ACTA MATHEMATICA VIETNAMICA
Volume 19, Number 1, 1994, pp. 31-39

‘A LINEAR PROGRAMMING APPROACH TO SOLVING
‘A JOINTLY CONSTRAINED BILINEAR PROGRAMMING
PROBLEM WITH SPECIAL STRUCTURE

- TRAN VU THIEU

Abstract. In this paper we shall deal with the following nonconvex optimization
problem: (P) Minimize cTz, subject to z € D and z; = z;y; for all i = - )
‘1,..., p<n, z € X,y € S, where D, S are polyhedrons in R™, R? respectively,
X={zeRrloca<a< A} ¢, A are p-vectors; ¢ is an n- vector It is shown
that (P) can be reduced to a linear program whose constramts can exp]1c1t}y be
glven in some special cases

1. Introduction

In this paper we shall deal with the followmg nonconvex optumzatmn

problem

(P) Minimize ¢z, subjectto z € D and
zi = Tiy; forall i=1,...,p<n,z€ X, yes, (1)

where D, .S' are polyhedrons in R* R? respectlvely, ={reRP0<a<z<

A}; a,A are p-vectors; ¢ is an n-vector,

Problem (P) was studied in [2] and [4] when'p =7 and § = {y € R"| 0<
b<y<B,a<dly<gk 'b,'B,d: are n-vectors; a, 8 are real numbers. The
presence of the constraints z; = z;yi (¢ =1,...,p) destroys the linearity of the
problem and makes it nonconvex with respect to the variables z and y. In fact
(P) can be regarded as a jointly constrained bilinear programming problem
(see [1]) and has the rank P structure‘as defined in [5). In general, solution
techniques developed for global optimization (see e. g [3]), although of 1nterest
by their own right, seem to be inefficient for (P).
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Exploiting the special structure of the problem, we will show in §2 that (P)

"is equivalent to a linear program of the variable z with the constraint z € D
and other additional constraints on z instead of (1). Also, we will show in
§3 that in some special cases the constraints of the equ1va1ent program can
explicitly be given. Therefore, instead of solving (P) we can solve its equivalent
linear program. After obtaining an optimal solution 2 to the later, x and y can
easily be defined from z by solving a system of linear inequalities or by direct
computation in the cases considered in §3. This solution technique is extremely
efficient for problems in which n may be large but p is not too big. Since,
however; the amount of constraints of the equivalent program tends to qulckly
increasing along with p, it may not be eflicient for problems with larger p. To-
overcome this drawback a branch-and-bound algorithm for solving (P) will be

developed in a subsequent paper.

2. The equwalent program

In thls section we w111 construct a linear program equwa,lent to (P). In-
troducing additional variables z; = l,yj = z; for j > p, if necessary, we may

assume from now on that p=n.

DEFINITION 1. Let z, y, z € R™ We say that z is a component product (more
bneﬂy, a product) of z and y if z; = ziy: foralli = 1,..., n. For convenience,
we shall denote this product by the symbol e and write z = = ® y.
DEFINITION 2. Let S be a subset of R™. Given a point z € R®, we denote by
zeS the set of all products z=2z ey with y € S

We have the following property.

PROPOSITION 1. For any T € R" :

(i) z o S is convex if § is convex.

(Gi) z e S isa pontope (a polyhedron, resp) if S is so.

PROOF. (i) Assume that S'is convexand zF = x e y* for some y*e S, k=12
Consider z = Az' + (1 -X)z%, 0< A <1 Upon simple computation, we get
z =z eywherey = Myt + (- Ay? € § because of the convexity of S.
Thus, z ¢ 5 is convex.
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v
(i) Assume now that S is a polytope with vertices y!,..., y9, i.e. § =

co{y',..., y?}, the convex hull of y,..., y9. It can easily be verified that z e
S = co{zey',...,z ¢ y7} which shows that = ¢ § is also a polytope.

The case where S is a p-;olyhedro'n- is proved in a similar way.
REMARK 1. The converse of the above statement holds if z; # 0 for all ¢ =
“le(zeS), where 7! = (1/z;,...,1/z,).
DEFINITION 3. Let X C R™ be a positive rectangle whlch is defined by

1,...yn,since S =z

X = {xER”|0<a,Sm.SA,,z—1 , T},

“where a; and A; are given positive numbers. Let § be a subset of R}, the
non-negative orth'ant of R”. We denote by G the set of all products z =z ey
withz € X,y € S and write G =X » S.

