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ON THE CALCULATION OF GENERALIZED GRADIENTS
. FOR A MARGINAL FUNCTION!'

- PHAM HUY DIEN AND DINH THE LUC

1. Introduction

Many problcms enc‘ountm ed1i in practlce lead to mmum?mg, a margmal func-

t10n of the type _
N m(w) —mm{fw z)/J(w T)EC}

Whelew € R’" x€ R, C=REx{0}7and f : R"xR* > R',g: R"xR* — RP+4
are given functions. A-SI)(:c1f1c feature of this function is that generally it is
not. differentiable, although the functions f,¢ may be smooth (continuously
differentiable), or even linear in x. Under appropriate assumptions, m is locally
‘Lipschitz and nondifferentiable optimization. techniques are available for the
solution of the problem (see, for example, [17], [18],[19], [21], [22],.[30]). One of
the crucial points of the existing algorithms is that at every w € R™ at least one
element from - the generalized subdifferential. Om(w) of m at. w (in-the sense of
Clarke [7]) must be computed.-The reader is referred to [2], [9],{13], 125], (28],
[29], [31], [32] and references therein for many results concerning the “outer”
estimatibn for the generalized. subdifferential that play an important role in
deriving necessary optimality. conditions. These results enable us to construct:

(from the given data on f, ). a certain set D(w) such that
Bm(w) c D(w)

a.nd hence the set of statlonary pomts for ™m (1 e. the points. w sat1sfy1ng

0 E 8m(w)) is conta.med in the set of zero—pomts for D(.) (i.e. the points w
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satisfying 0 € D(w)). The latter are also called “quasistationary” points for
m. Since stationary points for m are very difficult to find, in many cases qua-
sistationary points are taken instead as “practical” resolution. They require
less computation; due to the fact that D{(w) is always simpler than dm(w).
When quasistationary points do not satisfy our'goa.ls; we have a possible way to
find (exact) stationary points by using the mentioned “nonsmooth” optimiza-
tion techniques, and unwillingly face with the long standing problem of “inner”
estimation for &m, or, more precisely, of finding at least one element of dm.
Debplte the fact that the results on outer estmmtlon are rich enough, the
ones concerning “inner” estimations are still rather rare and: they have been
obtained only for extremely particular situations. We are referred to Gauvin-
Dubeau [10], [11] for results concerning the case when the multiplier is unique
and the same for every points of the solution set S(w), and to Outrata {23] for
the ‘case when the solution set S(w) reduces to a singleton. A concrete case
was considered in [6] where the authors succeeded in finding a calculation rule
for a Sl)eciﬁC'1)1‘01516111 arised in the design of water distribution networks. In
[25] Penot gave several re‘%ults on “outer” and “inner” estimations for a‘more
general problem under some other assumptions that ‘do not cover the results
mentioned. In the present paper; we provide some other methods for finding a
generalized gradient of the marginal function. One of them is & fiarther devel-
opment of a result of Janin given in [16], [25]. The or’ganizatbn of the paper is
as follows. The next section describes general results. The remainder presents
sotne special:results for the case of practical importance, where f,g are linear

iz

2. Preliminary Results

Throughout the paper f, g are supposed to be smooth in both variables and
the problem of deﬁmng m is convex (with respect to z). This means that, for'
any w, the function f (w ) and the first p components of g(w, ) are corivex, and

the rest ¢ components of g(w ) are a.fﬁne So that the local and the global
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minimizers of the problem in question always coincide, and the value of m is

well-defined. For every w € R", weset
M(w) = {z € R* | g(w,z) € C},

S(w) = {z € M(w) | f(w, ) —m(w)}

Under the convex1ty assumptmn (W1th respect to :v) the set valued mapplng S
is closed [14]. We make the blanket assumptlon that the set M (w) is nonempty
and un1formly bounded for win some nelghborhood of a glven pomt @. Then S
is upper semi- contmuous at @ and hence, is locally compact at (. For further
development we assume that the followmg regulamty condition [27] holds for
any z € S(@), . :

(R) 0 € int{g(w,z) + Vzg(m,ﬁ)R’ —-C}. -

- Obviously, (R) is equivalent to

9(@®) €int{Vag(w HR° +C). (2]

