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AN IMPROVEMENT FOR PARALLEL-ITERATED
RUNGE-KUTTA-NYSTROM METHODS

NGUYEN HUU CONG

Abstract. This paper deals with predictor-corrector (PC) iteration of Runge-
Kutta-Nystrom (RKN) methods for integrating initial-value problems for special
second-order, ordinary differential equations. We consider RKN correctors based

_ on direct collocation techniques with high stage-order so that the stage-values can
be used by extrapolation techniques to construct high-order predictior methods
with no additional sequential right-hand side evaluations and without increasing
number. of processors. Having the high-order predictor in addition with the
small convergence factor and error constant, the parallel-iterated ‘PC methods
based on direct collocation RKN correctors considered in this paper show the
-improved efficiency when théy are compared to the PIRKN methods available
in the literature.

1. Introduction

-We will investigate a class of (explicit) predictor-corrector (PC) methods
obtained by predictor-corrector iteration (or fixed point iteration) of Runge-
Kutta-Nystrém correctors for solving the initial-value problem (IVP) for nons-

tiff, special second-order, ordinary differential equations (ODEs)

YO _gemy. @

The efficiency of this class of the PC methods which are based either on Runge-

Kutta correctors (for first-order ODEs), or on Runge-Kutta-Nystrém correctors
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(for special second-order ODEs) depends on the accuracy of the pred1ct10ns In
[4] and also in [11] by using a large number of processors, together with the
approximation to the step point value, a whole block of approximations to the
exact solutlons at the off- step points is computed This block of approx1ma.t10ns
can be used in the next step for obtalmng a hlgh order predlctor formula. In this
paper, instead of block of approx1ma.t10ns to the exact solutions at the off-step
points as in [4] and [11] we use the block of approximations to the stage values
and the step pomt value Of. course, we can not obtain high accura,tc predlctlon
asin [4] anid [1 1} because the stage order of the corrector methods i is lower than
the step pomt order. However 1o additional processors are needed in‘the im-
plementation. As an analogue of the PIRKN methods proposed in [8] a.nd [12],
the PC methods constructed in this paper will be termed 1mproved PIRKN
(IPIRKN) methods We. restrict our consideration to the IPIRKN methods
based on RKN correctors directly constructed for second-order ODEs (see [3]).
This class of corrector methods of higher stage order, (see also [5]) can be used
for generating higher order predlctor formula The IPIRKN methods based on
this class of corrector methods ‘have small error constants and small conver-
gence factors with ‘sufficiently large stability boundaries for nonstiff problems.
Numerical experiments show the better performance of the IPIRKN methods -
in comparlson with the PIRKN methods proposed in [8] a.nd based on the same'
corrector methods. ' o S S ' "
For notational convenience, .we assume that the equation {1.1) is a scalar
equatlon However, all considerations below can be straxghtforwardly extended

to a system of ODEs, and therefore; also to nonautonomous’ equations.
2. Improved PIRKN methods
The starting point is a fully implicit s-stage RKN miethod of direct colloca- .
tion type. We shall consider only the RKN methods ba,sed on’ Ga.uss—Legendre*
collocation points because the step. point value which 1 is dxﬂ'erent from. stage_.-

- values, gwes a p0551bl1ty to generate high order pred1ctor formula For a scalar

equatlon thls method assumes the form

Y, = yne + hey!, + B2AF(Ya), (2.1a)
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Ynt1 = Yn + by, + h_szf(Yn)?y:;-{-l = Yp+ thf(Yn)s ' (2.1b)

where A is a $ X § matrix ,b, d, ¢, e are s-dimensional vectors, e = (1,1,...,1)7,
and Y, is the stage vector corresponding to the n-th step. Furthermore,- we
use the convention that for any given vector v = (v;}, f(v) denotes the vector
with entries f(v;). |

Consider the following fixed point iteration scheme:

YO =VY, 1™ +wy,, ~ |  (2.2a)
Y =yne + hey), + B2 AF(YY), 5 =1,... \m, (2.2b)
Ynt1=Yn + hy,, + BT F(Y(™), 000 = v + RATFYEY)  (2.2¢)

where V is sxs matrix , w is s-dimensional vector, both determined by the order
conditioné._ Notice that the block vector ((Y,ETI) )T, y)7T is already provided
at the previous step, the s components of the vectors Y % and Yt(,j ) can be
compu.ted in parallel, provided that only s processors are available, so that the
compuﬁétional time needed for one itéra.tiqn of (2.2b) is eqﬁivalent to the time
required to evaluate one right-hand side function on a sequential computer. The
PC method (2.2) is of the same nature as the PIRKN methods considered in
[8] and [12]. The amelioration here consists of higher order predictor formula
(2.2a). Therefore, the method (2.2) is called the improved PIRKN (IPIRKN)
method. ‘ |

