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MODULAR INVARIANTS AND
THE mod p COHOMOLOGY ALGEBRA
OF THE INFINITE SYMMETRIC GROUP

NGUYEN HUU VIET HUNG

Abstract. We determine the mod p cohomology algebra of the infinite symme-
tric group for p an odd prime by using what we call the Dickson characteristic
classes. These classes are constructed by means of the D]ckson-MUl invariants

of GL(n,Z p) on the algebra F(z1,...,2,)® Z [yl,. .-, yn]. They are closely
related to the classical Chern classes. -

Introduction

Cohomology of symmetric groups was first studied by Steenrod [23],[24],[25],
[26] in close connection with his Listory on cohomology operations and then by
- several authors (see Nakaoka [10],[11],[12], Nakamura [9], Cardenas [1], -Quillen
- [20], [ 1], Mui [4] ... ). It is applied to investigate iterated loop spaces, configu-
ration spaces and homotopy of spheres (sce e.g. Priddy {19], May. [7], Nishida
[18]). | .

Let ¥, be the symmetric group of m letters and £, the prime field of p
elements. Nakaoka has computed in [10] the module H “(Zm; Lp) by a geome-
trical method using symmetric products of spheres. Indepcndently, Nakamura
has determined i in [9] this module by means of Cartan’s work on hmnology of

_the Eilenberg-MacLane spaces K(Z 1) _

Eventually, the algebra structure of H* (_,m, ») became the next 11nportant
target. The alg,ebla H* ( i Z,) has been computed for m < p in Stccnmd [‘)l
V. 7] for m=4in Nakaoka [12] and for m= p P odd i in Cardenas 11} To deal
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with the general case, in the last two decades there was an algebraic approach

offered by Quillen [20] and Mui [4]. Quillen showed that the homomorphisin

Res : H' (S Z,) — HH*(A.; Z,)
A

induced by the restrictions Res (A, Z)) H*(Erm;ZP) — H*(A;Z,) is injec-
tive, where the direct product runs over all maximal elementary abelian p-
subgroups 4 of ¥,,. Further, after developing the classical modular invariant
theory of Dickson [3], Huynh Mui in {4] has computed the image of the restric-
tion Res (A, _.m) in the nnp(ntant case where m = p" and A is a maximal
elementar y abelian p-subg Loup of order p" and indicated how to consider the
remaining cases.

The purpose of this paper is to apply invariant theory to determine the

cohomology algebra of the infinite symmetric group

- HY(Tw3Z,) = mH* (T, Z;)
m
for p an odd prime. By the saﬁﬁm method, we have computed this algebra for
p = 2 in [13],[16]. Our main idea to reach this end has been exlﬁlained in [16].
For the convenictice of the readers we recall it briefly here.
First we determine the homology coalgebra Ho(Zeo; Z,) in which the comul-
tiplication '

A H, (zoc;;z,,-)_;H (S0 Zy) ® Ho(Too; Z,)

is mduud by the diagonals ¥, — E,,, X Z‘m(m > 1) Then by p'vssaoc to the
dual we obtain the algebra H*(L.0; Zf,)

Perhaps, the most important step in our papcr is to compute the cl1ag,0nal
map A. According to Nakaoka [11], Hu(Zeo; Z,) is equipped also with a Hopf
algebra structure of Whl(',h A is the comultlphcmtlon Nakaoka himself studied
~ this Hopf algebra. He offered a generator system for the Hopf algebra in {11}
and formulated A in terms of these genera,tors in [1‘7] Since his formula is
¢uite complicated, one would face with serious problems if one desires to follow

Nakaoka’s geometrical way.
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To overcome the difficulty, we introduce the Dickson elementsin H, (%o Z,)
by means of the Dickson-Mi invariants of the general linear groups GL(n,Z,).
The Hopf algebra structure of H,(Z; Z,) is simply described in terms of the
Dickson elements. We have obtained this description for p = 2 in [13] by
combining the geometrical approach based on the “global” results of Nakamura
[9] with the algebraic approach based on the “local” results of Mii [4]. In
this paper, the description of H.($;Z,) will be made by a mostly algebraic
approach.

Considering the dual version we determine the algebra H*(Zq; Z;) by con-
structing what we call the (universal mod p) Dickson characteristic classes. It
should be mentioned that in both cases where p is either even or odd, the free
Dickson classes are derived from Dickson’s invariants.  Meanwhile, the nilpotent
Dickson classes, which occur only in the case of odd p, are deri\;ed from Mui’s
invariants. At some special dimensions, free Dickson classes “become” mod P
reduced Chern classes (resp. Stiefel-Whitney classes for p = 2).

We think that it would be interesting to study Dickson classes for permuta-
tion representations of finite groups and for finite coverings over paracompact
spaces. The close relationships between Dickson classes, Chern classes (resp.
Stiefel-Whitney classes when p = 2) and the Dickson-Mui invariants permit us
to predict that Dickson classes 111eaéure the obstructions for the existence of
certain structures, which would be richer tham_:those measured by Chern classes
(resp. Stiefel-Whitney classes). .

Dickson classes have been used to deternine the mod 2] 'édhomology algebra
of the iterated loop space Q*S™ for p=2 in [14] and for p an odd prime in [17].

Throughout this paper, the coefficient ring is allways assumed to be Z, with
P aﬁ odd prime. o

The paper is organized as follows:

§1. Preliminaries

§2. The Hopf algebra H.(Z) and the Dickson elements

§3. The p"-th power of the Dickson elements

§4. The Dickson elements as free generators of the algebra H.(Xo)

§5. Dickson characteristic classes and the algebra H*Z
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§6. The algebraic relations between the Dickson classes

After recalling some needed information in Section 1, we derive in Section 2
the Dickson elements of H, () from the coinvariants of the groups GL(m, Z;).
The main theorem of ‘Section 2 is proved in the next two sections. In Section 5
we construct the Dickson classes and determine the algebra H*(Z.,). Finally,
we postpone until Section 6 the proof for the lerhata of Section 5 on the algebraic
relations between the Dickson classes.

