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ON THE GROWTH RATE OF
SLOWLY VARYING FUNCTIONS

ALLAN GUT
Abstract. A function I is slowly varying (at infinity) iff -LL-(:—;)- —1asz — oo
for every t > 0. Motivated by two examples we investigate to what extent, if

- -at all, the limit of the ratio equals 1 when ¢ is replaced by some function of z
growing to infinity.

1. Introduction

A positive, measurable function L on (0 oo) is slo'wly varymg (at infinity)

if, for all ¢ > 0,
L(tz)
L(z)-

The “typical” slowly varying function is logm (or rather max{logm 1}) and 1ts

1 a.s':c——)oo.' | (11)

iterates.

' Slowly va.rymg functions have several additional nice propertles There are,,
however, properties enjoyed by logz, which do not hold for a.rb1trary slowly
va.ryxng function. o '

~ Recently I wis confronted w1th the followmg questlon Does there exist
¢>0and a >1 su_ch_that;.the .__rela.tlon

We<ers 0 ay

holds for all slowly varying functions L 7
For L(z) = logz the answer is tnvxally positive. However, the following
éxample shows that the relation (1.2) does not hold for all slowly varying

functions.
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" EXAMPLE 1.1. Define
f(z) = (logz) 8187, & >e.

Then, for ¢t > 0,

loglog =z B ' '
j}((tm)) - (log io'g :lcog IL') . (log ¢+ log w)log(log tzlog z

lbgt loglog = : : : . . N .
= (1 + loga:-) (log z + log t)les(1+logt/log=z) _, 1 55 5 oo,

since the first factor tends to 1 as ¢ — oo and log(1+log ¢/ log :c) ~logt/ log r—
0 as z — oo, so that the second factor also tends to 1 as z — oo. This proves
that f is slowly varying.

However, for all & > 1 we have _

( ) (Ct log .‘B)IOS cr-l-log log z
f(x) (log m)]og log z

— alog a-i-loglogz (].Og w)loga —~ 00 as I —» o0,

that is, (1 2) does not hold )
. Some time later, and 1ndependent1y, I came across a related question, namely

the problem whether or not, the property

L(w(L(-'C))” ')
- L(=) -

—)1 as T — 0o (r>1) o (13)

is universal for slowly varying functions; see Heyde (1968) , p- 358.
In Bojanic and Seneta (1971) (see also Bingham et al. (1987), p. 78) it is

shown that the function

f(:z) = exp{(log :c)ﬁ} 0 <.,5 < 1, -.

is slowly varying and that, for o > 0,

! e 0<pelz
ﬂ%?ﬂ_., exp{af) for f=1/2 - (14)

+00 for 1/2<8<1.
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In Rosalsky (1987), pp. 214-215'it is shown that the function exp{2EZ—
is slowly varying, but such that the ratio in (1.3) tends to +o0 as z — oc.
REMARK 1.1. Note that the functions in these ‘counterexamples can also be
used to provide an answer to (1.2).. ‘ |

The purpose of this note is to study the more general questmn that these
examples raise, namely: I o

. Does there ex1st a pos1t1ve functmn 9. such that the rela,tmn

——L(z(ig’”))—}l R ¢ )
holds for all slowly. varying functions?

- Since the answer is tri\}ially yes for slowly varying functions which have a
finite limit as . — oo we exclude this case in the following. We thus assume
from now on that L(z) — 400 as z — oo. We shall also restrict ourselves
to consider (ultimately) nondecreasing slowly vﬁrying functions. Thus, widely
oscillating slowly varying functions, such as L(z) = exp{(log z)} cos{(log z)8)}
‘(cf B1ngham et al. (1987}, p. 16) are excluded from our investigation.