The reader is referred to [24], [33] for the relation between this and other regular-
ity conditions in the literature such as Slater condition, Mangasarian-Fromovitz
constraint qualification,... - Under: this assumption, for-any & &' S(w); one can
find § € C™T (the polar cone of C) such that for all y € C*,z € R® the following
holds S _ . o
L(@,y,7) < f(&,2)+ <9,9(,2) >< L(@,4,7) (2.2)
here L{w,y,z) = f(w,2)+ < y,g(w,z) >. Let K(,Z) denote the set of
multipliers y € C+ satisfying (2.2). It was pointed out in [9],(Propositionl.1)
that Condltzon (R) 11npl1es the regularity at (@,7) in the sense of [9] which,
in turn, means the regularity at z in' the sense of [8] ‘uniformly for w on a
neighborhood of &. Since S(w) is compact and § is upper setni-continuous at
@, one can easily see that the re'gula,ﬁty condition in the sense of {8] holds at any
Z € S(w) uniformly for w in some neighborhood of @. The latter implies that
the set of rnultipllers K(w, ;1:) is uniformly bounded for w in some neighborhood
Uofaandforz e S( ), {[8], Remark2.1). So that one can find « > 0 such

that
E(w,z)cCt={yeC" ||yl Sa}, Yw €U,z € S(w).
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From (2.2) we have
m(w) = maz{L(w,y,) l yeCt}, | (2.3)

where Z € S(w).
The following assumption will be used in the sequel.
(A) The set- 'Ua,lued mapping w — S(w) admits a local .selectwn Z(w) € S(w)

which is smooth at @.
In what follows Vof (resp. V.f) will denote the partial derivative of a
functlon f with respect to w (resp. z). An easy way to compute a generalized

gra,chent of m 1s glven by the following

PrROPOSITION 2.1. Let (R) and (A) hold. Then m is Llpschjtz regular at @

and, for any § € K(©, %) with ¥ = T(@), we have.
V. f(@,%) + [vug(a),:e)]*a eom@).  (24)

PROOF Under Condition (A), for any fixed y, the function L{w,y,Z(w w)) is
smooth at @ and, hence, is Lipschitz regular at @

As m(w) = maz{L{w,§,Ew)) | § € CI} and C} is.compact, we can invoke
a result from [7] to deduce that m is locally L1pschltz (moreover, Lipschitz

regular) at @ and
C om@) - cono{VL(,,2()) loms |7 € K(5,2). ey
Note that N | | .7 R
e .50) loso= VoL, 52 ) + VLo, j,2).V5@). (20

By the optlmahty conchtlon (denved from the rlght hand s1de 1nequa11ty of
- (2.2)) we _havq_. . , . B o
Y L(w y,:r) = 0 S B ' _(2.7)
The combmatmn of (2 5),(2.6),(2.7) gives

3m(w) = {V L(w 7,2 ) | y E K(w ”c)}
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which implies (2.4) (the operation “conv” could be omitted in the preceding
formula because the mapping § — V., L{(@, §,7) is affine and K(®, 7) is a convex

set). The proposition-is thus proved.:

REMARK 2.1. Under Condition (A) we, in fact, obtained more than (2.4),
namely we have found not only one element but the whole generalized subdiffe-
rential Om(@). To establish (2.4}, the following weakened condition is sufficient.

(A%} S admits @ selection F{w) € S{w) which is locally Lipschitz and diffe-
rentiable atf . ‘

Indeed, although it is not the case for applying the mentioned result of [7],
but one can invoke Lemma 3.3 of the next section to claim that m is still locally
Lipschitz (not necessarily Lii)schitz regular) and, since z(.) is differentiable at

w, the following holds
(VL(5,50) lomer |7 € K(@,2)) € 0m(@),
From (2.6)(2.7) it follows that | |
| | \Y L(w 7,2(@)) € am(w)

which implies (2.4).

