A REDUCTION OF THE GLOBALIZATION AND U(1)-COVERING

TRAN DAO DONG

Abstract. We suggest a reduction of the globalization and multidimensional quantization to the case of reductive Lie groups by lifting to U(1)-covering. Our construction is connected with the M. Duflo's third method for algebraic groups. From a reductive datum of the given real algebraic Lie group we firstly construct geometric complexes with respect to U(1)-covering by using the unipotent positive distributions. Then we discribe in terms of local cohomology the maximal globalization of Harish-Chandra modules which correspond to the geometric complexes.

Introduction

In order to find irreducible unitary representations of a connected and simply connected Lie group G, the Kirillov's orbit method furnishes a procedure of quantization, starting from linear bundles over a G-homogeneous symplectic manifold (see [5]). In [1] and [2], Do Ngoc Diep has proposed the procedure of multidimensional quantization for general case, starting from arbitrary irreducible bundles. This procedure could be viewed as a geometric version of the construction of M. Duflo [4]. In 1988, W. Schmid and J.A. Wolf [3] described in terms of local cohomology the maximal globalization of Harish-Chandra modules to realize the discrete series representations of semi-simple Lie groups by using the geometric quantization and the derived Zuckerman functor modules. In [9], we modified the construction suggested by W. Schmid and J.A. Wolf to the case of U(1)-covering by applying the technique of P.L. Robinson and J.H. Rawnsley [6]. Our purpose is to give an algebraic version of the multidimensional quantization with respect to U(1)-covering. In this paper, we reduce the same problem to the case of reductive Lie groups. Using

the unipotent positive distributions we construct geometric complexes and their corresponding Harish-Chandra modules. Then we will describe the maximal globalization of Harish-Chandra modules in terms of local cohomology with respect to U(1)-covering.

1. Unipotent positive distributions

Let G be a real algebraic Lie group. Denote by \mathcal{G} the Lie algebra of G and \mathcal{G}^* its dual space. The group G acts in \mathcal{G}^* by the coadjoint representation. Denote by G_F the stabilizer of $F \in \mathcal{G}^*$ and by \mathcal{G}_F its Lie algebra. Let U_F be the unipotent radical of G_F and U_F be its Lie algebra. Denote by Q_F the reductive component of G_F in its Cartan-Levi's decomposition $G_F = U_F \cdot Q_F$.

Let $G_F^{U(1)}$ be the U(1)-covering of G_F and $U_F^{U(1)}$ be the inverse image of U_F under the projection $\sigma_j: G_F^{U(1)} \longrightarrow G_F$, where σ_j is the homomorphism defined in [8,§2]. Since

$$1 \longrightarrow U(1) \longrightarrow U_F^{U(1)} \xrightarrow{\sigma_i} U_F \longrightarrow 1$$

is a short exact sequence then we have the split short exact sequence of corresponding Lie algebras

$$0 \longrightarrow \mathcal{U}(1) \longrightarrow \text{ Lie } U_F^{U(1)} \longrightarrow \mathcal{U}_F \longrightarrow 0.$$

Thus $U_F^{U(1)}$ is the U(1)-covering of U_F and we have Lie $U_F^{U(1)} \cong \mathcal{U}_F \oplus \mathcal{U}(1)$.

From the local triviality of the Q_F -principal bundle $Q_F \mapsto U_F \backslash G \twoheadrightarrow G_F \backslash G$ there exists a connection on the bundle. Then the Kirillov 2-form B_{Ω} of Korbit Ω passing F induces a nondegenerate closed G-invariant 2-form \widetilde{B}_{Ω} on the
horizontal part $T_H(U_F \backslash G)$ defined by the formula

$$\widetilde{B}_{\Omega}(f)(\widetilde{X},\widetilde{Y}) = B_{\Omega}(F)(k_*\widetilde{X},k_*\widetilde{Y}),$$

where $f \in U_F \setminus G$, $k(f) = F \in \Omega$, and k_* is the linear lifting isomorphism induced from k (see [7]). As in [8], the symplectic group $Sp(T_{(f)H}(U_F \setminus G); \widetilde{B}_{\Omega}(f))$

has an U(1)-connected covering $Mp^c(T_{(f)H}(U_F\backslash G))$ and we obtain the following isomorphisms

$$\mathcal{S}p(T_{(f)H}(U_F \setminus G)) \cong \mathcal{S}p(\mathcal{G}/\mathcal{G}_F) \text{ and } Mp^c(T_{(f)H}(U_F \setminus G)) \cong Mp^c(\mathcal{G}/\mathcal{G}_F).$$

Using these isomorphisms we can view $U_F^{U(1)}$ as a Lie subgroup of the Cartersian product of Lie groups $U_F \times Mp^c(T_{(f)H}(U_F \setminus G))$.

We do not assume that the orbit Ω passing $F \in \mathcal{G}^*$ is an integral orbit, i.e. there does not exist a unitary character χ_F of G_F .