The main results of the paper have been announced in [15].

Recently, we have learnt that ,the‘ classes we named after Dickson were in-
dependenrls_r.studied for p = 2 in [6; Chapter 3] without detailed proofs. The
algebra: H*(Xoo;Z;) was also computed by Nakaoka [11] for p:= 2 and by
Madsen and May (unpubliehed) for p an odd prime (see [28], p .31). However,
the algebraic¢ and geometrical nature of the generators given by them was not
specified.: « '
ACKNOWLEDGEMENT The author expresses his warmest tha.nks to Professor

H. Mui for several fruitful suggestions and discissions.

1. Preliminaries -

For the convemence of the readers we brleﬂy sketch in the ﬁrst pa.rt of this
sectlon the Steenrod theory on the homology of the Wreath products of finite
groups. _ C

Let B be a cyclic group of order p and G a finite gro-up We dexrote by
Ef F the . serm product GPXE Where E acts on G’p by cychc permutatlons of ~
the factors |

Steenrod showed that
H, (GfE) H(E;(H,G)") = H.(H. (Gr)’J ®Qr W),

where W = WE means an E-free acyclic complex. So one can define the

Steenrod map in homology as follows
P=P,: H(G)——)H(GIE)

P(.’L‘) = g? ®E 1.
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The map is natural but not a homomorphism of modules in gencral
Next we pass to the dual version.

Let BG be a regular classifying complex of G. In Chapter VI of [27] Steenrod

defined the natural map -
P=P:HY(G) = HY(BG) — HY(BG? ®F W) = HM(G [E),

which brings each cohomology class represented by q-cacycle u : BG — Z, to

the class Pu represented by the E-equivariant pg=cocycle
up®e:BGP®W'—+Zp,

where € : W — 7, deunotes the augmentation of W.
The map P is not a homomorphism of modules, but it preserves the multi-

plication up to sign. Furthermore, we observe that
Plu+v)—Pu—-Poelm T

for any u,v € H*(G), where T is the transfer H*(GP) — H*(G [ E) induced

from the inclusion 1 C E. So P gives rise to the homomorphism
P:E*G)— H*(GfE)/Im T.

Let ! : G [FE — E denote the projection. The induced homomorphism [
H*(E) — H*(G [ E) equips H*(G [ E} with a structure of module over H*(E).

Let d* : H*(G [E) — H*(G x E') be the restriction. It is obviously a
homomorphism of H *(E)—modules. Since Ker d* = Im T( cf. Steenrod [27]),

d* induces the homomorphism
d*: HY(G[E)/Im T — H*(G x E).

1.1. THEOREM (STEENROD [27]).
(i) We have a split exact sequence of H*(E)-modules

H*(G?) 5 H*(G[E) S H*(G x E).
Then we obtain an isamorphism of H *(E)-modules

H*G[E)=In T ®Im P @ H*(E).
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Here Im T is a trivial module over H*(E) and Im P ® H*(E) is a free module
over H*(E) where the action of w € H*(E) is defined by the multiplication of
1®w. ' ;

(11) d*P d*P 1s a monomorphism and d* induces an 1301norph15m
d*:Im P H*(E) = d*PH*(G).d*I' H*(E).

(iii) Denote j* = Res(G?,G [ E). Then Im j* = H*(G?)¥, and j* gives

rise to the isomorphism j* : Im T = Imn j*T. So we get a monomorphism
L (y*,d*): HYG[E) - H*G?) x H*(G x E).

I we need to clarify the source and target, then T, P and P will be denoted
by T(G [ E,G),P(G [ E,G) and P(G [ E,G), respectively. -

Let us think of £,» as the symmetric group on (the point. set of) the vector
space Z3; of dimension n over Z,. Let E' =E;x:-- X Ej denote the subgroup
of Xpn consisting of all translations on Z where E; is the cyclic group of order

p generated by the translation defined by the i-th unit vector e* of L3, for
1<i<n. Then E" is a maximal elementary abelian p-subgroup of ,» and
Tmp=FE [Ey [--- [E,isa Sylow p—subgroup of Epu |

Now we apply Steenrod theorem to the case G = - Yyn1, E=E,.

1.2. LEMMA ‘Under the identification’ gwen inl.1 (1) we have ‘ o
KerRes (B3 | 1fE)—Im T(E " lfp;z»,,;) o : |
@P(E n- 1fE E e 1)Ker Res (E" TR S 1)®H*(E)

This lemma can be proved by the same argument as in'the case' p = 2 given
in [16 3.12].
Usmg also Theorem 1 1 Huynh Mu1 gave in [4 II 2. 3 and 11.3.8], an alter-

native proof of the following result.
1.3. LEMMA (QUILLEN [20]). The homomorphism

H*(S,0) — H(SP,_,) x H*(E")



MODULAR INVARIANTS 271

given by the restrictions is injective.

In the remaining part of this section we recall Huynh Mui’s computation of
the algebra B,(p) = Imm Res (E®, E,n).

Let z1,...,%, be the elements of H'(E") = Hom(E™,1,) given by z;(e') =
6;'- for 1 < 4,5 < n; where 5_;'- means the Kronecker delta. We set y; = fz; €
H?*(E") for 1 € j < n, where # denotes the Bockstein operation. It is well-

known that
HYE")=E(21,...,%n) @ Lp[t1,- ., Yn]-
The Weyl group W = Wy, (E™) 2 GL(n, Z,) acts on H*(E") by means of the

adjoint isomorphisms. A classical result (see e.g. Steenrod [27; V, 7] asserts
that the image of the restriction Res (E",Z;n) : H*(Zyn) — H*(E"™) satisfies

Im Res (E™, X n) C H*(E")W =(E(x1,..,%n) @ Zp[y1,. .. LR )CLm. (1.4)
Here GLn = GL(n,Z,) acts on E(z1,...,2n) ® Zp[ys,-..,¥n] as usual.
To determine B,(p) = Im Res (E™,Z,») Huynh Mii first computed in [4]

the invariant algebra given in (1.4) as follows.