REMARK 2.2, As locally Lipschitz. functions are differentiable almost every-
where, the preceding remark provides a possibility to compute generalized gra-
dients of m almost evexywhexe if a loca.lly L1psch1tz sc,lectmn of S does exist.
Further, if one can compute generahzed gradlents Cn of m at any pomt of a
sequence {w,} with limit @, then any accumulation point of {Cn} will give a
generalized gradient of m at @, due to the closedness of dm. The reader is re-
ferred to [23] and the references therein for various conditions gilaranteeing that
-5 reduces to'a single-valued map and possesses locally Lipschitzianess and/or
diffei‘eni:iability‘ property. The same forﬁmla as (2.4) was obtained by OQutrata
[23] and Gauvin-Dubeau [11], but for the case where either S{@) is a singleton

or K(@, %) is unique for every e S(@).

REMARK 2.3. It should be noted that Cond1t1ons (A), (A’) require the ex-
istence of a certain local selection #(w) € S(w), but no concrete data of this

selection is involved in the calculation of generalized gradients, according to
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(2.4). There are simple examples showing that (2.4) does not hold in general
(_-,slge [23}), s0 that the imposed conditions are essenf_;l_ial._.

REMARK 2.4. Condition (A) looks “implicit” and:seems to.be rather restric-
tive. . However, as we will see later, it ‘holds “almost everywhere” for many

problems encountered in. practme

. Formula (2.4): gives. a very easy way. to compute a generalized.gradient of
the marginal function at thosel*pt)ints, where Condition (A) holds (such:a point
will be called-easy in the sequel). For the other points the computation is
more expensive.: Besides the method taking accumulation points of sequences
of: ‘generalized gradients at easy- points, .one can make. another approach via
directional derivatives. To do this, we introduce the following notion of [25], for
any € > 0, | B

Se(w )_.-— {m € I\/I(w) [ f(w T) < m(w)-l—e}
Let us recall the followmg dt,ﬁmtmn of {25]: _ N
DEFINITION 2.1. The problem is well-set at @ in the clireét:ién w% € Rr'.'if
for any sequences €, — 0+4,t, — 0+,w, —> w there exist subsequences

{en, s {tn, ), {wn,} and z,, € 8., (D+1tn,w,,) such thét lilngsnk = %o € 5(@).

For g = (91 922+ Ip G, - 5 9p+q) define
: I(@ Z) ={zE{1 P} | gi(@,z)=0}.
We are ready to sta,te a result of J amn [16] (see also [25])

PROPOSITION2 2 ([ ] COROLLARY 5.17). Suppos‘e that the following. cond1-

tions hold . o RN
.. (E) The problem is WeH-set at @ in tbe d1rect1on W : .
() For each, subset I.¢ I(iw, %) there exists a nexghborhood O of (w Z) such
tba,t the rank. of the. fa.zmly {Vegi(w,z) | i €I} is constant for all (w,z) € O:

Then m s, .differentiable at.@.in the direction w and .

(1, w’)—»(O w)

m'(@;w) = lim  [m(@ + tw ) — m(w)]/t
y _mf{f (w a:)(w v) | z e S(w) g(w @(w U) S Tc}

(2 8)A



CALCULATION OF GENERALIZED GRADIENTS 315

where ¢ = g(c.?;,:E) and T.C denotes the tangent cone to C at c.
From thls we obtain the following result

PRrRoPOSITION 2.3. Under the blanket assumptwn 11" Cond1t10n (J) is fulfilled,
then (2.8) holds for every w € R".

PROOF. It remains to show that the problem is well-set at & in 'aﬁ.y direction
w € R". Fix w € R" and take sequences {e,}, {t,}, {wn} in accordance to the
definition above. As S(w) C S¢(w) for all € > 0, we take 2, € S(© + t,wy)
and have x, € S, (@ + t,,w") for all n. Slnce w -}-t Wy — @ and S is
locally compact at @, the sequence {rn} 15 contamed n a certa,m comp‘mct set
and, therefore, possesses a subsequence {z,, } convérging to a certain point z.

Since S is closed at &, we have 29 € S (@) and the proposition is proved.