Treating the predictor formula (2.2a) as the predictor method, and (2.1) as
the corrector method, (2.2) may be considered as a conventional PC method
(in P(CE)™E mode). Assuming that the function f(y) is Lipschitz continuous
and that (2.2a) defines a g-order predictor formula (i.e., v® _ Y., = 0(h7t)),
the following theorem easily follows (see also [8], [12])

THEOREM 2.1. Let the generating corrector method (2.1) be of order p. Then
on s-processor comptuters the IPIRKN method defined bj' (2.2a), (2.2b), (2.2¢)
represents an explicit RKN method of order p* = min{p, 2m + ¢ + 1} requiring
m+1 seéuentiaj ﬁght—haﬁd side evaluations per step
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REMARK 2.1. From Theorem 2.1, we see that by setting m = [(p — ¢)/2], [/]
denotmg the integer function, we have a IPIRKN method of maximum order
p*=p (order of the corrector) with only [( — ¢ + 2)/2| sequential right-hand

eva,lua,tlons per step.

2.1. Order condition for the predictor methods

It is known that the s-stage high-order direct collocation RKN correctors
based on Gauss-Legendre collocation points (Gauss-Legendre RKN correctors)
have stage order s+1 (¢f.[5]). Since the block of approximations in the predictor
method defined by (2.2a) has dimension s + 1, we can construct a predictor
met.hod of order s. . '

- We now suppose that fixed stepsize is used in the integration process. The
order condition for the predictor to be of order s is derived by replacing Y,ET? JYn,
and Y,&D), Ynt1 by the exact solution values y(tn—1e + he); y(tyn) and y(tne +
he), y(tngr) (see [4] [9]). Let us denote al = (c7, 1) and by requiring that the

predlctor method is of order s in h, we are led to the conditions

y(tne*—l—ha)-—By(tn_le*—}—ha) = y(tne*—I—ha)\—By(t,,e*—i—\h(a—ef)) = O(h*tY),
(2.3)

where e* is a (s+1)-dimensional vector with unit entries. Using the relation

d
y(te® + hx) = e:cp(hxa)y(t),

we obtain _ 3 Lo S

* d d. at+1y -
[exp(h(a-+e )E) - Be:cp(ha_gg)]y(t_n) = O(h°th) -
yield:ing the r:onditioﬁs |

(a+e*)ijaj"—-0,j=0,1,‘..,s. (2.4)
Let us define the matrices

P = (e*,(é-k e.*),'(a+e*)2,'....,.(a—l—e*)"), Q = (e*,é,az,.. . ,a%)
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where P and Q are (s +1) x (s + 1) matrices. Then the condition {2.4) can be
written in the form

P-BQ=0. o (2.4")

Since the abscissas a; defined in this paper are distinct, we can derive matrix

B = PQ7! = (b;;). Matrix V and vector W in (2.2a) can be obtained by writing

B in the form
V w
bsx1.-. beri1s beyiena :

From Theorem 2.1. we deduce the following corollary:

COROLLARY 2.1. Let the matrix V and vector w be defined according to (2.4)
and (2.5), let p be the order of the corrector method (2. 1). Then (2.2a), (2.2b)
and (2.2c) define an IPIRKN method of order p* = nin{p,2m + s + 1}

REMARK 2.2. From Corollary 2.1, we sce that by setting m = [(p-s)/2], we
have an IPRKN method of maximum order p* = p (order of the corrector) with

only [(p-s+2)/2] sequential right-hand side evaluatidng per step.

Specification of the parameters (A, b,.d, ¢) of the direct collocation corrector
methods can be found in institute report version of [8]. In the following sub-

sections, we will discuss the convergence, the stability and the error estimate of

the IPIRKN methods.

2.2. Convergence boundaries

"The convergence factors and convergence boundaries of the IPIRKN meth-
ods are indentical with those of the direct PIRKN methods studied in [8]. Here
we briefly mention the most important results.