Following Dickson {3] and Ml [4] we set

i (9 I PR Tn
v ... yh Y e Yn
Ln,p= e iy Mn,s = . .s
i ... b | vy 2
n T =1 .1-1—1
Yy yh i yh

for 0 £ 7. < n,0 < s < n. Since L, , is divisible by L, , for 0 < r < n (Dickson
[3]) and Myq,,..., My, divisible by L1 for 0 < sy < -+ < s < n (M [4;
1.4.5]) one defines 7

@Qnr =Lur/Lapn (0<1<n),

Rn 18 g0y 8 T ( 1)k(k 1)/2Mn131’ b ?MﬂsskLIT)l;lk_l (0 S S]' < to < Sk < n).
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1.5. THEOREM (DicKsoN [3], HUYNH MUI [4;1.4.17]).

a (E(SC}, iy ﬂ:n) -®-Zp[y1 PR syn]):GLn = Zp[Qn,Oa ) Qn,n—‘j]@
Z 7] ) Z @Rn,sl,...,a;;.zp[Qn,Oa DR Qn,rn—;l]'
k-1 0<a 1< La<n S : : o
The algebfaié relations holding between the 'gén'erators' are as follows:
R,=0 | |
Rn,_sl e Rn,u = ( l)k“ 1)/2Rn I P ﬁ;)l,
fo;O__§s<n”a;1d0.§31<~-<.sk_<n._ 7
Further, Huynh Mui determined the image of Res (E", Epn)."
1.6. THEOREM (H. M1 [4; 11.6.1]). Bu(p) = Im Res (E™, 5;») is the subal-
gebra of the algebra given in 1.5 generated by Qn s, Ra s (0 <5 < n), Rnrs (0 <
r<s<n).

1.7. REM_A_RK_,
. (i) We observe that o
dim Qus =2(p" —1°), .
dim R, s =2(p" = 2°) — 1,
dim Rn rs =2(p" = p" — p%). |
(ii) Let C.,, be the mod p reduced Chern class of dimension 2(p" —p *) for the
natural representatmn T,n = U(p"), where U(p") denotes the unitary group

of degree p™ Accordmg to Qmﬂen, Milgram (see [22]) and Mui (4; Appendix] -

one has

Res (E7,Zpn)Cns=(—1)" Qs

2. The Hopf algebra H*(Eoo) and the Dickson elements

In this section we construct the chkson a,ddltwe basis for He (E } derlved
from the chkson-Huynh Mui coinvariants of the general linear groups
GL(n,2,),0 < n < oo. Then we describe the structure of the Hopf algebra
H.(Too) in terms of the Dickson basis. This description will be proved in the

next two sections.
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Let »J be the set of all sequences
(H,R) = (hoy....hy_y;71,...,7)

with h;,r; non-negative integers, 0 < T o< < r < mnt >0 Follow-
ing Theorem 1.6, B.(p) has the additive basis consisting of all the elements
Q#.r) = Qu,r, for (H, R) € ,J, defined as follows

n— b 2
_ Hi:ﬂl :;,iH;'ian,f'zj—l,sza t even, 51
IR=N i ni-vi2g Ry, todd 21
Hl=0 Qn,t J=l R, Taj— 1,725 b, o *

To describe the multiplication of the algebra B, (p) in terms of this basis we
define a partial summation in ,,J as follows.

Given (H,R) = (hoser oy s,y 1), (K, S) = (koy .o b1y 81,00, 85)
in ,J, we write |H| = |K| = n,|R| = t,]5] = i. Further,. suppose RN S =
@, that means there is no common entry in the sequences R and S. In this
case, let R,S be the monotone increasing sequence obtained from the sequence
R*S=(ry,...,7,81,...,8;) by a certain permutation of the coordinates. The

signature of this permutation is denoted by sgn(R, S).
2.2. DEFINITION. For [H| = |K|=n,RN S = §, we define

(H,R)+ (K,S8)=(H+K,R,S),

where

H+ K |R|.|S| even,

H+¥K =3 girxi,0,...,0 |R[.LS| odd.
S e

Tt ’ .
Here the summation in the right hand side is formally defined in terms of the

coordinates.
Now it is easy to see that

(=1 ESDHQ Ry ie,s), RN S =16,

QurQxks =_{
_ 0

otherwise.

Let H,(n) be the coalgebra dual to the algebra B,(p) = Im Res (E™, X,»), and
g,k € Hi(n) the dual element of Qz,r with respect to the above mentioned
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basis of Bn(p). Considering the dual version of Huynh Mui’s Theorem 1.6 one

obtalns

9.3. COROLLARY. The comultiplication of H.(n) is described in terms of the
additive basis {qu.n | (H,R) € »J} as follows -

Agu,p = > (-1 D g s @ L7

Since Res (E™, Spn) : H*(Zpn) — Ba(p) is surjective, the dual homomorphism
in Ho(n) = HoZpn) C H.(Zx)

is injective.

9.4. DEFINITION. For (H,R) = (hos-. ., hac1;71,---,T1) We define

DH,R = D(hg,...,hn_l;rl,...,r,) - ('_1)“H'RHin(Q'H,R)a

where

|H,Rl| =) _(n+hi+ > o
i

i
REMARK. Dy g is distinguished by a sign from the element denoted by the

same notation in [15; 3.3]. Compare with Remarks 1.7 (i), and 4.7 (i).
Note that

2% :hi(p® — p') + tp" — 28,07, t even,

dim Dy r= )
QEihi(pn — p‘) + (t + 1)1)“ — QEjprj —1, todd.

In particular, dim Dy g = |R| (mod2).