DEFINITION 1.1. A point $F \in \mathcal{G}^*$ is called (u, U(1))-admissible (u for unipotent radical, U(1) for U(1)-covering) iff there exists a unitary character $\theta_F^{U(1)}: U_F^{U(1)} \longrightarrow S^1$ such that

$$d\theta_F^{U(1)}(X,\varphi) = \frac{i}{\hbar}(F(X) + \varphi)$$

where $(X, \varphi) \in \mathcal{U}_F \oplus \mathcal{U}(1)$.

We see that if F is U(1)-admissible (see [8]) then it is (u, U(1))-admissible, but the converse does not hold in general.

DEFINITION 1.2. A smooth complex tangent distribution $\widetilde{L} \subset (T(U_F \setminus G))_{\mathbf{C}}$ is called a unipotent positive distribution iff

- (i) \widetilde{L} is an integrable and G-invariant subbundle of $(T_H(U_F \setminus G))_{\mathbf{C}}$.
- (ii) \widetilde{L} is invariant under the action Ad of G_F .
- (iii) $\forall f \in U_F \setminus G$, the fibre \widetilde{L}_f is a positive polarization of the symplectic vector space $((T_{(f)H}(U_F \setminus G))_{\mathbf{C}}, \widetilde{B}_{\Omega}(f))$, i.e.
 - $(\alpha) \dim \widetilde{L}_f = \frac{1}{2} \dim T_{(f)H}(U_F \setminus G),$
 - $(\beta) \widetilde{B}_{\Omega}(f)(\widetilde{X},\widetilde{Y}) = 0 \text{ for all } \widetilde{X},\widetilde{Y} \in \widetilde{L}_f,$
 - $(\gamma) i\widetilde{B}_{\Omega}(f)(\widetilde{X},\overline{\widetilde{X}}) \geq 0 \text{ for all } \widetilde{X} \in \widetilde{L}_f,$

where $\overline{\widetilde{X}}$ is the conjugation of \widetilde{X} . We say that \widetilde{L} is strictly positive iff the inequality (γ) is strict for nonzero $\widetilde{X} \in \widetilde{L}_f$.

We see that if \widetilde{L} is a unipotent positive distribution then the inverse image \mathcal{B} of $L_F = k_* \widetilde{L}_f$ under the natural projection $p: \mathcal{G}_{\mathbf{C}} \longrightarrow \mathcal{G}_{\mathbf{C}}/(\mathcal{G}_F)_{\mathbf{C}}$ is a positive polarization in $\mathcal{G}_{\mathbf{C}}$ (see [8]).

Let \widetilde{L} be a unipotent positive distribution such that $\widetilde{L} \cap \overline{\widetilde{L}}$ and $\widetilde{L} + \overline{\widetilde{L}}$ are the complexifications of some real distributions. Then the corresponding complex subalgebra $\mathcal{B} = p^{-1}(k_*\widetilde{L}_f)$ satisfies the following conditions: $\mathcal{B} \cap \overline{\mathcal{B}}$ and $\mathcal{B} + \overline{\mathcal{B}}$ are the complexifications of the real Lie subalgebras $\mathcal{B} \cap \mathcal{G}$ and $(\mathcal{B} + \overline{\mathcal{B}}) \cap \mathcal{G}$. Denote by B_0 and N_0 the corresponding analytic subgroups.

The unipotent positive distribution \widetilde{L} is called *closed* iff all the subgroups B_0 , N_0 and the semi-direct products $B = G_F \cdot B_0$ and $N = G_F \cdot N_0$ are closed in G. In what follows, we assume that \widetilde{L} is closed. We know that B_0 is a normal subgroup in B and G_F has adjoint action on B_0 . Moreover, $G_F^{U(1)}$ acts on B_0 and we can define the semi-direct product $G_F^{U(1)} \ltimes B_0$.

Then $B^{U(1)} = G_F^{U(1)} \ltimes B_0$ is the U(1)-covering of $B = G_F \cdot B_0$ and we have

Lie
$$B^{U(1)} \cong \mathcal{B} \oplus \mathcal{U}(1)$$
.

Denote by $B_0^{U(1)}$ the inverse image of B_0 in $B^{U(1)}$ under the U(1)-covering projection. As in [8] we have

PROPOSITION 1.3. In a small neighbourhood of the identity of $U_F^{U(1)}$ we obtain

$$heta_F^{U(1)}(g,(\lambda,\widetilde{Adg}^{-1})) = \exp\left(\frac{i}{\hbar}(F(X) + \varphi)\right),$$

where $\varphi \in \mathbb{R}$ satisfying the relation $\lambda^2 Det C_{\widetilde{Adg}^{-1}} = \exp(\frac{i}{\hbar}\varphi)$.

The integral kernel of $\theta_F^{U(1)}$ is given by the formula

$$u(z,w) = \exp\left(rac{i}{\hbar}(F(X)+arphi) + rac{i}{2\hbar}\langle z,w
angle - rac{1}{4\hbar}\langle w,w
angle
ight),$$

where $z, w \in (\mathcal{B} + \overline{\mathcal{B}})/(\mathcal{B} \cap \overline{\mathcal{B}})$.

