. Then there emsts a Imear functional f on V such

that f(v;) # f(v;) whenever i # j.

PROOF. Let V* be the dual space of V. Let for each pair (7,7),¢ # 7, Vi; =
{f € V*| f(vi) = f(v;)}. Then V;; is a subspace of V*. It is easy to show that
Vi; # V*. Hence by Proposition 1.1, V* # U(i,j) Vi;. Let f € V*\UV;;. Then

f is the required element.

PROPOSITION 1.3. Let V be a vector space over an infinite field and W another
vector space over F' and let fi,..., f, be distinct linear maps of V into W. Let

. (wi;) be an n xn skew symmetric matrix from W. Then there exists an element

v € V such that for all i, j,wi; # fi(v) — f;(v).

PROOF. For each pair (,7) such that i £ j-We define Vi — ker (f, — f;) and
choose an element v;; € V if such an element exists such that (f;— f;)(vij) = wij;
otherwise we let v;; = 0. Each Vj; 1s a proper subspace of V. By Proposition 1.1
we have V # U(V.J+v,,) Hence if v € V\U(V,_, —i—v,,), then f,(v) f,(v) r,é wij
for i 75 j- '
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PROPOSITION 1.4. Let X be a Banach space and vy, ..., v, be distinct elements
of X. Then there exists a f € X*, the dual of X such that f(v;) # f(v;) if
t # j. As a consequence if fi,..., fn are distinct continuous functions on [0, 1]

there exists a function ¢ of bounded variation such that [ fidg # [ fidg ifi # j.

Proo¥F. This follows straightaway from the proof of Proposition 1.2 and Riesz
representation theorem [RN, p.110}].

PROPOSITION 1.5. Let P*(F') be the n——dimensi_onal projective space over an
infinite field F. Then P"(F') cannot be a set union of a finite number of proper

subspaces. Further if sy,...,s, are a finite number of projective collineations of
P"(F') then there exists a point p such that s;(p) # s;(p) if i # j.

PROOF. P*(F) = w and each subspace of P*(F) is image of a subspace
of F™*1, Hence the first assertion follows from Proposition 1.1. Whenever
i # 7 define A;; = {p | 5:(p) = s;(p)}. Then A;; = {p|s;'s;(p) = p}. We claim
now that A;; is a finite union of subspaces of P*(F'). Let o be any projective
collineation of P*(F'). Let A = {p | o(p) = p}. In A we define relation ~ as
follows: # ~ y if z = y or the line zy is contained in A. The relation ~ is
reflexive symmetric. If z ~ y and y ~ z, then we claim 2 ~ z. If two of them
coincide or they are collinear the claim follows. Otherwise they are distinct
and non-collincar. Hence the line zy and the line yz are inside A. Since o is
a collineation, we easily get that the ‘line.a:z is co_ntajned in A and so z ~ z.
This equivalence relation yields equivalence classes. If V is an equivalence class,
then it is a subspace. We assert now that if V4, V5, ..., Vi are equivalence classes,
then Vi, N (V1 +... + Vi) = 0 where V; + ... + Vi_; is the subspace generated
by Vi,..., Vi1, First Vi NV} = 0. Suppose Vi N (Vi + ... + V,.) = §. We claim
ViN(Vi+...4V,41) = 0. Let if possible a € VinN{(Vi+...4 V;41). Then a belong
to the line bc, where a, b, ¢ are distinct, b € Voyq,c € Vi + ... + V.. Sinqe o fixes
a and b,0(c) = ¢’ is a point on the line ab = the line be. But c € Vi + ... + V;..
Hencec' e Vi + ...+ V,.,.

If ¢ = ¢/, then o fixes a, b, c and hence every point on the line abe (since o is
projective). Then a ~ b and so a € Vy4; yielding V43N Vi # 0, a contradiction.
If ¢ # ¢/, then the line cc’ is contained in V; +...4+ V, and hence a € V1 +...+V,,
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_ a contradiction since VxN = (Vi + ... +'V;.) = §. Hence the assertion follows.
' Now.P"(F) can have.at most n + 2 such equivalence classes. Thus A is a finite
. union of subspaces. ‘Hence each A;; is a finite union of subspaces. By the first
statement P"(F) # |J Aij. Hence if p ¢ |J A;;j then p is the required point.

2. Applications to skew fields, curves and Riemann surfaces
We first recall an already known application of the basic theorem.

, | PROPOSITION 2.1. [S2] Let D be a skew field, S a subset closed under + and..
, Suppose S C F1U...UF,, a finite union of proper sub-skew fields of D. Then
.S C F; for some i. In particular, no skew field can be the set union of a finite

number of proper sub-skew fields.

PROPOSITION 2.2. Let K be a sub-skew field of the skew field D and suppose
K c U] aiFib; + c;, with a;,b;,¢; € D and F; are sub-skew fields, b; #0. Then
either K is finite or K C bl-_lF,-b,- for some i. If K C |J] ¢iFib; + ¢; with no
term irredundant and K infinite, then K C b'-__lF :bi + ¢i for each 1.