After some prehmlnary considerations in Section 2 we show, in Section 3,
that for the class g(z) =logz or an iterate of log = the answer is negative (even
with the assumption of ultimate monotonicity). In Section 4 we show that the

answer is negative also in the general case. More precisely we show that for

any (ultimateIY') nondecreasing function ¢ that tends to +co as z — oo the

following holds: _ _
@) f@) = éxb{ﬁiﬁ} is slowly varying and’
o feg@)
limsup —— = = +o0.
TR T @) T
(11) f(:c) = exp{ﬁgﬁi(%} is slowly varymg and there exists a sequence

{:rk, k > 1} of real numbers tendlng to +oo as k —+ 00, such that

, lim f(xkg(“’k))
f(mk)

As a comparison we also show tha.t
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(i) f(w) = exp{ %52} is slowly varying and .

f(mg(ﬂ:))
f(:v) :

For a gwen function g we can thus, by choos:ng f su1tab1y, obtain-ar infinite

ﬁl as % —.00.

limit superlor and a finite limit point which is different from 1 (it follows easily
that any limit different from 1 could have been obtained in (ii)). That the
limit of the ratio can be 1 is obvious; (iii) is there merely for the comparison.
It follows, in particular, that the trichotomy in (1.4) also holds in the general
case. _ P

If the function ¢ is suitably well behaved the ratio in (1.5) actually converges
to the quantities given in the right hand sides of (i)-(iii), respectively: This is,
for example, the case when g is an iterated logarithm as will be seen in Section

2. Preliminaries -

A posmve measmable funct1on U on (0, oo) is regula,r varymg (at 111f1n1ty)
w1th exponent p( % <p < o0) if, for all t> 0 '

U(tsc)

(93)

_.MOIBOVSI 1f U varies regularly thh exponent Py then U (.L') = m”L(:J:) Whe_r_e-i

casc T oo, o e (20

is slowly varymg _ o
It is easy to see that if L 1s slowly varying and hi(x) and hy(z) are real

valued functions tending to oo as z — oo, then

ha(2) f T L)

h2($)~+c(0<c<oo) as :c—>oo=>L(h2( )

" This means that the ratio between the arguments need not be constant for (1.1}

—1 as z— o0, (2.2)

to hold; a.pproxnnately constant is enough
Where ¢ = 1 (2.2) also holds for regularly varying functions (if ¢ # 1 the
limit equals ¢?). Moreover, if U is regularly varylng Wlth exponent p # 0, then

M@ L Ut
ha(m) 2O U lha(a))

as z — 00. (2.3)
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see e.g. Gut (1988), Lemma B.2.2.

Since, for exa.mple

log(z log a:) logz + loglogz

= 1 | .
log z log = T s Emeo (2.4)

it is clear that the converse of (2.2) cannot hold for slowly varying functions in
general. : ‘ ' o

*We also note that the ratio between the arguments in (2.4) tends to +co
and, yet, the ratio of the values of the function tends to 1. Furthermore

og(a%) _ 4 ana 28D T s 2o (2.5)
log z logz  logz

that is, if the ratio between the arguments grows somewhat faster than loga-
rithmic the ratio limit exists, but differs from 1 and if it grows exponentially
fast then the ratio limit is +co.

With this in mind it is natural to consider the question posed in (1. 5)

We close this section by recalling some formulas from analysis. The first one

is
log(l+y)<y for 0<y<1 and log(l+y)~y as y—0,

from which it, for example, follows that, for >0,

e log ¢ log t
loglogtx — loglog z = log (1 + loga:) log 7 as z — oo,
o o log(1 + (log z)~! logt
logy t —log, @ = log (1 + = log 1og:)v_
logt '
~ — T — 0o,
logz -loglogz R
- m-1 . -1
log,, tz —log,, z ~ ( H log,, :r:) ‘logt as z — oo,
P . .

where log, z = max{log:r: 1} and logm T = logl(logm 1 z) for m > 2.
These formulas will be used below without spec:ﬁc reference They will also
be used in cases where t is replaced by logz or some function of z which grows

like o(log z) as z — oo.
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Finally, we also mention the relation

(1+y)f~1+8y as y—0 (B>0).

3. The case g-= log,, z

In this section we thus do not make any monotonicity assumptions on the

slowly varying functions.

Consider the followmg weakening of (1. 2) ‘Does it hold umversally for slowly

varying functions L that there exists ¢ > 0 such that

L(:': log m) < cL(:L')'?

(3.1)

To see that the answer is nega.tlve we cons1der the following generalization of

Rosalsky’s example.

EXAMPLE 3.1. Defire, for v > 1,

. ' log‘:v : o
_f(:r)—exP{W}, z > 0.
For 4 = 2 we thus rediscover Rosalsky’s example.