Denote by $Z_{irr}^{U(1)}(F)$ the set of all equivalent classes of irreducible unitary representations of G_F such that the restriction of the composition of σ_j and each of them to $U_F^{U(1)}$ is a multiple of the character $\theta_F^{U(1)}$. When F is (u, U(1))-admissible and $\tau \in Z_{irr}^{U(1)}(F)$, the pair (F, τ) is called a reductive datum. Let $\widetilde{\sigma}$ be some fixed irreductive unitary representation of G_F in a separable Hilbert \widetilde{V} such that the restriction of $(\widetilde{\sigma} \circ \sigma_j)$ to $U_F^{U(1)}$ is a multiple of the character $\theta_F^{U(1)}$.

DEFINITION 1.4. The triplet $(\widetilde{L}, \rho, \sigma_0)$ is called a $(\widetilde{\sigma}, \theta_F^{U(1)})$ -unipotent positive polarization, and \widetilde{L} is called a weakly Lagrangian distribution iff

(i) σ_0 is an irreducible representation of the subgroup B_o in a Hilbert space V' such that the point σ_0 in the dual $\widehat{B_0}$ is fixed under the natural action of G_F and

$$(\sigma_0 \circ \sigma_j)|_{G_F^{U(1)} \cap B_0^{U(1)}} = (\widetilde{\sigma} \circ \sigma_j)|_{G_F^{U(1)} \cap B_0^{U(1)}}$$

(ii) ρ is a representation of the complex Lie algebra $\mathcal{N} \oplus \mathcal{U}(1)_{\mathbf{C}}$ in V' which satisfies E. Nelson's condition and

$$d(\sigma_0\circ\sigma_j)=
ho|_{\mathcal{B}\oplus\mathcal{U}(1)}.$$

By a similar way as in [8, §2] we obtain

PROPOSITION 1.5. Let $F \in \Omega$ be (u, U(1))-admissible and suppose that $(\widetilde{L}, \rho, \sigma_o)$ is a $(\widetilde{\sigma}, \theta_F^{U(1)})$ -unipotent positive polarization. Then there exists a unique irreducible representation σ of $B^{U(1)}$ in space $V = \widetilde{V} \otimes V'$ such that

$$\sigma|_{G_F^{U(1)}} = \widetilde{\sigma} \circ \sigma_j \quad \text{and} \quad d\sigma = \rho|_{\mathcal{B} \oplus \mathcal{U}(1)}.$$

2. The construction of geometric complexes

Suppose that G is a connected real reductive Lie group. We fix a Cartan subalgebra \mathcal{H} of $\mathcal{G}_{\mathbf{C}}$ and consider $F \in \mathcal{G}^*$ such that $(\mathcal{G}_F)_{\mathbf{C}} = \mathcal{H}$. Then $H = G_F$ is a Cartan subgroup of G. Let $(F, \widetilde{\sigma})$ be a reductive datum and $\sigma : B^{U(1)} \longrightarrow U(V)$ be the representation obtained in Proposition 1.5. Denote by $E^{U(1)}$ and $\mathcal{E}^{U(1)}$ the homogeneous vector bundles on $H \setminus G$ and $U_F \setminus G$ respectively associated with the restrictions of σ on $H^{U(1)}$ and $U_F^{U(1)}$. In the category of smooth vector bundles we have the bundles $K^*E^{U(1)}$ and $\mathcal{E}^{U(1)}$ are equivalent. In the view of [3], we can say the bundles $E^{U(1)}$ and $\mathcal{E}^{U(1)}$ associated to the basic datum $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$.

Suppose that $\dim \Omega_F = m$. Let $\mathcal{C}^q(\mathcal{E}^{U(1)})$ denote the sheaf of differential forms of type (0,q) on $U_F \setminus G$ with values in $\mathcal{E}^{U(1)}$. We know that each differential form of this type is a section of the bundle $\mathcal{E}^{U(1)} \otimes \Lambda^q \mathbb{N}^*$ where \mathbb{N}

is the inverse image bundle $k^*\aleph$ of the homogeneous vector bundle $\aleph \longrightarrow H \setminus G$ with fibre $\mathcal{N} \cong \mathcal{B}/\mathcal{H}$ and \mathbb{N}^* is its dual. Denote by $\mathcal{O}(\mathcal{E}^{U(1)})$ the sheaf of germs of partially holomorphic C^{∞} sectons of $\mathcal{E}^{U(1)}$ that are annihilated by \mathcal{N} . Then as in [9, §1] we obtain a cochain complex

$$C^{\infty}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda \cdot \mathbb{N}^*), \quad \overline{\partial}_E$$
 (2.1)

Denote by

$$H^p(C^\infty(U_F\setminus G;\mathcal{E}^{U(1)}\otimes \Lambda^*\mathbb{N}^*))$$

the p-th derived group of the cochain complex (2.2) and $H^p(U_F \setminus G; \mathcal{O}(\mathcal{E}^{U(1)}))$ the sheaf cohomology group of the space $U_F \setminus G$ of degree p with coefficients in $\mathcal{O}(\mathcal{E}^{U(1)})$. By a similar argument as in [9, §1] we obtain