J= (]_[ ,,,J) [~
n>0

Here the equivalent relation ~ is defined as follows. (0,,,8) = ((0,... ,0,0) is
) o’

2.5. NOTATIONS. We set

equivalent to (0, ) for every m,n. Any other element is only equivalent to
itself. The equivalent class of (On,0) is denoted by (0,8). One gets

Dg‘g = ngg =1in H*(Eoo)
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So J is equipped-with a partial sumnation defined as in 2.2 for elements in the

same ,J.
Let J* be the subset of J consisting of all (hoseo oy binyiTr,. .. 7)) which
satisfies either 1) hg > 0, 2) ¢ is odd, or 3) r; =-0. Furtherore, set
T ={(H,R)e J* | |R| is odd },
J& =T\ I
We now state the main result of this section which describes the structure of

the Hopf algebra H,(Z).

2.6. THEOREM.

(i} Hi(Zeo ) is the free graded conmutative algebra over Z, generated freely
by Dy g with (H,R) € JT. More precisely,
H(Zw) = E(Dy,ri(H,R) € J})®Z,[Dy p; (H,R) € J1).
(ii) Its comul tiplication A satisfies the formula
ADH,R — Z (_1)sgn(S,T)-{-n.ISHTfDK’S ® DL,T:
(K,8)+(L,T)=(H,R)
where n = |H| = |K| = |L| and (H,R), (K, S),(L,T) € J.
(iii)
D(U, caey D,hg,...,hn_l;rl+r,...,r:+r)’ -t even,
Dp" — N e’
(ho,...,h"_l;rl,...,rg) r times
0, t odd,

for hgy,...,hpo1 20,0<r < <1, < .

The part (ii) immediately follows from 2.3 and 2.4. The remaining parts (i)

and (ii} will be proved in the next two sections.

3. The p"-th power of the Dickson elements.

This section is devoted to the proof for part (iii) of Theorem 2.6.
Hinted by Definition 2.4, we choose some elements Qn,s, R, (0<s< n),
En,r,s (0 <r <s<n)in H*(Z,) such that their images under Res (E", X,n)

are (—1)"*Q,. ,,(—1)*R, q, (=1)"**R,, ., respectively.
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Let H*(n) denote the Z,-submodule spanned by Qy g for (H,R) € I
general, H*(n) is not a subalgebra of H*(Z;n). By Lemma 1.2, we have

H*(Zpn [Ent1)

i} 3.1
= Ker Res (E™,Spn [Eny1) @ PH*(n) ® H*(Ens41). 3-1)

We denote by Qn+1,3+1,IHE,,+1,3+1,R,,+1‘,.+1,3+1 the images of (—1)"“’3@,113,
(—1)31:%,,,8, (—l)r‘*"'ﬁ,,,,,_,a respectively, under the composite homomorphism
Res (E™!,%,n [ Es41)P. These elements generate a subalgebra of H*(E™+1),
which is denoted by B, (p).

The following lemma claims that Qu+1,s+1,Rn+1,3+1,ﬁn+1,,~+1,3+1 and

B, (p) are well defined, i.e. they are independent from the choice of Qn, " I__%n, "

Rn,r,s-

3.2. LEMMA. Let d* = Res (E"'*'I,E"fEnH). Then d*P gives rise to a

module isomorphism preserving the product up to sign

d*Plg,(p) : Balp) — By (p),

which sends Q'n"_g, Rn,s: Rn,r,s to Q‘ﬂ-l-] 541, Rn+l,s-{—l s R,.+1'r+] FER N respectively.

PROOF. By the naturality of the Steenrod map P we have the commutative

diagram
H*(Sy) —— H'(Zyr [ Eugr)
Res l Res l /ee"‘, ' (3.3)
HY(E") — s H*(E" [ Enp1) ——s H*(EH).

So we get

Qn+1,s+1 _ (_1)n+sReS (En+1’gp,. fE,,Jr_l)P(c‘jm‘,)
= (—1)"**d*P Res (E™, Zpn )(@n,e) = d"P(Qus)-

Likewise _
Rpg1.041 = @*P(Rus), Bugr,rdr,041 = A P(Rors)-
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On the other hand, according to Theorem 1.1 of Steenrod, d*P is a monomor-

phism preserving the product up to sign. Hence we have
B.(p) = d"PB,(p).

The lemma follows,

3.4. LEMMA. As algebras
Im Res (E"*, Ty [Eny1) = B,(p) © HY(Ewpy).

ProoOF. Under the isomorphism 3.1, con1bi1ﬁng 3.3 and by the fact that
Res (E"*1,E,n [ E,41) is a homomorphism of H *(Ep+1)-modules, we obtain

Im Res (E"",Tpn [Eny1) = Res (E", Spu [Eoi))(PH*(n) ® H*(Eng1))
=d*P Res (E",Z,»)H*(n) ® H*(Enﬂ)
= d"PB.(p) @ H*(Ent1) = Bul(p) ® H*(Eny1).
The lemma is proved.

The inclusions E*! C £,n [ Epp1 C .0t induce the commutative dia-
1 + P

gram
H*(Zpn [Epyy) — H*(Zpnh)
l i | (3.5)
Bu(p) ® H*(Epy1) > B,t1(p) '

Recall that H*(Ep41) = E(xy41) ® Zp[yn+1]- So the inclusion in Diagram 3.5

satisfies the following

3.6. LEMMA. |
a3 y o
Qnt1,5+1 = Quir,e41 mod (yh 1) (0< s < n),

-1
Qn+1,0 =0 mod (y£+1 .

(i)

. i - _1 :
Rn-]-l,r+1,s+1 = Rn+l,r+1,3+1 mod ('yf:_'_]) (0 Sr<s< n)
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Here (yﬂfl) denotes the ideal of B,(p) ® H*(Eq41) generated by yf::']_ll.
ProoOF. (i) According to Dickson [3] we have
_ .
Qnir0 = L;:l+1,n+1'

By the definition of the determinant Lp41,n41, 1t has the factor Yn+1- The
second equality follows.