REMARK 2.5. The reader is referred to [10], [11], [93] for various conditions
guaranteemg that the margm&l functlon is Llpshltz regular (01 1ts negatlve is
Lipschitz regular in some other cases). Under LlpSChltZ reg,ulanty, m (w,w) =
m/(@,w) and formula (2.8) provides a possibility to compute Om(a) (via stan-
dard codes) if the problem defining the value m!(@, w) is solvable. However,_ this
problem is not. linear. (in Z) and may not be solved (numerically) in genefal.;
Furthermore, .a serious difficulty may also come from the fact that the cone
Tg,(“J x)C' varles together with Z. F01 tunately, for the 1)101)181113 which are linear
in & one can overcome these dlfﬁ(,ultms and find m'(w w) by bolvmg a hnear

prog,ram Thls w111 be done n the ncxt sectlon

3. The _Lin_'e_arr Case

. Tni this part'we consider the case when f, g are linear with respect: to z:
Problems of this kind have many important practical applications (such as'in
the design of water distribution networks [5]-[6], in maximum strength truss
topology design,...) and, therefore, need a special treatment. Thus, in this part

we suppose

flw,z) = < c(w),x >,

gi(wsm) =< (Li(w),.'l: > —I—a,—(w),i =1,2,.,p+4q,
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where ¢(.),ai(.),t = 1,2,..p + ¢, are vector functions from R" to R®, and
a;i(),t = 1,2,...,p + g, are real functions on R". It is assumed throughout

that t_hese functions are smooth. Clearly,

e, m}(w ) = < @0, >+ < (@) >,

g,(w 'c)(w v)—<a(w)wr>+<a(w)v>+<a(w) w > .

Fix @ and set o
I(@) = I(,%) = {{ <p | g:(&@,7) =0}

It is easy to see that ¢'(@,%)(w,v) € Ty(a,7C if and only if

gi(@,z)(w,v) £0,i € I(Z),
93(@, 3w, v) = 0,-j =p+1,.5p+4q
Assummg that Conthhon (J) 1101(15' f101n (9 8) WP conclude that m (w w)
is the valuc of the followmg pmblcm A '
( minimize < c’(w)w z >+ < c(w) v > o
subject to ¥ € S(w),v E R*, satisfying

(PF)S N ) . o
: < d(@hw, F >+ < a;(@),v >+ < ay(@),w > 0,0:€ I(#),

L < rz"(-cI))w. >+ <a;(@)v> +< a(@),w >=0, _] =p+1,..,p+¢ .,
Obse1ve thdt S (w) isa polyll( sdron and for ﬁxed & and w, ‘the ploblem (Pr)
s “almost” linear (in &,v). The * nonhuearlty here is due to the condition i €
I ( z), where I(Z) varies together with z. Fortunately, under some  unrestrictive
conditions we can show that (P,) may be rcplacecl by a linear program. This
is obvious when S(@) reduces to a smgl(‘ton For the other case, riS(®) is
nonempty and one can easily see that there exists a constant set I.C {1,2,%..,p}
such that.: e S
I =I(%), Vi enS(w),
and

I c I(&), V& € S(w)\ riS(@).
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For any & € S(&), set
thw(w) = min{ f'(@, #)(w,v) | gi(w, £)(w,v) < 0,7 € I{&), g(@, T)(w,v) =0,

j=p+1l...,p+ q}

and define ¢,,(2) in the same way with the displacement of I() by the constant

set [.

REMARK 3.1. It is obvious that

m'{@;w) = min{y.(Z) | € S(®)} (3.1}

and

{ u(?) = pu(®), i € 1iS(@)
Pa(Z) 2 pul(®), 7€ S(w)\rnsSo).

LEMMA 3.1. If ¢,(.) is coutimions on S(&), then
min{v,(2) | T € $(@)} = min{pu(z) | ¥ € S(@)}

and, hence, m'(w:;w) is the value of the linear problem obtained from (P}) by

replacing I(x) with I.

ProoF. By contradiction, suppose tlat

Yo 1= man{, () | ¥ € S(w)} # ;ao = main{pu(z) | ¢ € S{w)}.

Then 1, > ¢, (due to Remark 3.1) and there exists € > 0 such that i, > ¢, +e€.
Let T, € argmin,(.), l.e. ©{ZT,) = @,. Since ,(.) is continuous, for some
' € riS(w) close enough to #, we have ¢,.(2') < ¢, + €. On the other hand,

wulZ) = 1P, (") for ¥’ € rS(@}, so that
d’tv(-{”) <ot e <Yy

This contradicts the minimality of ¥, and the lemma 1s proved.

