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_ " VERTEXSET CONTAINED IN .
LONGEST DOMINATING CYCLES IN GRAPHS

VU DINH HOA

Abstract. Let G be an undirected and simple graph. A cycle C in G is called

a dominating cycle if V{G) — V(C) is an independent set of vertices in G. G is
called dominable if G contains a dominating cycle C, and we say G is dominaled-. .
by €. In this paper we establlsh sets of vert1ces whlch are contamed in any
longest dominating cycle in.G. : -

Introduction

We consider only finite undirected graphs without loops or multinle edges. .‘
Our terminology and notation are standard except as indicated. A good refe-
rence for undefined term is [2] Herein V(G), « and w(G) will denote the vertex
set, the mdependence number and the number of components of a graph G,
respectively. é§ will denote the minimiim valence of the vértices of G. We let

n = |V{(G)| throughout:the paper

Following Chvatal [4] we deﬁne a graph G tobe 1- tough if w(G—S5) < |S|for
every subset S of V(G) w1th w(G 5) > 1. A cycle Cin'Gis called a dommatmg' |
cyele if V(@) - V(C) éonsists of mdependent vertices. G is called a dominable
graph if G contains a dominating cycle C and we say that G is domlnated' by
C. A hamiltonian cycle is also a dominating cycle. Clearly, 1-tough condition
is a necessary condition for the existence of a hamiltonian cycle in"a given
graph. Dominable graphs are studied by some authors (see [l] (3]). The -
length £(C') of a longest cycle C' in a graph G called the circumference of G will
be denoted by ¢(G). A dominating cycle C is called a longest dom1nat1ng cycle
if for any dominating cycle C' we have £(C) > {(C'). The length of a longest |
dominating cycle in G will be denoted by ca(G). We know that ¢(G) and ¢q(G)

are not always the same and in fact the d1ﬁ'erence c(G) - cd(G) can be made
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arbitrarily large. Examples for such graphs first appea.red in [5] A cycle ' is
called an extended cycle of C i v(C) c V(C'). Clearly, every extended cyele
of a dommatmg cycle C is also a dominating cycle. A (dominating) cycle C
is a ma.x;ma.l (dominating) cycle if there ex1sts no. (domma,tmg) cycle C" such
that C” is an extended cycle of C. For an integer a we denote V(za)={ve

V(G)}jd(v) 2 a} and n(> a) = |V(> a)|. We shall establish some lower bounds

for the lengths of maximal dominating cycles in G

THEOREM 1. Let G be a dominable graph. Then
(a) Any dominating cycle C has a length E(C) >n—ao.
(b) If C is a maximal dominating cycle and G is 2-connected nonhamilto-
nian. Then {(C) > 4. Moreover, if G is a 1-tough graph, then £(C) > 6.
() V(> &) C V(C) and {(C) > max(n — a,n(> «)) for any maximal
dominating cycle C.

For a dominable graph we can establish the vertex set which is contained in

every longest dominating cycle.

THEOREM 2. Let G be a dominable gfaph with é > 2 and

T=V(2max {R—Ta_l,aml}).

Then cq > |T| - 1 'and every longest dominating cycle C avoids at most one
vertex of T. If ¢4 < n-2 then ca > |T) and V(C) D T for every longest
dominating cycle C inG.

We'. give an example for an odd number n > 15 by constructing the graph
G, from fn 1 UK n- a-s U K3 by joining every vertex in K Y to all vertices in -
K st U K3 a.nd by addlng a matching between the vertlces in K3 and three -
.vert1ces in K 21 . By the graph G, and by the Petersengraph we can see that
Theorem 1 and Theorem 2 are both best poss:ble o |

Notations and auxiliary results

I C is a cycle of G with a given orientation, and if u,v are vertices on C,

then u =~ v denotes the consecutive vertices on C from u to v in the direction -
c



LONGEST DOMINATING CYCLES IN GRAPHS 27

specified by C. The same vertices, in reverse order; are given by v & u. We
use ut to denote the successor of uion C and u~ to denote its predecessor. If
v.€ V(G).and H C V(G), then Ng(v) is theset of all vertices in H adjacent to
v. We denote |Ny(v)| by du(v). We write short N(v) for Ng(v). - If A CV(C),
then AT = {vt|v € A}. The set A~ is analogously defined.

In what follows a maximal donttheting' cycle C with a direction on C is ﬁ)&ed.
Let vy € V(G) — V(C), set A = N(vg) and let {vy,vs,...,v:} be the vertices of
A, occurring on C' in consecutive order. ‘A path B joining two-different verticés
v and v on C'is called an arc if V(B)D(V(C) U{ve}) = {u,v}: Forie {1 Lk}
we set u; = v}, w; _”:+11 Li =v; 5 w; and H; = L; UN(u )— {v,+1}

The following lemmas hold for the case E(C') < n —1 and Wlll be used to
facilitate the proof of Theorem 1 and Theorem 2. In each lemma we assume G

15 a connected graph and C is a maximal dominating cycle except as indicated.

LEMMA 1. N(p)ﬂN(p)+ = N(p)ﬂN(p) = @ for any Vertexp € V(G) V(C')

PROOF Suppose to the contrary, that there ex1sts some vertex p € V(G)
V(C) and some v.€ N (p) such that vt € N(p).. Then pv* g vp would be an
extended dommatmg cycle of C, a contradiction. Thus, N(p) N N (p)"' = {.
Similarly, N (p)NN{(p)~ = 0.