To deal with the first one, we set
Visr = IL (c1gn + -+ €a¥n + Ynt1):
- ci€ELp

Again, according to Dickson [3] we have

-1
Qn+1,s+1 = Q}::,s + Qu,s—'l-l-x’rv{)-i—l

-1
= Qj:;,s mod (yfu+1)-

Since the subalgebra 1P[Qﬁ,3, s Qun—1] = Zo[vy--- ,yn]G[‘" is closed under

the actions of the Steenrod operations,
0 P(Q) € @m0, Q1] © Lol
According to Steenrod [27; Chapter VII] Wé have
| d*PQus = Qhy mod (1)
Combinillg these discussions with the fact that dim Qn,s = 202" «— p*), we obtain
PQuy = Qg mod (L7

Hence the first formula of the lemma follows.

(i) We need the following notation

g e Tn
ﬁl ?}n
Nn,t_ = .t At ] (0 <t S TL).
: yl LR yn
AP" n

/i RN 724
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Applying the Laplace development to the last columns of the determinants
Mn+1,r+1,Mn+1,s+1,Lﬁ+1,n+1 we have

Ryt r41,041

= —Mpi1,r41-Mut1,041 - L1 g

= (Lnr+1:-Nnot1 = N1 L 541) L2079 Zat1yh7] mod (h).

On the other hand, by Lemina 3.2 we have
R11+1,r+1,3+1 = d*P(Rn,r,s)-

According to Steenrod [27; Chapter VII), for each v € H1(E™) we have

d*P(u) = m(g)() (~1)'Pluwy 20" 4 S (=1 HBPiu @ 2,y TR,

where b = (p—1)/2,m(g) = (R1)~7(=1)M7*+a)/2_ 7 simple computation shows
that

d*P(Rn,r,s) = (Ln,r-}-l Nn,s-f—] - Nn,r-i-] Ln,s+])Lﬂ(,£—3) ® xn+1y£1? Il’l()d (yf::,j )

As a consequence, the equality of the part (ii) holds. The lemma is completely

proved.

Let H.(n) be the coalgebra dual to B,(p). We define Qu.r for (H, R) €
nJ by substituting Qn Ry s, Ry r.s })Y'@n+1,s+1,f3n+1,s+1,f?n+1,r+1,s+1 in 2.1
respectively. Denote by ¢y p the dual element of 'QH, r Wwith respect to the
basis {Qx s|(K, S) € ,J} for I:I*(n) Then, according to Lemma 3.2, the
homomorp'hisﬁf | 3 _

' H.(n) - H.(n)

qi,R = qu,r, (H,R) € ,J,
is an isomorphism preserving the coproduct up to Sign.

Passing Diagram 3.5 to the dual we get the commutative diagram
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H.(n) () ® Ho(Bust) —— Hu(n+1)

l i l i"*‘l (3.7)

P - i
HoSpn) —— Hu(Spo[ Bopt) —— Hi(Tpmr)

3.8. LEMMA. For any (H,R) = (Royeeoyhno1iT1,..0,7¢) € nd with t a non-
negative even number, we have

h(é(ho,...,h,,_]_;1‘1,...,1";)) = q(ﬂ,ho,...,hﬂ_[;1‘1+1,...,I"g+1)'
By convention, fort = 0,R = (r1,...,7¢) =0, we set (1 +1,...,r¢ + 1) = 9.
PROOF. Using Lemima 3.6 we gét

h hp- . ~h,
Qn'?i-l,l v Qn+11,n = C2”+1 1° Qn+l n mod (yn+1)

Q(Oshﬂy---:hn—-l;rl"l'l ----- rt+]) Q(ho hn_1iT1 - ,‘l"z) mOd (yn+1)'

(a)

Remark that the dimensions of these elements are divisible by 2p..
On the other hand, suppose that we are given (K, S Y = (koyeovykniS1ye-0y5u)
€ nt1d such that dim Qx s is d1v151b1e by 2p. Obviously, (K S) must Satlsfy
the following conditons
|S|—uls even. : . e (b1)
Ifu>0andsl—0thenkg>0 T -(b2)

‘Indeed, Qni1.0, Bnt1,s Rn+1 0,5 Are the only elements whose chmensmns are not

divisible by 2p among the invariants Qny1,s, Rat1,s Bnt1,ns (see Rema,rk 1.7

(i)-

Assume that (K, S) satisfies (b2). Us.ing. Le_:ﬁlm_a 3.6 we have
Qus=0mod (y235)- ~ (9
Considering the dual version of (a) and (c) we obtain

R(GH,R) = 9(0,ho,eshn~1i7141 ey 1)

The lemimna is proved.
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3.9. LEMMA. P(Dy,r) = (=D)W¥-%j(Gy p) for any (H, Ry e 5

PROOF. Using the isomorphism 3.1 we will show that both sides of the formula
are the same function on H*(Z,» [ E,4)).

(a) Since j is dual to Res (E™*!, Syn [ E,1), we get
{Im j,Ker Res (E"H,EpnfEn_H)) = (H.(Zpn [Eny1),0) = 0.
Hence, by 3.1, the dual pairing gives rise to the homomorphism
j(): PH*(n) @ H*(Ent1) > 7,

for any x € H.($,»).
On the other hand, by the definition of the Steenrod power map P we obtain

(Im P,Ker Res (Z,n x Ent1,Zpn [Enyy)) = 0.
So, from Theorem 1.1 the dual pairing also gives rise to the hbmom(;rphism
P(a) : PH*(Sp) & H*(Bnr) — 2,
for every z € H,(X,»). Additionally we have
{(P(Dy,r), PKer Res (E™,S2) ® H*(En41)) = 0

for (H,R) € ,J. Then, using Lemma 1.2 and 3.1 we get the following homo-

morphism induced from the dual pairing
P(Dyr): PH*(n) @ H*(Eny1) — .
(b) By the definitions of §y g and P(Dy r) V&lfe have
(3(@m,), PH(n) ® H*(Eur1)*) = (G1,8, Ba(p) ® H*(Epy1)™) = 0,
{(P(Dy,p), PH*(n) ® H*(Ep41)") = 0.