PROPOSITION 2.1. There exists a canonical isomorphism

$$H^p(C^{\infty}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda \cdot \mathbb{N}^*)) \cong H^p(U_F \setminus G; \mathcal{O}(\mathcal{E}^{U(1)})), \quad p \geq 0 \quad (2.2)$$

We note that the differential $\overline{\partial}_E$ of (2.2) extends naturally to hyperfunction sections, so we obtain a complex

$$C^{-\omega}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda \cdot \mathbb{N}^*)), \quad \overline{\partial}_E$$
 (2.3)

Under the fibration $U_F \setminus G \longrightarrow H \setminus G$, the bundle $\mathcal{E}^{U(1)} \longrightarrow U_F \setminus G$ pushes down to the bundle $\mathcal{E}^{U(1)} \longrightarrow H \setminus G$ and the sheaf $\mathcal{O}(\mathcal{E}^{U(1)}) \longrightarrow U_F \setminus G$ pushes down to the sheaf $\mathcal{O}(\mathcal{E}^{U(1)}) \longrightarrow H \setminus G$ of germs of partially holomorphic C^{∞} sections over $H \setminus G$. Then we have

$$C^{-\omega}(H \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda \aleph^*), \quad \overline{\partial}_E$$
 (2.4)

Denote by $C_{Q_F}^{-\omega}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda^p \mathbb{N}^*)$ the space of Q_F -equivariant partially holomorphic C^{∞} sections of the space $C^{-\omega}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda^p \mathbb{N}^*)$, we have

PROPOSITION 2.2. There exists a canonical isomorphism of vector spaces

$$C_{Q_F}^{-\omega}(U_F\setminus G;\mathcal{E}^{U(1)}\otimes \Lambda^p \mathbb{N}^*)\cong C^{-\omega}(H\setminus G;\mathcal{E}^{U(1)}\otimes \Lambda^p \aleph^*).$$

PROOF. Pull back the complex (2.4) to G as was done in $[9, \S 1]$, we see that (2.4) is isomorphic to the complex

$$[C^{-\omega}(G) \otimes V \otimes \Lambda \mathcal{N}^*]^H, \quad \overline{\partial}_E$$
 (2.5)

Then our assertion follows from the definition of Q_F -equivariant sections (see [7, §3]).

Let X denote the flag variety of Borel subalgebras of $\mathcal{G}_{\mathbf{C}}$. Since H normalizes \mathcal{B} , there exists a natural G-invariant fibration $H \setminus G \longrightarrow S$, where $S = G \cdot \mathcal{B}$ is the G-orbit passing \mathcal{B} in X. Then, as in [9], we obtain the Cauchy-Riemann complex

$$C^{-\omega}(S; \mathcal{E}^{U(1)} \otimes \Lambda \cdot \mathbb{N}_S^*), \quad \overline{\partial}_S$$
 (2.6)

where $\mathbb{N}_S = \mathbb{I}^{0,1}(S)$ is the G-homogeneous vector bundle based on $\mathbb{N}/\mathbb{N} \cap \overline{\mathbb{N}}$ and $\overline{\partial}_E$ is the Cauchy-Riemann operator (see [3, §4]).

Denote by $X^{U(1)}$ the flag variety of U(1)-invariant Borel subalgebras of Lie algebra $\mathcal{G}_{\mathbf{C}} \oplus \mathcal{U}(1)_{\mathbf{C}}$ and $\pi_X : X^{U(1)} \longrightarrow X$ is the natural projection. Using the Gauss' decomposition $G = K \cdot B$, where K is a fixed maximal compact subgroup in G, we obtain $B \setminus G \cong B^{U(1)} \setminus K \cdot B^{U(1)}$. Let

$$S^{U(1)} = (K \cdot B^{U(1)}) \cdot (\mathcal{B} \oplus \mathcal{U}(1)_{\mathbf{C}})$$

be the orbit passing $(\mathcal{B} \oplus \mathcal{U}(1)_{\mathbf{C}})$ in $X^{U(1)}$, we see that $\mathcal{B}^{U(1)}$ is the stabilizer of $\mathcal{B} \oplus \mathcal{U}(1)_{\mathbf{C}}$ and there exists a diffeomorphism of $S^{U(1)}$ onto S. Then we have the complex

$$C^{-\omega}(S^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda \cdot \aleph_S^*), \quad \overline{\partial}_E$$
 (2.7)

where $\aleph_S = \pi_X^* I\!\!I^{0,1}(S)$ and \aleph_S^* is its dual.

Proposition 2.3. There are canonical isomorphisms

$$H^{p}(C_{Q_{F}}^{-\omega}(U_{F}\setminus G; \mathcal{E}^{U(1)}\otimes \Lambda \cdot \mathbb{N}^{*})) \cong H^{p}(C^{-\omega}(S^{U(1)}; \pi_{X}^{*}\otimes \Lambda \cdot \aleph_{S}^{*}))$$

$$\cong H^{p}([C^{-\omega}(G)\otimes V\otimes \Lambda \cdot (\mathcal{N}/\mathcal{N}\cap \overline{\mathcal{N}})^{*}]^{\mathcal{N}\cap \overline{\mathcal{N}}, H})$$

PROOF. Applying the Poincaré Lemma to the fibres of $H \setminus G \longrightarrow S$ we see that the inclusion of (2.7) in the complex (2.4) induces an isomorphism of cohomology. Then the proposition follows from Proposition 2.2.