Let t > 0 and & > e®. Then, if ¢ > 1, we have

< Fi2) _ {logt-}-log;x N log:s }
= fl@) (logy tz)7='  (logg )71

}——)1 as T — 00,

and, if 0 <t < 1, we hajve*' |
fo) o st )
> - LA
1 f( ) 2 > exp _(lqu )71 »—1 as z — oo,
This proves that f is slowly'IVarying '
To check whether or not (3.1) holds we find that as T — 00,

f(:z:log;c) | _' loga:+log2:z: T Y1 L
B Ol e AR
- logz+ log, = log = -
~ ex -
! P {(10g2 T + llﬂéglf)“{—l (10g2 .’13))7_1 }

(3.2)
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o [l DT loge. (1 + (log z)~1)r=1 — }
~ TP T+ (og2) )71 T (logy 271 + (log ) 1)7D
~exp { (ogy o) 7 =1 —~}
TP (= 1)legs (ogy )71 + (v — 1)/ log =)

“xp {(logz z) (log2 a:)‘f—l }

~ exp {(logz )~ 7} |
(where the last ~ are treated with caution when v = 2). It follows that, with
f defined by (3.2), we have, as z — oo,
1 .for r>2

flrloge) _ .
f(a:) for y=2 | (3.3)

: +oo for 1< 'y <2.-
This establishes that the three possibilities for the limit of the ra,tm may occur
in this example. ' ’
The corresponding weakening of (1.3) is to ask whether or not, for every

slowly varying function L, there exists ¢ > 0, such that the relation

L(zlog L(z)) < cL(z) (3.4)
holds. - : .
" The relevant ratio to investigate thus is —I—’—@%(E—%(—’D- An analysis like that

of Example 3.1, with f as defined in (3.2), shows that the conclusion in (3 3)
also holds for L(gl_}:(g_{_(—)l as £ — oo. We omit the details.” '

As a final, and, in fact, fairly general, example we show that the genera-
- lization of (3.1) to iterated logarithms of an arbitrary order follows the same

pattern

EXAMPLE 3.2. Consider the functlon

’ ; log z
log,, =

@-ep{dEIY Ls0 @y

where mi is a’.n"iﬁteger > 3.
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By arguing as in Example 3.1 it follows that f,, is slowly varying. Now, for

m > 3, we have, for large z,

fm+2(xlogmx) - ex { ogz + Ofm41 T _ Og T }

fm+g(m) log,42(zlog, ) logmis 2. |
o ' logz + logm_,_1 T log z }
~ eXp
logn 4z + (Hk "log; z)1 - log m41 T 10gm+2 z
10gm+1 T

- o {108m+2 z+ (H;cn=1 logy z)~1

(I3=, logs T') ! }
108m+2 z -+ (Hk " logy z)~1

logq1 2
10gm40 T

Nexp{ }—)OO as I — oQ.

The same computations applied to fp, 41 yield

fm+1 (:C'].Ogm :B) { logm+1 SC
~ exXp § —
fmta(2) log,i1 2

With f,,, one.ﬁxﬁaily obtains

}:6 as I — CQ.

1< fm(zlog,,; ¥) — ox {log:r-i—logm_,_la: _logz } _
fm(ﬂ?) logm(:n logm :E) logm z

logm_|_1 x

log,, =

In the following, final, section we consider the general case.

Sexp{ }—»1 as z — 00.

4. The general case

The general problem thus is the following; 4
Does there exist a positive, nondecreasing function ¢ tending to +oo as
x — 00, such that the relation

Liz - S
T
holds for all (ultlmately) nondecreasing slowly varymg functlons L, such that
L(z) 2 casz —00? '

A somewhat weaker question is whether or not the ratio remains bounded

as r — 00.
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‘We now show that the answer to the question is as outlined at the end of
Section 1. | S o

First, let- b be any nonnega.tive, nondecreasing function tending to +co as
z — 0o and set . ,
log z
h(z)

(and, for example, L(z) =1, for 0 < z < e and assume that L is (ultimately)

L(z) = 2/ = exp { c>e (4.2)

nondecreasing and tending to co as  — o0). By performing computations like
those of Exaxﬁple 3.1 it follows that L is slowly varying. Although we do not
need it, we mention in passing, that it follows from Bingham et al. (1987),
Proposition 1.3.6, that k is slowly varying.

To show that the limit of the ratio in (4.1) may be infinite we=clieﬁne
logz
h(z)

and ¢ is a candidate in the problem.. " The function f thus defined is of type

flz) =exp { where h(z) = log, g(z) - (4.3)

(4.2) and, hence, slowly varying. .