LEMMA 2. There exists no arc between the vertices of A+ SszIarIy, there

exists no arc between the Vertlces of A

PROOF. Suppose otherwise that there exists some arc B joining some u;
with u;(i # _1) Then Vi 5 u,Bu,C vng wouId be an extended eycle of C,
a eontradlctlon Thus there ex:sts no arc between the vertices of At and,

sumlarly, there exists 1o arc between the vertlces of A~

LEMMA 3. If u; = w; a.nd B is an arc Jommg i with a vertex z on C then

{ve,2z7} U Atis an mdependent set of vertices.

PROOF If sufﬁces to show that there exxsts no edge joining z with anymvertex
of {vg} U At since {vp} U A+ is an mdependent set. of vert1ces by Lemma 1

and Lemma 2. But woz T ¢ E(G) since, otherw1se, VoVit1 ¢ zBu, c z+v0 would
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be an extended cycle of C, a contradiction. Now, suppose the otherwise that
2t u; € E(G) for some u;. Then vov; & 2 u; g uiBz § viy1vo when u; € z 3 u;
and vov; g 4iBz & ujzt G vivp when u j € uj ¢ z would be an extended cycle of

C, a contradiction. Thus, Lemma 3 is true.

Proof of the"ore_ms

1. PROOF OF THEOREM 1. It is easy to see that (a) of Theorem 1 is
trivial and (b) of Theorem 1 follows from Lemma 2. Now, we suppose, to the
contrary of (c), that there exisﬁ_s a vértex v with d(v) > « and a maximal
dominating cycle C such that v € V(@) — V(C). By Lemma 2, {v}U N(v)* is

an independent set of at least o + 1 elements, a contradiction.

2. PROOF OF THEOREM 2. To prove Theorem 2 it suffices to prove
that if there exist a vertex.vp with d(vy) > max (I'-_g—‘l,a —-_1) and a longest
dominating cycle C such that vy € V(G) — V(C) then £(C) = n — 1.

Suppose otherwise that there exist a longest dominating cycle C of length
#(C) £ n—2 and a vertex vy € V(G) -V(C) with d(ve) > max (==L, a - 1).
Let {p1,...,p:} be the vertlces of V(G) = V(C) {vo} (¢t = 1). By Lemma 2

we can derlve the next claim.
Cram 1. d(-vo) =a—-1> n—6—1

CLAIM 2. IfN( ++)n {p1, ..t} # ﬁ for some i then N(u;)n {Pl, Dt} ?é 9.
Similatly, if N(v;3) N {ps, -, pi} # B, then N(w;) N {py, ..., pe} # 0.

PROOF. Suppose that thefe exists éome peE N (v}*). By Lemma 2, and by.
Cla&m 1, there exists some j such that u;p € E(G). By Lemma 1, ¢ # J. Since

C'vig v}t pu; 3 vive is a longer cycle than C, C' is not dominating. It
follows that Nw)N{p1,....ps} 75 8.

CLAIM 3. N(u) n {p1, ..;,pt} =9 for a:.iy ui = w,-.
PROOF Suppose otherwise tha.t thiere exist some u; = w;, say uy = wy, and a

| _'vertex p such that p € N(ul) By Lemma 3, and by Claim 1, N(p) — {ul} C A,
since {vo} UA+ is a ma.xnnal mdependent set. of vert‘xces By Lemmal, N (p)
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A — {v1,v2} U {u1}. By Claim 2, |H;| > 2 if u; = w; and v;p € E(G). Hence,
|NL,(p)| < |Hi| — 2 for any 7> 1. Moreover, if equality holds for some 7 # 1,
then the following condition is satisfied '

(*) vi and p are not adjacent iff u; = w; and H; = L;.
From Lemma 2 it follows that H,...H} are pairwise disjoint, hence -

(**) d(p) < (n —1) — 2d(vo).

In fact (**) is an equality by Claim 1. Hence, condition (*) is satisfied.
Since v, and p are not adjacent, up = wp and Lz = Ha. Now, by considering
the inverse direction on C and by applying the same argument, we get that
v3p ¢ E(G). By repeating this argument several times, we easily conclude that
u; = w; for any i and N{p) = {u,}, which contradicts the hypothesis that § > 2.
Thus Claim 3 is true. '

By Lemma 1, |Nz,(p1)| € |Li] — 1 for any i. We claim that |[Ng,(p1)| <
|H;| - 2 for any ¢. By Claim 3, u; and p; are not adjacent if u; = w;. Moreover,
H; # L; if u; = w; and v;p; € E(G) because of Claim 2. Hence, |Nr.(p1)| <
|H;| — 2 for u; = w;. If u; # w; and u;p; € E(G), then {vi,vF 1IN N(p:) = 0,
implying that L; — {u;} = Nir,(p1) if |[Nz;(p1)] = [Li] — 1. But, in this case,
H; # L; by Claim 2. Hence, we conclude that |Np,(p1)| £ |Hi| — 2 for any
i, and therefore d(p;) < (n — 2) — 2d(vg), which contradicts Claim 1. This

contradiction completes our proof.
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