Here H*(E, ;1) denotes the ideal of all elements of positive degrees in
H*(Epp1).
(c¢) Obviously,
(P(DH,RLPQK,S) = 65:15-';1
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where the right hand side is the Kronecker deélta. Further,

(j(ﬁH,R)apéfr,s) = (§u,r, Res (E?*]szp“fEn-!-l)PéK,s)
— {éH,R:(;1)III(’S|_IQ1(,S)' :
= (-1 Rz,
From thé discussions (a) (b) (c) the lemma follows.

PROOF OF THEOREM 2.6. (iii). If ¢ is odd, then the formula follows from the
commutativity of the algebra H, (X ) and the fact that

dim -DH,R = |R| =1 (modZ).

Assume that ¢ is even. It suffices to prove the formula only in the case r = 1. For
(H, .R) = (hoy-..,Rn_1; 1, 5 Teh combmmg the commutatlwty of Diagram
37w1th24 3.8 and 3.9 we have

H,R -I-i .
)Il " t +I(q(0 hO) mftna1irr+1,, Tt+1-))

= (DR 1 h(dn,r) = (-1 RI35(Ga R)
= iP_(DH,R) = -DPH,R,

D(G hO n n-— 1|T1+1 Tt+1} = (

The part (iii} of Theorem 2.6 is completely proved.

4. ’I‘hg ‘_Di_c_kz_so_n elements as free generators of the algebra ‘H*(Eoo) .

The aim of this section is to prove Theorem 2.6 (i).

Recall that the homomorphlsm N o .
HY(Zwm) - HH* o | (4.1)

induced-by the réstrictions Res (4, Z,,) : H¥(Zn) — H*(4) is injective, where
the direct product runs over a set of representa,tlves for the conjugacy classes
of maximal elementary abelian p—subgroups of £y (see Qulllen [20],[21], Huynh
M [4]). ' : '

Huynh Mui determined in [4] such a set of representatives as follows. For
a given natural number m, let A(m) = A,(m) denote the set of all infinite se-

quences of non-negative 1ntegers M= (mg, my,.:.).such that m = X, 5om,p" .
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Using the result of Nakacka [10] on the module H*(Zco) we can easily check
that this module is isomorphic to the source of the epimorphism as graded Z,,-
modules of finité type. Hence the epimorphism is actually an isomorphism of
algebras. - : o

The proof is complete,

Taking the dual version of Theorem 2.6 we have the following

4.6. REMARKS. _ _
(1) There exist uniquely the elements'Q,,,,g,Rn,S(O <s < n),l_?,,,m (0 <

r < s < n) satisfying the following conditions:

Res (E“,E,,n,)Qn‘s = ('f‘]-)r'-"—ngn.s;
Res (En, EPI")RR,J = (_l)sRu,ss
Res (B, Spr)Rora = (=1 Ry 1o,

Qn—-l;s—l IR ] Qn—l,s—i 5> 0,
Res (£0,.,,Z,0)Q,., = - :
) ,:Pn-" ‘ p‘ nls,r. .

P titnes \
0 s =0,
Res (£0,_,, Zpn )Ry s =0 | |

Rn—],r—l,sul ®'® Rh—],r—l.s—‘: r > 07

A

s (TH » — g
Res (‘—Jpn—: 3 Ep" )Rn,r,s - p limes

0. - S ' e =0

(By convention, we forget the conditions on Res ( Zi 1, Spn) whenn = 1.)-
The first formula corrects the mistake in sign of the corresponding formula
in [15; Theorem 2.2]. Compare with Remark 1.7 (ii)..

(ii) By means of obstruction theory we can show
Qn.s =Crns (0 <5 <n),

(see the definition of C,, 5 in Remark. 1.7 (i1)).
(iii) Let I(n) be the ideal of H*(X,n) generated by Qn,g,Rn,s (0.5 < n)
and Rno,s (0 < s < n), Denoting J* = ,J N J*t we have

~ I(n) = Ker Res (Zgn_l_, Tpn) = Span{Qir | (H,R) € JT}:



MODULAR INVARIANTS 285

Here Q H,R denotes the unique element satisfying

Res (E",Z,n)Qu,r = (‘U”H’R”QH,R,
ReS (Ein—l 3 ZP")QH,R. = 0?

for (H,R) € ,J+.

5. Dickson characteristic classes and the algebra H*(S,)

In this section, ;:onsidering; the dual version (;f Theorem 2.6, we define the
mod p universal Dickson_characteristic classes and use them to explicitly de-
scribe the algebra H*(Zs,). For this end, one can apply the direct argument
as given in Section 4 of [16] for the case p = 2. Howevér, we explain here an
improved argument, which we obtained after valuable discussions with Huynh
Mui and Nguyen Viet Dung. We thank them both for their suggestions.

Recall that for any (H,R) € J we have defined in 2.4 the Dickson element
Dp,g in Hy(Zo). Let us equip J with a total order < such that (8,0) is the
minimum element. For instance, we can choose < to be the lexicographic order.

According to Theorem 2.6, Hi(Xu) a.dmits the Dickson additive basis con-

sisting of all elements of the form

D# ry- - DY, a, | (5.1)
Here the indices must satisfy the following conditions
(H17R1)< “'<.(H§1RS)$ (HHRt)%(gaﬂ) if3>0a
t; = 1 for |R;| odd,
' (5.2.)
1<t < pfor |R;| even,
0<s5 < o0,

CONVENTION. For s = 0, the element 1n 5.1 becomes
Dg,g = 1.
9.3. DEFINITION. For any (H,R) € J we set

Cor=(Du,r)" € H(Ex),
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where the dual * is taken with respect to the Dickson basis given in 5.1..

5.4. REMARK. : _ .

(1) Cu,r does not dépénd on the order < chosen 'i1_1 J.