Let \widetilde{S} denote the germ of neighbourhoods of S in X, we see that $\mathcal{E}^{U(1)} \longrightarrow S$ has a unique holomorphic \mathcal{G} -equivariant extension $\widetilde{\mathcal{E}}^{U(1)} \longrightarrow \widetilde{S}$. Then as in [9] we obtain the Dolbeault complex

$$C^{-\omega}(\widetilde{S}^{U(1)}; \pi_X^* \widetilde{\mathcal{E}}^{U(1)} \otimes \Lambda \aleph_X^*)), \quad \overline{\partial}$$
 (2.8)

where $\aleph_X = \pi_X^* I X^{0,1}$ and coefficients are hyperfunctions on \widetilde{S} with support in $S^{U(1)}$.

By a similar way as in [9, §1], we have

PROPOSITION 2.4. There is a canonical isomorphism

$$H^{p}(C^{-\omega}(\widetilde{S}^{U(1)}; \pi_{X}^{*}\widetilde{\mathcal{E}}^{U(1)} \otimes \Lambda \aleph_{X}^{*})) \cong H^{p}(\widetilde{S}^{U(1)}; \mathcal{O}(\widetilde{\mathcal{E}}^{U(1)}))$$
 (2.9)

where the right hand side of (2.9) is local cohomology along \widetilde{S} .

3. G-Modules and their induced topologies

We fix a basic datum $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$ and consider the G-orbit $S = G \cdot \mathcal{B} \subset X$. Denote by Y the variety of ordered Cartan subalgebras and $G_{\mathbf{C}}$ the adjoint group of $G_{\mathbf{C}}$. Let $S_Y = G \cdot \mathcal{H} \subset Y$ be the G-orbit through the base point in Y.

PROPOSITION 3.1. There are canonical isomorphisms of G-modules

$$H^{p}(C_{Q_{F}}^{-\omega}(U_{F}\setminus G; \mathcal{E}^{U(1)}\otimes \Lambda \cdot \mathbb{N}^{*})) \cong H^{p}(C^{-\omega}(S^{U(1)}; \pi_{X}^{*}\mathcal{E}^{U(1)}\otimes \Lambda \cdot \aleph_{S}^{*}))$$

$$\cong H^{p+u}(\widetilde{S}^{U(1)}; \mathcal{O}(\widetilde{\mathcal{E}}^{U(1)}))$$

where $u = \operatorname{codim}_{\mathbb{R}}(S \subset X)$.

PROOF. The first isomorphism follows from Proposition 2.3. We only need to show that the complexes (2.4) and (2.8) have naturally isomorphic cohomologies with a sheaf of degree by $u = \operatorname{codim}_{\mathbb{R}}(S)$.

Let $I\!\!\Gamma_{Y|X}$ denote the complexified relative tangent bundle of the fibration p, and $I\!\!\Gamma_{Y|X}^{1,0}$, $I\!\!\Gamma_{Y|X}^{0,1}$ the subbundle of holomorphic, respectively antiholomorphic, relative tangent vectors. Denote by $Y^{U(1)}$ the variety of U(1)-invariant ordered

Cartan subalgebras of $\mathcal{G}_{\mathbf{C}} \oplus \mathcal{U}(1)_{\mathbf{C}}$. We have the natural projection $\pi_Y : Y^{U(1)} \longrightarrow Y$. Suppose that

$$S_Y^{U(1)} = (K \cdot B^{U(1)})(\mathcal{H} \oplus \mathcal{U}(1)_{\mathbf{C}}) \subset Y^{U(1)}$$
(3.1)

is the orbit passing the base point $\mathcal{H} \oplus \mathcal{U}(1)_{\mathbf{C}}$ in $Y^{U(1)}$, we have $S_Y^{U(1)} \approx S_Y$.

Let $C^{-\omega}(X^{U(1)})$ be the sheaf of hyperfunctions on $X^{U(1)}$ with support in $S^{U(1)}$ and $C^{-\omega}(Y^{U(1)}; \Lambda^p \aleph_{Y|X}^*)$ the sheaf of hyperfunction sections of $\Lambda^p \aleph_{Y|X}^*$ on $Y^{U(1)}$ with support in $S_Y^{U(1)}$, where $\aleph_{Y|X} = \pi_Y^*(I\!\!T_{Y|X})$. As in [9, §2], we obtain the complex

$$C^{-\omega}(S_Y^{U(1)}; (\pi_X \circ p^{U(1)})^* \widetilde{\mathcal{E}}^{U(1)} \otimes \Lambda \cdot (\aleph_{Y|X}^{1,0})^*)$$
 (3.2)

which coincides with the complex (2.4). Combining this with Proposition 2.2. we obtain desired isomorphisms.