In view of the results in Section 3 we suppose that g(z) = o(log z)as ¥ — oo.
Consequently, there exists a sequence § = {zk, k> 1} of real numbers tending
to 400 as k — o0, such that, for k =12,..,

9(zrg(zr))  log(zrg(er)) 1+ 1059(58&) (4.4)
g(zx) log:z:k _  log Tk -
Suppose that z € S. It follows from (4.4) tha.t

h(zg(z)) — h(z) = log, g(zg(z)) — log, q(-"c)
= log(1 + (log g(:z:))‘1 -log g(:g;:)))

log g(=) ))

-1, :
| < log(l + (log g(z)) log(1+ log 2

1
)"1
og T ogz

. Slog(l+ g (4.5)

We are now ready to estimate the ratio; recall that we consider points = € S.

flzg(z)) éx logz +logg(z) logz
T = k) H@)
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— exp { logg(z) logz - (h{zg(z)) — h(x)) }

hag@) | h@)h(eg(@))
ox logg(z) 1
2 p{h(x)+,(,;x h(x)(h(m)m;,,)} (4.6)
log g(x) 1

Zexp{ }—}oc as T — co.

log, 9(z) + o(1)  (log, g(=))?
We have thus proved that

) fzg(=z))
im s = )

and the proof for this case is complete.

By defining f as in (4.2) with A(z) = logg(z) we have the trivial upper

bound (recall that A is nondecreasing)

flzg(x)) ex 1oga:+logg(m)_logx e
el S R 1Y R

Now, let z € §. Then
h(zg(z)) — h(z) = log g(zg(z)) — logg(z) = log _H——g(zgx(;:)) <

log g(z) log g(z)
< 1 1 < ; 4.
- og( + logz ~ logz (48)

By modifying the computations above for the lower bound in the obvious

manner, it now follows that

flze(2)) o { logg(z) — 1
fl) ~ log 9(z)(1 + 557

We have thus show that

— e as I — O0.

5 flzeg(ze))

koo f(zk) ©
that is, we have obtained a limit point of the ratio which is a finite number
different from 1.. . _
Finally, for-h(z) = g(z) the analogous upper bound is exp {log g(z)/ g(:c)}

— 1 as £ — oo, in which case the ratio thus converges to 1 as * — oo. !

This establishes the claims made at the end of Section 1 and we are done.

(4.9)
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REMARK 4.1. If g satisfies some additional regularity condition one can obtain
actual oonvérgencé of fhe*ratios‘ under investigation. One'such case is when g
is an iterated logarithm; recail Section 3. Another condition that is sufficient is
that, for all sufficiently large x, we have '
9(22) o, ¢

(:z:) log:r:

where ¢ is some posﬂ:lve constant with thls a.ssumptmn 1t is ea.s11y seen that

(4.10)

the above estimates actually hold for all large z.
Again, the iterated loganthms enjoy this property
REMARK 4.2. It is also possible to depart from the representation formula for -

slowly varying functions, accordmg to wh;ch a function L is slowly varymg it

1) = oo)-exn{ [ @dg},

. where ¢(z) = ¢,(0 < ¢ < c0) and ¢(z) = 0 as z — oo (see E.g. Bmgham et al.
(1987), Theorem 1.3.1).

Now, let g be given. It is sufficient to find a solution of the problem within

it is of the form

the class of slowly varying functions, for which ¢{z) = c for all z and e(x) is

decreasing to 0 as £ — oo. Under these assumptions we have

L(i.(igx)) :exp{/:g(r) (:')dy} > exp{e(a:g(m)) 10gg($)} (4.11)

The ratio thus tends to co as z —+ oo for choices of €(z), such that

e(zg(z)) - logg(z) = 00 as z — oco. (4.12)
Towards this end, let e(z) = m. The expression in (4.12) then becomes
log g(z)
_089ZL) 4.13
iog, o(z(2) (19

which coincides with the first (and dominating) term of the exponent in (4.6).
Thus, by considering points z € S, defined above, together with the arguments
followmg (4.5) we obtain the conclusion (4.12) (for z — 00, such that z € §)
and (4.7) follows as desired.

Similar a.rguments can be made for the other cases. We omit the details.
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