It is natural to ask whether G is a convex set (a polyhedron or a polytope)

if S is so. The affirmative answer is given in the following

PROPOSITION 2. Under the stated hypotheses on X and §, G = X ¢ 5 is convex
if S is convex. Furthermore, if S is a polyhedron (a po]ytope resp ), G is also
a polyhedron (a polytope, resp.). ‘

PROOF. By Proposition 1 it suffices to show that

G = co U re S|,
z€vert(X)

where vert(X) denotes the vertex set of X and co(.5) stands for the convex hull
of 5. ' ' ' ' -

To do this let z’€ G. This means that z = z ey withz € X andy € S.
-Since = can be expreésed as a convex combination of the vertices of X,z =

x oy is a convex combination of z¥ = z¥ e y with 2* € vert(X): Hence,

z€co U =zeS8).
zEvert(X)

Conversely, suppose z € co [J =zeS Thls means that z =
:cEvert(X )

Ek/\ka: o y* with zF € vert(X), y* GSAk>OEk/\k = 1. Denote 2*¥ =
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zF o y*. Since zF € X and.y!C > (0, we have a,-yf‘ < z,k < A,-yfc for all
:=1,...,n. It follows that '

k E _
& < of S_-ZL foralli=1,...,n
A; a; ' _
and, hence, . . _ ‘
2 . 2z )
ji- < zk:}-kyf < a—:'forallz=1,;..,n . (2)
Define Y h-'_" Ek Aky;.k, and

T =

' { zifyi if yi #0, @)

any number in [a;; A;] if y; = 0.

for all i=1, ...,n. Obviously, z = z e y. From (2), (3) and the convexity of
S it follows that £ = (=zy,...,2,) € X, ¥ = (Y1,.-,¥n) € S. Thus, z c G,
- completing the proof. - P . -
REMARK 2. It is easy to see that Proposition 2 may be no ldngér valid if the
rectangle X is replaced by any polytope in R} or if S is not contained in R%.
Assume now that § is a polyhedron in R:. By-Proposi_tion 2, G=XeS§S
is also a polyhedron. The question is how to describe G by a system of linear

inequalities. To this end, we denote

Xk ={z € R"|ay <z} < Ag,z; =1 for all j # k)

and define S
Sg=5’, Skz_Xk.SkA_‘l, k= 1,.._.,n.

It can easily be seen that G = S,,. Therefore, to determine the linear constraints
defining G we need only to know how to describe S; by a system of linear
inequalities from the given linear constraints that define Sk_;. To do this let .
Sk-1 be defined by the system

n

Y eiyi < fiy i € Lo, y 20. S )
i=1

Denote If = {i € Li_y|eax > 0}, If = {i € Licilex <0} and I? = {i €
Ik_1lesx =0} . It is easily seen that y € Si_, if and only if
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Zeuy]<fh ZE ks y>0 : : : (5)
J#k ' |
‘max{(fi—)_ eijy;)fenli € [} Sy < min{(fi—'z eijy;)/eixli € I }. (6)
ik " 7k

PROPOSITION 3. Si is defined by the foﬂowing system of inequalities

Zeijzj < fi ZEIIC:, z 20, o (7)
iFk:
L < min{(fi~ Eeuzj)/etm c I+} ®)
: 1#E o ,
max{(fi = S es)fenli € FHS 2, (9)
o N i#k _ - : .
max{(fi = Y ei;z;)/eali € Iy } < min{(fi - 281121)/6’:1:"'" € I+} (10)
J#k . : ’ J#k . .

PROOF. Suppose z € Si. From the definition of S} and X it follows that there
exist zx € [ak, Ax] and y € Sg—1 such that z; = zgyr and z; = y; for all j # k.
From (5), (6) it follows that

‘ Ze"’z’ <fi zeIg, z>0,
Y ,

- max{(f; - Zeuzj)/e,klz el } < - < mm{(f, Ze,,z‘,)/e,kh € I+},

. JEE S SRR 2

which show that (7)-(10) hold. ,
-“Suppose now that z satifies (7)~ (10) Relations (8)—(10) show that there

exists a number ¢ satisfying
max{(f; — Zes,-z,-)/e;kl i€ If} <t <minf{(fi— Y eyz;)/enli € L), (11)
i#k S _ _ i#k
o e m . B _
— <t < —. _ . o

| cegn o
Set y; = z; for all j # k,yx = t, x4 = 2/t . From (5), (6), (7), (11), (12)'it

follows that y € Sk—1,zx € [ak, Ax] and hence z € Sk, completing the proof.
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REMARK 3. Direct computation shows that the system (7)-(10) is equivalent

to the following one which is linear -

| ;Zeijszff: ZEI’?, 220: S | (13)
| j#k :
or L .
—'ﬁzk + Zeijzj < fiielf, (14)
Ak J2k
i:1_‘-’% +Eeuz_1 <fit€ Ik_’ (15)
Ok irk ,
Z(ﬁi_ﬁi)zjsﬁ—f’ relj,seI,;". (16)
[+ k 63k : i

7k Erk €sk

(The first inequality (13) is the same as (5) -while the inequalities (14), (15)
are obtained from (4) when replacing e;x by eix /A ifi € I,'c" and by e fax if
¢t € I . Also, the last inequality (16) follows from (4) by adding the r-th and
s-th inequalities (r € I, s € I;), divided by e, and ~eux respectively). Note,
however, that the number of inequalities in (16) may be large, although among

them there may be redundant constraints for Sg.
The above results show that Problem (P) can be converted into the program
(L) Minimize ¢Tz, subjectto ze€ D and z EG=XeS5,
whiéh is linear since D, S a,re'polyhedréns Furthermore, the 'constr'ajnts that

define G can be computed from the ones deﬁnmg S by applying n times

Proposition 3.