REMARK 3.2. The continuity condition on ¢, is unrestrictive and, as it is the
value of a linear program, we can refer to many works for conditions guarantee-
ing such a property. On the other hand, taking into account the specific features

of the problem in question we are able to give one miore simple criterion which
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can easily be verified in practice. To this end, let $z(z} denote the value of the
following (linear) problem

min.nimize < c(w),v >

subject to

<af@),v>< 5, iel,

L<aj(@),v>=2j, p+1<3<pt+yg

where z = (21,..., Zp+q) € BP9, Defining a vector function z(.) : R" X R® —
RPYY such that z(.) = (21(:), --s Zp44(.)), Where -

z;(w, ;r:)——<a(w)101>—<a( @),w >, 1 1,...,p—|—q, (3.2)

we have , o . : .
ul®) = Do =(w, D+ < (@), 2 > . (3.3)

Obviously, z(w,.) is continuous and, therefore, w4 (.) is continuous if @5(.) is

continuous.
~ To verify the continuity of $5(.) we have the following criterion.

LEMMA 3.2. &, is continuous if and only if it is finite at a finite number of
points z',1 = 1,2, .., N, with 0 € inteonv{z! | i = 1,..., N}, .In particular, ®q
is contmuous if and only if it is finite at the foﬂowmg (p+ ¢+ 1) points =
(1,0,0,...,0), 2 2 = (0,1,0,...,0),i..,~f'+q = (0,0,0,...,1); et = (a1, —1. -1,
sy = 1)

PRrOOF. There is no difficulty to show that ®5(:) is sublinear and, hence. it is
contintious if and ouly if it is finite on' & neighborhood: of the origin. The later
is equivalent to saying that it is finite at-a finite number of points whose convex

hull contains the origin in its interior.

REMARK 3.3. For a given @, Problem @ (z) is a classical parametric program
which is linear in both variable and parameter. Tlie reader is referred to’ [4],

/[12] for more results.

DEF]’\IITION 3.1. The prnn'n'y problem is said to be finite'at w if’ Q (.) is finite
at 3i=1,.,p+q¢+ 1, definéd in Temmia 3.2.

From Lemmas 3.1, 3.2 we get the followmg
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PROPOSITION 3.1.. If Condition (J }.is fulfilled and the primary problem is finite
at w; then m'(@,w) is-the value of the following linear program (in w, v)
[ minimize < (@, >+ < c(fd),"v > |
subject to B
(L) < .a"i(a;D)wl, >+ <ai(w)v >+ < aj(@),w><L0, 1€l

< @i (@), T > + < qj(@)v >+ < @), w>=0,

\J=p+L..,p+qTeS®), |

where I denotes the sét of active iudexes on riS{@).
REMARK 3.4. If m 1s Lipschitz regular.at &, then
T'I.?,D(LD:I?'.U). =m'(@;w),

and Proposition 3.1 gives a possibility to calculate dm{@) via standard codes,
since . o

Om(w) = d(m°(@;0)) = O(m'(@;.)} |w=o .
However, we are dealing with the calculation of only one element of om(w), so

we may require a condition weaker than Lipschitz regularity.

Following [15] we say that m is locally conver at @ if its directional deriva-
tive m/(w;.) is a continuous convex function (with' respect to w). Obviously,
Lipschitz regularity implies local convexity, but the converse 1s not true in gen- .
eral. Furthermore, to verify the local convexity of 71 one needs to concern only
the derived problem (L¥) which is linear in the parameter w and, therefore, is
much simpler than the prirﬁa.fy problen.. Clearly, if S (@) is a singleton, then
m 1s locally convex at o.