Now we fix a Cartan involution θ of G with $\theta H = H$. It defines the maximal compactly embedded subgroup $K = \{x \in G : \theta x = x\}$ of G. Then $H = T \times A$ with $T = H \cap K$ and $A = \exp(A \cap G)$, where $\mathcal{H} = T + A$ are the (± 1) -eigenspaces of $\theta|_H$. Consider the orbit $S = G \cdot \mathcal{B} \subset X$, $\mathcal{H} \subset \mathcal{B}$. Proposition 7.1 in [3] follows that there exists a relative orbit $S_{max} = G \cdot \mathcal{B}_{max}$, where $\mathcal{H} \subset \mathcal{B}_{max}$ and \mathcal{B}_{max} is maximally real for that condition. Then, as in [3, §2], G has a cuspidal parabolic subgroup $P = MAN_H$, where $Z_G(\mathcal{A}) = M \times A$, $\theta M = M$ and $\mathcal{B}_{max} \subset \mathcal{P}$, with $\mathcal{P} = \text{Lie}P$. Moreover, the fibrations $S \longrightarrow S_{max}$ and $S_{max} \longrightarrow P \setminus G$ induce a fibration $S \longrightarrow P \setminus G$. Then, as in [9, §2], we obtain a complex of sheaves

$$C_{P\backslash G}^{-\omega}(S^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda^p \aleph_S^*)$$
(3.3)

consist of germs of sections of the bundles $\pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda^p \aleph_S^* \longrightarrow S^{U(1)}$, coefficients in $C_{P\backslash G}^{-\omega}(S^{U(1)})$.

Taking global sections, we arrive at a subcomplex of the complex (2.7)

$$C_{P\backslash G}^{-\omega}(S^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda \, \aleph_S^*), \quad \overline{\partial}_S$$
 (3.4)

By a similar argument in [9, §2], we have

PROPOSITION 3.2. The inclusion of (3.4) in the Cauchy-Riemann complex (2.7) induces isomorphisms of cohomology.

Proposition 3.3. The vector spaces

$$C^{-\omega}_{P\backslash G}(S^{U(1)};\pi_X^*\mathcal{E}^{U(1)}\otimes \Lambda^p\aleph_S^*)$$

have natural Fréchet topologies. In those topologies, $\overline{\partial}_S$ is continuous and the actions of G are Fréchet representations.

4. A reduction of the globalization

We recall some notions from [3, §3]: An admissible Fréchet G-module has property (MG) if it is the maximal globalization of its underlying Harish-Chandra module. A complex (C, d) of Fréchet G-modules has property (MG) if d has closed range, the cohomologies $H^p(C, d)$ are admissible and of finite length, and each $H^p(C, d)$ has property (MG).

Given a basis datum $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$, the corresponding homogeneous vector bundle $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has property (MG) if the partially smooth Cauchy-Riemann complex (2.9) has property (MG). Denote

$$H^{p}(S^{U(1)}; \mathcal{E}^{U(1)}) = H^{p}(C^{-\omega}(S^{U(1)}; \pi_{X}^{*} \mathcal{E}^{U(1)} \otimes \Lambda \aleph_{S}^{*}))$$
(4.1)

Proposition 3.2 shows that $H^p(S^{U(1)}; \mathcal{E}^{U(1)})$ is calculated by a Fréchet complex. Then $H^p(S^{U(1)}; \mathcal{E}^{U(1)})_{(K)}$ is calculated by the subcomplex of K-finite forms in that Fréchet complex and these forms are smooth. Then we can define morphisms

$$H^p(S^{U(1)}; \mathcal{E}^{U(1)})_{(K)} \longrightarrow A^p(G, H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$$
 (4.2)

where $A^p(G, H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j) \cong H^p(C_{Q_F}^{for}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda \cdot \mathbb{N}^*)_{(K)})$ are Harish-Chandra modules for G (see [3, §3]).

We recall as in [3] that the bundle $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has property (Z) if the maps (4.2) are isomorphisms. In other words, $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has property (Z) if $H^p(S^{U(1)}; \mathcal{E}^{U(1)})$ is the globalization of the Harish-Chandra module $A^p(G, H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$.

We consider the following condition of a pair $(F, \tilde{\sigma})$:

There exist a positive root system Φ^+ and a number C > 0such that: if $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ is irreductive, $\lambda = d(\widetilde{\sigma} \circ \sigma_j)|_{\mathcal{H}} \in \mathcal{H}^*$, $\lambda_{\mathbb{R}}$ is the restriction of λ to the real form $\mathcal{H}_{\mathbb{R}}$ on which roots take real value, and $\langle \lambda_{\mathbb{R}}, \alpha \rangle > 0$ for all $\alpha \in \Phi^+$, then $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has properties (MG) and (Z). (4.3)

As in [9, §2] we have

PROPOSITION 4.1. We fix $(F, \tilde{\sigma})$ and suppose that (4.3) is true. Then for arbitrary basic data of the form $(H, \mathcal{B}, \tilde{\sigma} \circ \sigma_j)$, the bundle $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has both properties (MG) and (Z).

We fix a basic datum $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$. Let $S = G \cdot \mathcal{B} \in X$ and $u = \operatorname{codim}_{\mathbb{R}}(S)$. Recall as in [3] that the polarization \mathcal{B} is maximally real if it maximizes the dimension of $\mathcal{B} \cap \overline{\mathcal{B}}$.