Thus, instead of solving (P) we can solve (L). After obtaining an optimal
solution to (L) we can compute two vectors z € X,y € S such that z; = 2;y;

for all ¢ =1,...,n by solving the system

z; i .
y €S and y_esz{yER"[I'.Sy,'<,5——,,z=1,...,n}.

1 a;
REMARK 4. Ifmig y; > Oforalli =1,...,n, then we can eliminate the variable
y | _ :
z from (1) by setting z; = z;/yi,1 = 1,...,n; and Problem (P) can directly be

converted into the following one
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(Q) Minimize ¢Tz,; subject to z€ D,y €S,
zi— Aiyi <Oand a;y; —z; <Oforalli=1,...,n

In this case solving (P) is not matter of concern..

3. Some special 'casés

In this sect1on we sha,ll examine some spec1al cases of (P) which allow us to
describe exp11c1t1y the constraints of the equwalent program (L). In addition,
this program can efficiently be solved by a certain relaxation of its constraints.
~ Case 1. § is simply a non-negative rectangle, denoted by Y, which is
defined by _ . _ . o
where b; and B; are given non-negative numbers. Then it can easily be verified
that G = X oY is the rectangle

= {z € R"|aib; <z,<AB,,z-—1 o) (18)

Case 2. Assume that aside from the constraints in (17), S has a linear

constraint of the form : oo
| o ayt + .. teayn < f o -(19)
Denote It = {z| € > 0}, == {z| e; < (}} and I° = {i| ¢; ='0}. We

shall assume that . : : . S S SN
_Zeb +ZeB <f, . (20)
i€l iel~ . H

_wh1ch means that there exists at least a point y satxsfymg (17) and (19)
~ For each I'C {1,.. Lyn}, IN(ITUI7) # § we define the constramt

F Sas Y Sasgo Yoab- ¥ aB @
i A ier-nr & iel+\TI ief-\I

PROPOSITION 4. Assume that S is defined by (17), (19) and Z has the form
(18). Then G = X oY is theset of all z € Z satistying all ﬂ;e CPnStraj'nt.Sz m
(21). |
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PROOF. Let z € G, ie. z = zey withz € X,y € §. Obviously z € Z.
For : € I*, since (z;/4;) < (zifzi) = y; we have (e;/A{)zi < eiyi. For
i € I™, since (zi/a;) > (z,/a:,) = y; we have (e;/a;)z; < e;y;. Hence, for any
Ic{l,...,n}, IN(ITUI")+# 0 we have

S Gat ¥ Sa< Y ewt Y aus

iertnr =t iel-nl Y - deltnl iel-ni
Sf= Y ewi— Y, em S f— > ebi— > eB.
eI\I iel-\I i€F\I eI\l

Thus, z satisfies all constraints in (21).

-+ Conversely; suppose that z € Z and z satisfies all constraints in (21). Setting
{zEI+UI°| >b} Iz—{zEI|—<B},

we define vectors z € X, y € § such: that z = z ey as follows

a) for i € I) set z; = A;, yi = zi/ As; : :
b) fori e (It UI°) \ I set z; = z,/b,, i = b; (note tha.t b; > 0 for all
'] &€ (I+ UIO) \Il)
c) fori € I, set x; = a;, ¥; = 2/ a;; _ o
d) forieI™ \Iz set z; = z,-/B,', y,' = B; (1‘- eI \Iz implies B; > 0)
- Direct computation shows that a; < z; < Ai, b <y € B; and z; = iy
Horalli=1,...,n. f (LNIT)UI; = @ then from (20) follows 3", e;y; < f.
Otherwise, since z satisfies the constraint (21) for I = I; U I, we have
Z —'Zz-i- Z —z= _< F= > ebi— Y eB;
iel+ni A; ' :EI‘nI & zEI+\I i€I-\I
or, equiva.lenﬂy, > e,y, < I Thus z—xoymthx EX yE. S , l.e. ze G,
as was to be proved

Proposition 4 remains va.hd 1f instead of (19) we cons:der the constraint
ey + ...+ entyn 29, - (19)
provided that (20) and (21)“ are respectively replaced by

D eBi + ) ebi > g, | L‘(i’.ﬂ“

iel+ iel—
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ei €
.Z ;;z=+_2 2529 _Z eiBi — .Z ebi.  (21)
iel+nI iel-nf ieI+\I iET-\T

Case 3. S is defined by (17) and by a pair of constraints of the form
g = ey + -+ eyn < f (22)

PROPOSITION 5. (see[4]) Let S be defined by (17) and (22). Then G = X oY is
the set of all z € Z satisfying constraints (21) and (21°) forall I C {1,...,n}, IN
(ITuI)#0.

In this special case a finite relaxation algorithm was developed in [4] for
solving (P). It heavily relies on the specific structure of $ and cannot be

extended to the case considered in this paper.
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