Assume that m is locally convex at @. Then
Om'(@;.) [w=0C Om*(@;.) lw=o= Om(d), (3.4)

and one can find an element of dm(o) by computing one element of
Om!(@;.) |w=0. This can be done by standard codes for calculation of subgra-
dients of convex functions. However, if we know the behaviour of the function

®5(.), then we can much simplify the procedure, since we have the following
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PROPOSITION 3.2. Suppose that (J) holds, the primary problem is finite at @,
and m is locally convex at &. If for some wg € IX7 and for some & solving (L5°)

the function ®,(.) is differentiable at 2° = z(w,, z), then

ptg S
(@)% = D Vi @a(2)([a4(@)]"F + af(w)) € Im(@). (3.5)
o i=1 : .
PROOF. By (3.3) and Remark 3.1 we have
! (3,0) = min{ B [=(w, B+ < (@, > | & € S@)},

where the function z(w, Z) is defined by (3.2). Observe that & gives "min” in
the preceding formula if and only if 7 solves (L2). Further, since m is locally

convex at @, the fuiiction m'(w;.) is subl_ine’ar-a.nd
O’ (:.) s € O (@;.) Lo, Vo' € R
From this and (3.4) we have |
| .a_m.'((f); .7) |,:Uc ani(aa),vw’ 'e R".

The proposition is now easily established by direct calculation and the following

lemma.

LEMMA 3.3. Let.h : R™ x R® — R! be locally Lipschitz with respect tow € R",
uniformly for ¥ on some compact set S C R?, and continuous with re’sp_ecrrt'\to x

for everyw € R".If
o 8(w) ..—__min.{h(w,..l'l:)_l x E S},

then 6(.) is locally Lipschitz and, if h(., T) is differentiable at w' for somé ¥ such

that 8(w') = h(w', ), the following relation holds -
Vo h(w',7) € 88(w'). | | (3.6)

PROOF. Let
- ww) = maz{h{w,z) | z' € S}
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It is easy to show that 8(.), n(.) are locally Lipschitz. Let h(.,Z) be differentiable

at w' for some Z such that n{w') = h(w', Z). Then, for every v € R",

< Vuh{w',z2),v> = }in})[h(w' +tv,Z) — h(w', 7))/t
< limsup[n(w' + tv) — n(w’))/t < n°(w', v).
t—0

From this it follows that
Vwh{w',2) € dn(w').

Observe that —6(w) = maz{—h(w,z) | z € §} and from the previous 1nclus}o11

we have
—Vuh(w', ) € 8(—6(w'))
‘which implies (3.6), since d(—6(.)) = —88(.). ‘The lemma is proved, and so is
the propostition. ,
RLMARI\ 3.5. Formula (3.5) gives a sunple way to calculate a generahzed gra-
dient of m at @ (without using standard codes to caleulate dm from 1m; "(&; ))
The “price” we have to pay for this is to learn the behaviour of the function
®.(.) and to find a point where it 1s differentiable. Generally,_ it i1s differentiable
almost everywhere (since it is continuous and convex, and hence, is locally
Lipschitz). But for finding one concrete point we have to take into account
the specific features of the problem encountered Nevertheless the Iollowmg _
observation is very helpful
As @ is fixed, let us denote, for a while, ¢(w), ai(®), ®5(.) by ¢, a:, B(.) (resp.).

Then, ®(z) is the optimal value of the following linear program

minimize {e, )

(A-z) (O',z',.'l':) SziJ T EIJ
{aj,z) =z, J=p+1l,.,p+q.

For given %, let # be a solution to (A:) and let

I{(z):={iel| <aj,z>=5}
J(z) =I)U{p+1,...p+q}.
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We then have

PROPOSITION 3.3. If the system {aj | je J(t)} is hnearly mdependent then
®(.) is differentiable.at z and-

V() = —7, .
where §j is a Kuhn-Tucker multiplier for (Az) at &.

PROOF. Denote by A the matrix whose rows are vectors a;,7 = 1,...,p + ¢.
Then Z is a solutlon to (A ) and 7 1s an assocmted Kuhn Tucker multlpher 1f

and only if y, >0foricl, g; = 0 for ¢ € I\I(:c) and
e+ A =0, (3.7)
<aJ, F>= 5- , Vi€ J(:r:) e (:3.8)'