THEOREM 1. For any maximally real polarization $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$ there are topological isomorphisms between Fréchet G-modules

$$H^{p}(C_{Q_{F}}^{-\omega}(U_{F}\setminus G; \mathcal{E}^{U(1)}\otimes \Lambda\cdot \aleph^{*})) \cong H^{p}(C^{-\omega}(S^{U(1)}; \pi_{X}^{*}\mathcal{E}^{U(1)}\otimes \Lambda\cdot \aleph_{S}^{*}))$$
$$\cong H^{p+u}(\widetilde{S}; \mathcal{O}(\widetilde{\mathcal{E}}^{U(1)}))$$

which are canonically and topologically isomorphic to the action of G on the maximal globalization of $A^p(G, H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$.

PROOF. Suppose that \mathcal{B} is maximally real polarization. Then G has a cuspidal parabolic subgroup $P = M \cdot A \cdot N_H$ such that $\mathcal{B} \subset \mathcal{P}$, $\mathcal{P} = \text{Lie}P$, where $H = T \times A$ with $T = H \cap K$ and $A = \exp(\mathcal{A} \cap \mathcal{G})$. We note that $S^{U(1)} \cong (H \cdot N_H) \setminus G$ and $S^{U(1)}$ fibres over $P \setminus G$ with holomorphic fibres $T \setminus M$. Let $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ be irreducible, $\lambda = d(\widetilde{\sigma} \circ \sigma_j)|_{\mathcal{H}} \in \mathcal{H}^*$.

By a similar argument as in [9, §3] we see that the condition (4.3) is true. Thus, Proposition 4.1 follows that $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ satisfies both (MG) and (Z). Combining this with Propositions 3.1, 3.2 and 3.3 we obtain desired isomorphisms.

Now we will extend the indicated results to arbitrary polarizations.

Fix a reductive datum $(F, \tilde{\sigma})$ as in subsection 2.1. Suppose that $\mathcal{B} \subset \mathcal{G}_{\mathbf{C}}$ is a polarization such that $\mathcal{H} \subset \mathcal{B}$ and \mathcal{B} is not maximal real. Applying Lemma 7.2 in [3] we have a complex simple root system for $(\mathcal{G}, \mathcal{H})$. Denote by S_{α} the Weil reflection and let

$$\Phi_0^+ = S_\alpha \Phi^+, \quad \mathcal{B}_0 = S_\alpha \mathcal{B} \quad \text{and} \quad S_0 = G \cdot \mathcal{B}_0$$
 (4.4)

Given $\gamma \in \Phi(\mathcal{G}_{\mathbf{C}}, \mathcal{H})$, we can view γ as an element of $(\mathcal{H} \oplus \mathcal{U}(1)_{\mathbf{C}})^*$. Since \mathcal{H} is the Cartan subalgebra of $\mathcal{G}_{\mathbf{C}}$, we have a representation $e^{\gamma}: H^{U(1)} \longrightarrow \mathbf{C}^*$. Thus, the bundle $L_{\gamma} \longrightarrow H \setminus G$ associated to e^{γ} pushes down separately to line bundles $L_{\gamma} \longrightarrow S^{U(1)}$ and $L_{\gamma} \longrightarrow S^{U(1)}_{0}$. Applying Lemma 10.6 in [3] with $V = C^{-\omega}(G)$ we have G-equivariant morphisms of complexes

$$C^{-\omega}(H\backslash G; \pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda^p \aleph_{S_0}^*) \longrightarrow C^{-\omega}(H\backslash G; \pi_X^* \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda^{p+1} \aleph_S^*)$$
(4.5)

which induce morphisms of subcomplexes

$$C^{-\omega}(S_0^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda^p \aleph_{S_0}^*) \longrightarrow C^{-\omega}(S^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda^{p+1} \aleph_S^*)$$

$$\tag{4.6}$$

By a similar argument as in [9, §4], we obtain

PROPOSITION 4.2. Suppose that $\tilde{\sigma} \circ \sigma_j$ is irreducible, so $d(\tilde{\sigma} \circ \sigma_j)|_{\mathcal{H}} = \lambda \in \mathcal{H}^*$, and suppose further that $2\langle \lambda + \rho - \alpha, \alpha \rangle / \langle \alpha, \alpha \rangle$ is not a positive integer. Then (4.6) induces an isomorphism of cohomology groups.

THEOREM 2. We fix (H, \mathcal{B}) and suppose that \mathcal{B} is not maximal real. Then, for arbitrary basic data of the form $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$, the bundle $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has both properties (MG) and (Z). In other words, Theorem 1 holds for arbitrary basic data of the form $(H, \mathcal{B}, \widetilde{\sigma} \circ \sigma_j)$.