The rate of convergence was determined (in [8]) by using the test equation
y" = Ay, where A runs through the eigenvalues of the J acobian matrix 9f/dy.

For this equation, we obtain the iteration error equation
st,]) - Yn = ZA[YEIj_l) - Yn]a Z = ’\hzv ] =1,...,m.

Hence, with respect to the test equation, the rate of convergence is determined

by the spectral radius p(A) of the matrix A. We shall call p(A) th convergence
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factor of the PIRKN (and also IPIRKN) method. Requiring that p(zA) < 1,

leads us to the convergence condition

1 1
z —— or h* ) 2.
=1 < 2 < S An0F/09) (26)

This convergence condition is of the same form as the stability condition associ-
ated with RIXN methods. In analogy with the notion of the stability boundary,
we shall call 1/p(A) the convergence boundary. We refer to [8] for specification

of the convergence boundaries for the various PIRKN methods.

2.3. Stability boundaries

The linear stability of the IPIRKN method (2.2) is investigated by again

using the model equation y" = Ay, where ) runs through the eigenvalues of

af/oy.

THEOREM 2.2. For the equation y" = Ay the munerical solution obtained by
the IPIRKN method { (2.2a), 2.2b), 2.2c}} satisfies the recursion

v, v
Yipr | = Ma(z)§ Yo (2.7)
hy;l-%-l | h’y;l |
where M,,(z) is the amplification matrix
(zA)™V (I"zf‘l)_](l"(zv\)m)e + (zA)Y"'wW Xmlz)

M,,,(z) = sz(zA)m v 1+ sz((zA)'" w + (J’—zx\)_ ! (I -(_zz\)m )_)e g,,,(z)
sz(zA)m Voo sz((zA)'" w4 (1-2zA)7 Yi-(zA)™))e ki (z)

where

‘\’,,,(z) = (I'z.l\)_l(f—(z/\)m)c
gm(z) = 14 zbT (1-24) " (1-(2A)" )c

kru(z) =1+ ZdT(I—Zf\)‘l([_(zx_.‘)m )('.
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PrROOF. Applying the IPIRKN method (2.2) to the model equation, we obtain

Y;E,m) = ype + hey), + zAY,(;m'"l) . (28&)
=(T+za+ @AY +... +(z4)" " Dyme+ heyl) + (zA)"‘YSP)
= (za)"vY{™) 4 ((1 = 24)71(1 — (z4)™)e + (z4)™ W)y,

n—1

+ (I - zA)_l(I - (zA)m)Chy:.‘

Ynt1 = yn + byl + 2bTy{™
= zbT(z4)™ VY™, 4+ (1 4 bT((24)™w + (I — 24) (1 — (z4)™)e))yn
+ (1 -+ sz(I — zA)-l(I — (zA)m)C)hy:l (28b)

= 2d7(zA)™VYp_1 + 2d7((zA)™ W + (I — 24) 1T — (zA)™)e)yn

+ {1+ 2dT(1-24) 711 — (zA)™)c )by, : (2.8¢)

Combining the relations (2.8a), (2.8b), (2.8¢), the one-step recursion (2.7) of
Theorem 2.2 is easily obtained.

Similar to the stablity consideration of PIRKN methods (cf. [8], [12]), the
(s + -2) X (s + 2) matrix M,,(z), which determines the stability behaviour of
the IPIRKN methods, will be called the amplification matrix and its spectral
radius =(My,(z)) the stability function. From (2.8) we see that if z satisfies the
convergence condition (2.6), then the spectral radius of Mmn(z) converges to the
spectral radius of the amplification matrix M(z) of the corrector methods as -

m— oo (see [5]), i.e.,
@(Mn(e) = =(M(:) 25 m— 00

Hence, the asymptotic stability interval for m — oo is the intersection on
the negative z-axis of the stability interval (fcorr0) of the generating corrector
and the region of convergence in the complex z-plane defined by (2.6). For
“the IPIRKN methods studied in this paper, where the corrector method is
conditionally stable with the stability boundaries less than the convergence

boundaries (see [8]), the asymptotic stability region coincides with the stability
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region of the corrector methods. For finite m, the stability intervals are given

by

(—fi(m);)) = {z: 2(Mn(2)) i 1,2 < 0}

The stability boundaries —fi(m) listed in Table 2.1 for the varicus IPIRKN and
direct PIRKN methods proposed in (8] show that the stability behaviour of
the new IPIRKN methods is more regular than that of PIRKN methods. The

stability boundaries corresponding to the minimal value of m (for both family

of methods) needed to reach the order of the corrector are indi(_:a,ted in bold

face. By means of Table 2.1 we can select the number of iterations needed to

achié\fe an acceptable stability regidn (the corresponding stability boundaries

are underlined).