(i) For R =0, the empty sequence of indices, Cy ¢ has a close relationship
to the Chern classes of the natural representation ,n C U(p"). Indeed, by

means of Remark 4.6 (ii) it is easy to prove that

. L .. n—1 .
Res (Spm, Soo)Crp = | [ O
o S iZo
for H = (hq, . . .-, hn_1). Here Cp ; denotes the Chern class of dimension 2(p™ —

p*) for the above representation of the symmetric group Tpn. (Compare with
Remark 1.7 (11)) _
- We now state the main result of this section.
Let us consider the following subsets of J given in 2.5:
Jo= {(H,0) € J | H is not divisible by p},

L ={(HR)eT||Rlisodd}, -
. Jp = {(H,R) € J | |R] is even and positive}.
Here H = (hg,...,h,—1) is said to be not divisible by p if there exists h; which
is not a multiplé of p (0 £ i < n). Remember that for R = (r1,...,7¢) we have
defined the length of R to be |R| =t (see the beginning of Section 2).

5.5. THEOREM. We have-an isomorphism of graded algebras
H*(Se0) = Z,[Ciy 03 (H,0) € Jo] ® E(Crr,; (H, R) € 1)
®L,[Ch,r; (H,R) € L)/(CY i (H,R) € Ja).

So we call Cy g the (mod p universal) Dickson characteristic class of the

type (H, R).
Now we need the following notion of polynomial degree, which plays.a key

role in the proof of Theorem 5.5.
5.6. DEFINITION.

(i) Given (H,R) € J, according to Theorem 2.6 (iii), Dy,r can be written
uniquely in the form |

m
DH R :‘DPHJ"RI

1
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for some (H',R') € J*. (See the definition of J* just before Theorem 2.6). By

the polynomial degree of this element we mean
d(Dy,r) = p
(ii) The polynomial degree of an element in the Dickson basis is defined by

fl(Dt]_}th e D;},,R,) = tld(DHth) + -4 t‘,d(DH“R’).

To prove Theorem 5.5 we now state some lemmata, which will be proved in

the next section.

5.7. LEMMA. Let C = CH; R, ...Di}“R‘_, where the indices satisfy the con-
dition 5.2. Then D = D;} R, - D;ju . is the unique element in the Dickson
basis with polynomial degree > d(D) and having non-zero dual pairing with C.
Furthermore, (D,C) =t;...1,.

We remind the readers that the product defining C is the cup product
whereas that deﬁnmg D is the Pontriagin product.

As a consequence of this lemma, we obtain

5.8. LEMMA. H*(Z) is spanned as a Z,-module by the elements

s
Ciry -+~ CH. Ro
where the indices satisfy the condition 5.2.

5.9. LEMMA.
(1)
Cho = Cpnp
wherepH = H+---+H (p tunes) and the sum is defined in terms of coordinates.
(i) |
CH R=
for |R| even and positive.
(1ii)
Chn=0
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for |R| odd.

PROOF OF THEOREM 5.5. Combining Lemmata 5.3 and 5.9 we obviously ob-
tain an epimorphism of graded algebras
hiZ,[Chg;(H,0) € Jo] ® E(Ch,r; (H,R) € J1)
® Z,[Cru,r; (H, R) € Jo)/(CYy i (H, R) € J2)
H*(So0).

Comparing the module generators for the source of h with the Dickson basis
of H,(Z) we see that the source of h is isomorphic to Hi(Xo); hence it is
isomorphic to H*(Zes), as graded Z,-modules of finite type. As a consequence,
the eplmorphlsm h is actually an isomorphism of algebras ‘

Theorem 5.5 is completely proved

6. The algebraic relations between the Dickson classes.

" This section is devoted to prove the lemmata of the precedmg sectlon
First of all we compute the comultlphcatll_on of H*(E ) in terms of the
Dickson basis. | '

Note that if A is a commutativé graded algebra, then one has

- t' 1 n
(a1 +-+an) = D et t")—-———tnI v.ah,

!
thoeef =t
tfezy
for ai,...,a, € A and t a natural number. Here e(t',...,t") is a certain sign

depending on the partition ¢ = ' +--- 4+ ¢t™ and the degrees of a;,...,ax.
Applying this fact to A = Hy(Zw ), from Theorem 2.6 we get

ADH R = | Z . sgn(K,S,L,T)Dk s® Dy T -
(S H(L.T)=(H,R) (6.1)

= ZSQH(W)t“ tanDK' 5@ HDt Vel
i=1

Here the summation runs over the set of all partitions

t=t"+-..+¢", (H,R)=(K',§)+ (LT, 1<i<n<oo, (m)
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and sgn() is a certain sign depending on 7. Remark that if t = ¢! ... +¢" < p

then ].'
t

‘Hence, for H = (HI,R;).._.(H_S,RS), = (t1,...,t,) satisfying the condition

5.2 we obtain T . .
: AD =A(Dﬁ‘.1 Rl..‘Daa,Rs)'

= Zb(ﬂ)HDK' s ® HDL' ) (6:2)

where the summatlon runs over all part1t1ons = (7r1, ., Ts) with

t; = tl +- —I—t , (Hj,R;) = (.Kt St) -{—(L: Ti), 1<i<nj<oo, (m;)

it
and b(r) is a certain non-zero scalar in Z,,.

6.3. REMARK. For simplicity, let us reformulate (6.2) in the form
A(D, g, -+ Dy, p,) = Y _WUmDY s ...Dj¢ 5 ® DY 1. DYr 1,

where b(7) is non-zero in Z, and r = T‘(‘ﬂ') is a certain number depending on
the partition .

It is easy to see that for any term D} o ..... Dy s @Dplp.--- Dy T
in the right hand side of 6.3 we have

d(D}}hRI . DR S d(‘DK],Sl‘ D% 5r )+ d(-DL1 T e D?,_:,T..)'
Moreover, equality happens if and only _1f r=s a_nd additionally either
DK.,S =1, DL T = Df}.-,Rw

or

9 LI I o 111 :
D;lfi,S; =D iR DL;,T= =1
for-any i(1 €7 < s). In this case, we have
i i, r Uy
Dy ry--- Dt r, = (DKI 51 D?{,,s )DLy - Do)

We are now ready to prove the lemmata in Section 5.