PROOF. According to Theorem 1, every $\mathcal{E}^{U(1)} \longrightarrow S_{max}^{U(1)}$ has both (MG) and (Z). Thus we may assume by induction on dim $S^{U(1)} - \dim S_{max}^{U(1)}$ that every $\mathcal{E}^{U(1)} \longrightarrow S_0^{U(1)}$ has both (MG) and (Z). On the other hand, Corollary 8.12 and Lemma 8.13 in [3] show that we need only prove (MG) and (Z) for irreducible $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$. Since the cohomologies and maps that occur in Theorem 1

all are compatible with coherent continuation, we may assume that $2\langle \lambda + \rho - \alpha, \alpha \rangle / \langle \alpha, \alpha \rangle$ is not a positive integer, where $\lambda = d(\tilde{\sigma} \circ \sigma_j)|_{\mathcal{H}} \in \mathcal{H}^*$.

We know that (4.8) restricts to a morphism of subcomplexes

$$C_{P\backslash G}^{-\omega}(S_0^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes \Lambda^p \aleph_{S_0}^*) \longrightarrow C_{P\backslash G}^{-\omega}(S^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda^{p+1} \aleph_S^*)$$

$$(4.7)$$

Applying Propositions 3.2 and 4.2 we see that (4.9) induces an isomorphism in cohomology. By induction on dim $S^{U(1)} - \dim S^{U(1)}_{max}$, the complex

$$C_{P\backslash G}^{-\omega}(S_0^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda \cdot \aleph_{S_0}^*)$$

$$\tag{4.8}$$

has property (MG). Then, as in [3], the complex

$$C_{P\backslash G}^{-\omega}(S^{U(1)}; \pi_X^* \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda \otimes_S^*)$$
 (4.9)

has property (MG). Similarly, applying Lemma 10.6 in [3] with $V = C^{for}(G)$ we obtain a morphism of complexes

$$C_{Q_F}^{for}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes \Lambda^p \aleph_{S_0}^*) \to C_{Q_F}^{for}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda^{p+1} \aleph_S^*)$$
(4.10)

Then we have the following commutative diagram

$$C_{P\backslash G}^{-\omega}(S_0^{U(1)}; \mathcal{E}^{U(1)}; \otimes \Lambda^p \aleph_{S_0}^*)_{(K)} \rightarrow C_{P\backslash G}^{-\omega}(S^{U(1)}; \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda^{p+1} \aleph_S^*)_{(K)}$$

$$\downarrow \qquad \qquad \downarrow$$

$$C_{Q_F}^{for}(U_F \setminus G; \mathcal{E}^{U(1)}; \otimes \Lambda^p \aleph_{S_0}^*)_{(K)} \to C_{Q_F}^{for}(U_F \setminus G; \mathcal{E}^{U(1)} \otimes L_{-\alpha} \otimes \Lambda^{p+1} \aleph_S^*)_{(K)}$$
 of morphisms of K -finite subcomplexes.

We note that the first horizontal arrow in the diagram induces an isomorphism of cohomology (see [3, §10]). Applying Proposition 4.2 and passage to the K-finite subcomplex, we see that the second horizontal arrow in the diagram induces an isomorphism of cohomology. Also, by induction on dim S-dim S_{max} , the first vertical arrow in the diagram is an isomorphism on cohomology. Then the second vertical arrow in the diagram is a cohomology isomorphism. In other words, the bundle $\mathcal{E}^{U(1)} \longrightarrow S^{U(1)}$ has property (Z). This completes the proof of Theorem 2.

[5]

ACKNOWLEDGMENT. The author would like to thank his adviser Prof. Do Ngoc Diep for calling his attention to the study of the reduction of globalization and U(1)-covering. He would like also to thank Prof. J.H. Rawnsley for many helpful discussions.

REFERENCES

Do Ngoc Diep, Multidimensional quantization. I. The general construction, Acta Math. [1] Vietnam. 5 (1980), 42-45.

Do Ngoc Diep, Multidimensional quantization. II. The covariant derivation, Acta Math. [2]

Vietnam. 7 (1982), 87-93.

W. Schmid and J.A. Wolf, "Geometric quantization and derived functor modules for [3] semi-simple Lie groups," Math. Sci. Research Institute Berkeley, California, October, 1988.

M. Duflo, Construction des gros ensembles de représentations unitaires irréducibles [4] d'un groupe de Lie quelconque, Proc. Conference, Pitman Publishing Co. Neptune, Romanie (1980), 147-155.

A.A. Kirillov, "Elements of the Theory of Representations," Springer-Verlag, Berlin-Hei-

senberg-NewYork, 1976.

P.L. Robinson and J.H. Rawnsley, The metaplectic representation, Mpc-structures and [6] geometric quantization, Memoirs of the American Mathematical Society 81 (September 1989).

Tran Dao Dong and Tran Vui, On the procedure of multidimensional quantization, Acta [7]

Math. Vietnam. 14 (1989), 19-30.

Tran Vui, Multidimensional quantization and U(1)-covering, Acta Math. Vietnam. 16 [8] (1991), 103-119.

Tran Dao Dong, On globalization over U(1)-covering of Zuckerman (G, K)- modules, [9] Journal of Math. (Vietnam) 19(1) (1991), 60-72.

DEPARTMENT OF MATHEMATICS HUE COLLEGE OF TEACHER EDUCATION 32 LE LOI STREET, HUE, VIETNAM