Table 2.1. Stability boundaries fi(m) for a few m of the various

direct PIRKN and IPIRKN methods

|12

6.02 -

PC method Pl m=1| m=2| m=3}{ m=4 | m=5| m=6 m=o0
Direct PIRKN | 4 | 6.83 | 0.00 | 0.00 | 8.57 | 0.00 | 0.00° 9.00
‘IPIRKN - 410.33]081 203|876 261|271 9.00
Direct PIRKN | 6 | 7.06 | 0.00 118771 0.00 | 9.80 | 0.00 9.77
IPIRKN 6 |0.23 | 269 | 3.17 | 9.36 | 3.89 | 3.97 .77
Direct PIRKN |- 8 | 7.06-| 0.00 -} 9.51 | 0.00:| 0.37 | 9.86-| .... | 9.86
IPIRKN | 8 0.05 | L. 4.40 [10.2316.95} 9.15.| ... | 9.86
Direct PIRKN |10 [7.06 | 0.00 | 9.51 | 0.00 | 9.86 | 0.01 36.65
IPIRKN 10 | 0.01 | 0.74 | 3.33 | 7.37 | 12.05 | 19.45. ' 36.65
Direct PIRKN |12 | 7.06 | 0.01 | 9.51 | 0.21 | 9.86 | 1.17 39.45
IPIRKN 10.00 | 0.39 | 2.29 11.49 }18.71 39.45
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2.4. The truncation error

We will investigate the truncation error of the IPIRKN method (2.2) with
respect to the model test equation y” = “y. Let us denote the step values

associated with the correstor method (2.1) by un4;1 and u), 4, and define

Ep(z) == (2.9)
( -sz(zA)mV sz((I -zA)"I (ZA)me-(zA)mW) sz(I"zA)_l(zA)mc
—sz(zA)mV sz((I-zA)_l(zA)me—(zA)mW) sz(I—zA)hl(zA)mC)

W ( Un41 ) v ( Yn+1 )
n+1 — ' s ¥n4l = ' :
huy 1y hyni1

THEOREM 2.3. For the equation y" = “y the iteration error defined by wy41 —

vp+1 Satisfies the relation

Yn—l(m)

) — O(h2m+s+3):
Va

Wht1 — Vi = Em(z) (

PROOF. By means of (2.8) and (2.9) and the stability matrix M(z) of the RKN

corrector methods (see [5]), we have the following representation

Mm(z) = ' _
((ZA)m V. (I—2a)" N1 = (zA)™)e + (za)™w (I — (24)7(1 — (éA)m)c)
' Oqgq . M(z)

_ (03,34—2) _ '
Ep(2) ,
where O;; is i X j matrix, with zero entries. In view of the recursion (2.7) in
Theoremn 2.2, Theorem 2.3 easily follows.

The local truncation error of the IPIRKN methods can be written as the

sum of the truncation error of the corrector and the iteration error:

() s = () ) s (Y5,

Small trucation error of the direct RKN corrector methods and small conver-
gence factor for the corresponding IPIRKN methods (see [8]) are two potential

effects to expect that the truncation error of the IPIRKN methods is small.
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3. Numerical experiments .

In this section we report the numerical results obtained by the various direct
PIRKN and IPIRKN methods. The absolute error obtained at the end of
integration interval is presented in the form 107¢ (d may be interpreted as
the number of correct decimal digits (NCD)). In order to see the efficiency of
the various direct PIRKN and IPIRKN methods,lwe follow a dynamical strategy

for determining the number of iterations in the successive steps (see [10]).
Y™ Y| < chP™! and m> {(p—s)=2); (3.1)

“where p and s denote the corrector order and the number .of stages of the correc-
tor methods, C is a problem:- and methlod—dependent parameter. Furthermore,
in the tables of results, Ny, denotes the total number of sequential right-hand
side evaluations, and Ng.ps denotes the total number of integration steps. The
following two prébléms possess exact solutions in closed form. Initial conditions

are taken from the exact solutions.