PROOF. Let us put 4; = ¢;b; and E; = by 1 Fib;. Then K C UF(AiEi+e;), 4; €
D,ci € D,E,-. sub-skew fields. We can assu:he that this union is irredundant
 (by SUCcessiVely omitting superﬁuous terms if necessary). From this we get that
' KﬂAlEl N..NAE, is ofﬁmte index in (K,+). FKNAE N.. ﬂA nEn 18
“finite, we get that K is finite and we are through.

- Let KNAEiN..NALE, be infinite. Let s € KnAlEln nA En,s#O
We claim now that KﬂAlElﬂ DA E,= s(KﬂElﬂ ﬂE ) For, ifz e Kn
Elﬂ...OEn, then sz € K since K is a sub-skew field, and s € 4; E;, z € E; imply
st € A;E; s__ihCé E. is a sub-skew field. Hence R.H.S. ¢ L.H.S. Let s' € L.H.S.
Then .s—l_s' e K since K is a skew field, and s = Aje;,s" = A; f; imply s;ls; € E;
since E; is a skew field. Hence s~'s' € K N E; N...1N E,. Thus &' € R.H.S,
IfweputKlr KNnEn. ﬂEn,WegetKﬂAlElﬂ .NA En-sK' We
cla,lm that K = sK'. We now have (smce sK' is of finite index in (K, +)), K=
Ul(sK'—l—d)forsomed EKd1 = 0,d; §E3K’1fz>2 Letm> L Since
s€ K ands#0, we get s 1K = KandsoK UI(K'—I—h),h = s 1d; and
fori > 2,h; ¢ K'. Since KN A, E1N...N A, E, is infinite, K' is infinite. Hence
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there exist a,b € K',a # b and an ¢ such that ahy, bh, belong to K' + hi. From
this (@ — b)hg € K'. Now K' is also a sub-skew field. Hence hy € K'.

This is a contradiction. Hence K = sK' and thus K = K' = KN E;N..NE,.
This gives K C E; for each 7. Hence the theorem follows,

The next proposition is a slight generalization of Cartan-Brauer-Hua

Theorem.

PROPOSITION 2.3. Let D be a skew field with center Z. Let K, be a sub-
skew field and K2, K3, ..., K,, are proper sub-skew fields not contained in 7. If
tK1z7' C K, for allz ¢ K1 U...UK, then either K; C Z or K, = D.

PROOF. Suppose K; ¢ Z and Ky # D. Let k; € Ky\Z. Let Vp(k1) = {c € D :
zky = kiz}. Then Vp(k1) is a proper sub-skew field of D. By Proposition 2.1,
D # Ky U...UK,UVp(k1). Let z € D\ (X U...UK,UVp(ky)). Then zkyz~! =
kz # k1. Wehave (142 )ks = k1 +koz. Also 1+z ¢ K U.. UK UVp(k;). Hence
(1+2)ky = k3(1+2), k3 € K;. Thus ks(14z) = ky + ko, k3 —ky = (kg — k3)z.

This yields k; = k2 = k3, a contradiction. Hence the proposition follows.

PROPOSITION 2.4. Let D be an infinite skew field. Let a4, ey Oy 3 G215 veey G2py )
ceelnly oo ,_am.n;rbe a finite collection of distinct elements such that aij Is a

conjugate of a;; and a;; ¢ Z, the center of D. Then there exists an z € D\ (0)

such that for each i v TGHETY F i1y ey i -

PROOF. Let us put Kii = Vp(aii). Then K, is a proper sub-skew field of
D (since a;3 ¢ Z). For i,j with i # j let z;; be an element of D such that
:r:,,a,la:ul = a;j and_mgj = 1if j = 1. By Proposition 2.2 we have D #
U; j2iiKii. Hence there exists ¢ € D\ U ; iiKii. Therefore zajiz™! # a;;

since x ¢ z;; K. This proves the result.
As an easy consequence of the above we have

PROPOSITION 2.5. Let D be a skew field with center Z. If a ¢ Z then a hés
infinitely many conjugates. If f(x) is a polynomial over Z of degree n with n+1

roots in D, then f(x) has infinitely many roots in D.
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PROPOSITION 2:6. Let C be an irreducible curve. Let Ci, ..., Cy be irreducible
curves which are rational images of C. If every rational function on C is induced

by a rational function on some C; then C is birationally isomorphic to some C;.

ProOOF. Let f; : C — C; be thé- ra,tioﬁal mz;ps. Let F; be; the funci;ioxi Jr'-ield
of C;, and F the field of functions of C. Fach Fj is a subfield of F and th_e
hypothesis implies FF = UF;. Now Proposition 2.1 yields F' = F;. Hence the

result .follows'.

PR&)FOSITiON 9.7 Let S be a noncompact Riemann surface. Lét Sy;...,5n
be noncompact Riemann surfaces which are holomérphic images of S. If each
.m.eromqrphic fungtion on S is induced by_ a _meromorphic function on some S;
a.nd every meromo;phic fqncﬁb:; én Si induces a meromorphic function on S,

.then § is biho]or_norphicq&o S,f for some i

PROOF. Lét fi+ S — S; be the holomorphic maps and let F; be the meromor-
phic function field of S; , and F the meromorphic function field of S. From the
hypothesis we get F= | F;. This yields F = F; for some i. From this it follows
that § is biholomorphic to S5;.. : '
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