PROOF OF LEMMA 5.7. We prove the lemma by induction on s.



290 NGUYEN HUU VIET HUNG

For s = 1 we simply write C = C} hrD = Dt g Fort=1 the lemma
follows directly from Definition 5.3. Assume that ¢ < p and the lemma holds
for t — 1. Suppose that ' :

d(D}, g, - Dl q,) 2 D), o €

where the element D} 5 ... D}’:,Qq on the left hand side belongs to the Dickson

‘basis given in 5.1. Using the formula for the coproduct taken in 6.3 we get
(D} o, ---D}}:,QQ:C}!{ R} = (A(D}J: Q.- --D?:,Qq)v C;}:}: ® CH,r)
= > Wm)(DE, s - DK, S C ) (Dit 7y - DL 1, CrR)

If the sum is non-zero, then it contains at least one non-zero term. Suppose

that this term is
(DK1,5'1 D;é-r[Sr ’ C;'I_:}{) (‘D_Ell ;Tl e DE:1TI" CH’R) ?é 0 ) . (b)
By Definition 5.3 it implies

Uy

Dy gDy, = Dure | BT (c)
Combining (a), (c) and Remark 6.3 we obtain . - -
ADE, 5D, 2 AD) = dDi) = D).
Usmg this fact together w1th (b) and the 1nduct1ve hypothesw on t we have

DY

1(1,

Dt;(r 5 = =Dy | (d)-
Combine (a), (c), (d) with 'R'emark 6.3 we get
A(D) < d(DY g, .- Dt g.) < ADi5) + (D) = d(D),

So the two inequalities < become equalities. Again, by means of Remak 6.3 we

obtain

U o DY o = DT Dur =D g
Next we will prove that ' -
(Dh,r,Chir) =1t (o)
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for t,(H, R) satisfying 5.2. We observe that
(DtH,Ra C;{,R) = (AD}J,R’ C;—I—,}{ @ CH,R>‘

Using the same argument mentioned above we see that the only term in A D¢ H.R
whose dual pairing with C’L’ r ® Cu g is non-zero, is of the form bD}{‘}%- @
Dp.r (b€ Z,). Obviously it coincides with the term of the same form in the

sum

(1® Dy r+Dyrel) = t.DtH_,}R ® Dy, g + (other terms).

Hence, (e) follows. The lemma holds for s = 1.

Now suppose that s > 1 and the lemma is true for s — 1. By Remark 6.3, an
argument similar to that for s = 1 shows that D is the unique element among
the Dickson ones with polynomial degree > d{D), which could have non-zero

dual pairing with C.- Now we must prove
(D,C) =1...1,.

Note that

.- , to- ,
(D, C) = (A(DY, r, - D7 pes- ity 1) Cll oy -+~ O oy ® Cl,

Using again Remark 6.3 to do some simple computations on the right hand side

we get

t t,—1 . . t, i,
<D’C> = (DﬁlsRl ”'DHsjlvRs-l,_CHlle CHs I:Ra l) X <DH5’RE’CH£*R">

=1 ... ty_q.ts

The lemma is completely proved.

PROOF OF LEMMA 5.8. It suffices to prove that if z € H,(¥.) has zero dual
pairing with all the elements given in 5.8, then z = 0.
Assume the contrary that z # 0. We take the linear expansion of = in terms

of the Dickson basis. Suppose that

r__ Ul Uy
D= K1,5, ...D}(nsr
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is the element with smallest polynomial degree among the ones of the Dickson

basis appearing in this expansion. By means of Lemma 5.7 we get

(z, Cxl,s, .C¥, s,) = (D' C}?;,_sl. - K..,S ) # 0
This-is a contrad1ct1on The lemma follows

PROOF OF LEMMA 5.9. We need only to prove (i) and (ii), since (iii)AfollovsIrs
directly from the information on dimensions. '

Given a natural number ¢ and any (H, R) € J, by induction on ¢:one easily
get '

Chr = Z(Coeﬁ-)(D}frl,_R; _ DH,,R ) . (a)
where the sum is taken over the dual of some Dickson elements satisfying 5.2
and additionally the condition C

\Hi| = |H|

for every :.

On the other hand, let P* be the i-th Steenrod cohomology operation. Then
one has , '

Cha=PCun) )

where k = 1/2 dim Cp, . - |

Let P! be the homology operation dual to Pi. Obviously, Res (E™,Zpn)
is a hémomorphism of A(p)-modules, where A(p) denotes the mod p Steenrod
algebra. So bjr' passing to the dual, the module . | '

Im in = Span{DH,R ] |Hl =.n}\

is closed under the action of P,:-for any t.

Recall that one has ﬁhe Cartan formula
~ Pl(ay) =) _Pi() P (y)
; * M

for z,y € H*(Eoo) (see e.g. [8]).
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We define the multiplicity for Dickson elements by putting
#(Dyp ) = pl''l,
plry) = plry + uly).

By convention. zero is cousidered to have every multiplicity. An element in
H.(Z) is called to be of homogeneous multiplicity m if its expansion in terms
of the Dickson hasis contains only Dickson elements of multiplicity 7. The set
of all such clements forms a submodule of H,(S,0). It is denoted by, H.

From the above discussions we observe that P! preserves the multiplicity.
That means that P! acts close Ivin,H:PH{,,H)C ..H. .

Pas«‘sing to the dual and combining the obtained result with (a) and (b) we
get

Chik = Z {coeft.) DY, o,

where the s runs over some (K..S) with |K] = |H|. In other words.
Clin € Span {Cps | |I] = [HI}.
Set » = |H|. From Definitions 2.4 and 5.3 1t inumediately follows that
Res (E". S ) Span{Cres | 1K = n} — Bu(p)
is an isomorphism. which takes Cp g to (Qr,s. So we have

I | Quua for =0,
e il v !

Res (£, . I{_QH R .
0 otherwise .

The lemna follows,
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