8.1. Linear nonautonomous problem

As a first numerical test, we apply the various direct PIRKN and IPIRKN
methods to the linear nonautonomous problems (cf. [7])
dy(t -2/F(t) + 1 Qﬂ“(t) +1
2 ( JECKET
dt 2m(e)-1)  f(t)-2
= max(2cos2(t);sin2(t)); 0<t<20; . (3.2)

with the exact solution y(t) = (—sin(¢); 2sin(t))T: Table 3.1 clearly shows that
the higher order IPIRKN methods with higher order predictor formula are supe-
rior to the direct PIRKN methods of the same order. The lower order IPIRKN
methods are only a bit more efficient than the direct PIRKN methods because
the predictor formula defined by (2.2a) for these IPIRKN methods are only
slightly more accurate than that for the direct PIRKN ‘methods.
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‘Table 3.1. Values of NCD / N, for problem (3.2) obtained by the various
direct PIRKN and IPIRKN methods.

PC methods P Nstéps Nsteps Nsteps Nsteps Nsteps
‘ - =80 =160 | =320 =640 =1280 C

Direct PIRKN 4 | 5.1/237 | 6.4/477 7.6/958 | 8.8/1918 .10.0./3835 107!
IPIRKN - 4 | 5.2/228 | 6.4/456 | 7.6/913 8.8/1827 | 10.0/3654 10-17
Direct PIRKN 6 { 8.0/320 | 9.9/640 11.7/1280] 13.5/2559 15.3/5119 10~3
IPIRKN 6 | 8.0/292 | 9.8/481" 11.‘7/961 13.5/1921 15.3/3841 1073
Direct PIRKN 8.113.0/399 | 16.1/799 18.6/1600) 22.1/3198 23.9/6398 10—
IPIRKN 12.5/320 | 15.5/636 19.2/1271 21.3/2542 23.8/5081 10—
Direct PIRKN 10 |113.3/436 | 17.6/920 21.8/1881|24,5/3802 104
IPIRKN 10 | 14.4/318 | 17.6/638 21.0/1278/24.2/2558 10~
Direct PIRKN 12 119.1/556 |23.1/1117 26.2/2236 1077
IPIRKN 12 | 19.3/397 22.8/792 26.5/1583 1077

3.2. Nonlinear Fehlberg problem

For the second numerical example, we consider the orbit equation (see [1])

dy(e) _
de?

(

with the ekact solution y(t) =

—4¢?
2:1‘(!:)
yl(t)-l—y (t) \/ﬂT(t< 10;

—2=r(t)
'—,4f.2

JEC

Dise)

(3.3)

(cos(£?); sin(t2))T. The results are reported in

Table 3.2. For this nonlinear problem similar to the previous linear problem,
the super1or1ty of the IPIRKN methods over the direct PIRKN methods is once

again demonstrated.
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Table 3.2. Values of NCD /N,e, for problem (3.3) obtained by the various
direct PIRKN and IPIRKN methods.

PC methods P Nstep.; | N‘;-rtepls‘” .Nat.eps Nsteps: Nsteps
=200 | =400 .| =800 | =1600 =3200 | C
Direct PIRKN 2.4/581 | 3.6/1197 | 4.8/2400 | 6.0/4800 | 7.2/9600 102
IPIRKN 9.4/535 | 3.6/1070 | 4.8/2144 | 6.0/4298 | 7.2/8577 10%
Direct PIRKN 4.9/773 | 6.7/1531 | 8.6/3095 | 10.4/6256 | 12.2/12647 103
IPIRKN 6 | 5.0/649 |6.7/1278 | 8.5/2504 | 10.4/4860 | 12.2/9600 103
Direct PIRKN | 8 7.6/1022 | 10.0/2029 | 12.4/4022 14.8/7956 | 17.2/15720} 10°
IPIRKN 8 | 7.6/808 [10.0/1561 | 12.4/2996| 14.8/5973 | 17.2/11946 103
Direct PIRKN |10 | 10.5/1234] 13.6/2457 | 16.6/4891) 19.6/9733 | 22.6/19325 10%
IPIRKN 10 | 10.6/939 | 13.6/1801 | 16.6/3561 | 19.6/7092 | 22.6/14085 10%
Direct PIRKN |12 |13.4/1365 17.0/2742| 20.7/5491| 24.3/10938 104
IPIRKN 12 | 13.4/980 | 17.1/1939 | 20.7/3819 | 24.3/7458 104
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