Since the system {a; [ j € J(Z)} is lmearly 1ndependent 82 q' := car dI (a:) -|— q

and therefore w1thout loss of generahty one can wnte A 111 the form
: ..A.. (A,A,,)r .r - -
WhereA' 1s "é.p.i}xlii;e'ftible (q'x q )—matrlx ".Rewr'it.e o
o= (z',2")T;
\i;lléré ;1:' -:den-ote-s. tlilé'ﬁrs-t -:q". C(I)I‘I-.ll-)Ol‘lell-l‘f.‘.’S ‘of 1: We now have _

K

where z' stands for the vector whose components are -z;f”ﬁrirtlli'j cJ (z). Clearly,
(3.8) is equivalent to | S
:-I—:I — [A’]_I(E' _ A”_.’T;”).‘ L
For: € I'\ I(Z),
< andE>< oz o
and, hence, one can find neighborhoods U of Z, V' of 2 such that, for all 2 €
UzeV, - _—
< .C;,i,flti> < 2.,' , Vie I\ I(i) - (3.9)
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Obviously, there is a neighborhood V, of z such that V, C V" and, for z € V,,
z'(z) = {A 7N~ A7F") implies x(z) = (#'(2),2") € U.

It is easy to see that, for z € V,, #(2) = (a'(2). 2"} is a solution to (A.) with §
being an associated Kuhn-Tucker multiplier (since (3.7)-(3.8) are satisfied and
_the inactive constraints remain unchanged due to (3.9)). Clearly, z(z) depends
smoothly on z and, hence, Condition (A) holds. Since ®(z) =< ¢, 2(z) >, 1t is

smooth in a 711eighb()rhood of z and Proposition 2.1 gives
Ve(z)=—y.

The proposition is thus proved.

From Propositions 3.3-3.4 we get the following

COROLLARY 3.1. Under the assmnptions of Proposition 3.4, let @ be a sohition
to (L)) for somew, = = z(w, ¥) (defined by (3.2)), and © be a solution to Q4(Z).
If the system o ‘
{a;(@)/ j € J(v)}
is linearly independent, then

rtg :
[e'{@)]*E — Z g, (@)]"F + o(w)) € om(@),
o=
where §;,) € J(9), are components of Kuhn-Tucker nultiplicr for Qu(Z) at v
and §; =0 if ¢ ¢ J(v). '

REMARK 3.6. It follows from a result of [28] (Corollary 6J) that —0®.,(0) is
exactly the sét_of Kuhn-Tucker multipliers for Problem (Q4(0)) which coincides
with the one for the primary problem at w (if we set §; = 0 for 7 € {1, ...,p}\ I).
So, if ®,(.) is differentiable at some point z, then the derivative V®;(z) must
belong to d®(0) (for ®.(.) is sublinear) and, hence, —V&;{z) is a multipliers
for the primary problem at @. We have thus found that formula (3.5) is in full
agreement with (2.4). The difference between these formulas is also clear: for
easy points (2.4) is valid with arbitrary multipliérs i/, and for “uneasy” points it

is valid only for some “special” multipliers which are the negative of derivatives
¥ 1 I ; :
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of the function ®u(:). Besides, unlike in (2.4}, ini(3.5) T must be a solution not
only for the primary problem (at &) but also for (L¥) and, hence, belongs to a
proper csub‘csét:olf S(.U_J). - h o

REMARK 3.7.°1f the sot of multlpheu for the primary problem (at @) rechices
to-a singleton; then 9D, (0) contains one single ('lement and () is 'dif'fei"t*n—;
tiable at 0 (theféfdré, is' linear), and from- (3 5) we obtain a 1€sult pre vmusb

established by Gauviri-Dubeau [11].

REMARK 3.8. Propositiohs 3;'1«3.2 provide a method to compute a genérali:),ed
gradient of the marginal function {via linear programs) at “uneasy’ points.
Obviuosly, the computation 1s much more (01111)11("1tcd than the calculation
by (2.4). In favour of this fornmla we shall show that “easy” pomts can be
found “almost everywhere” and, therefore, (2.4) pecommends a rather strong

“heuristic” method.

.- The following result shows particular interest in itself and will be presented

in another work [20].

ProrosiTioN 3.4. For every open set 0, C BT there exists an open subset
Q C Q, such that S admits a smooth selection #{w) € S(w) on §1. Consequently,

the set of “uneasy” pomts are nowhere dense.
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