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1. Introduction
Let H, and M, (4 > —1/2) be the Zemanian spaces of test and generalized
functions, respectively (see [5]). Denote by B, the Hankel integral transform
defined on ), [5]. It is known that this operator is an automorphism on H' (10 >
—1/ 2} with B! = B,. For a suitable ordinary function f(z) (for example,
fe Li(Ry), Ry = (0,00)) the operator By, is defined by

) == B,u[f](rt) = /000 \/:v_t,f#(:z:t)f(a:)dar, te Ry,

where J,(z) is the Bessel function of the first kind.
Let Ji = (ar,b) (k = 1,2,...,K) be certain bounded intervals in Ry such
that Jx NJ; = @ (k # ), m a non- negatlve integer number. Consider the

following dual mtegral equations
reB " AWUD)(2) = filz), 7 € Ji (k = T,K0),

(1.1)
u(z) = Byla(t))(z) =0, z € Ry \ Jo,

where Jy = k§1Jk’ 71 denotes the restriction operator on Ji, A(t) and fi(z)
are known functions, 4(¢) is an unknown regular generalized function in 7¢),.
Concerning the function A(t) we make the following assumptions:

i) A(t) € C(By), Re A(t) > 0,

i) L(t) := A(t) =1 = 0(tP), t — o6, p> 1.
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Equations of the form (1.1) when Jo = (a,b), a > 0 were considered by
many authors (see, for example, [1,3]‘). Formal solutions of such equations by
the method of Erdelyi-Kober fractional integrals have been given in [3] for the
case J = (0,b) and in [1] for the case Jo ={a,b),a >0; At) =1. The validation
of the case Jo = (0, b), A(t) =1 may be found in [4}.

The aim of the present paper is to propose a method for reducing equation
(1.1) to an equivalent system of Fredholm integral equations of second kind,

which has a unique solution in certain subclass of square-integrable functions.

The method is based on the theory of generalized integral transformations [5]

- and allows, in particular, to find the exact solution when A(t) =1.

- Throughout. this paper Ny denotes the set of non-negative integers, N =

{1,2,3,...},p¢ 2 —1/2, and D> denotes the differential operator d/dx.
2. Some.auxiliary_differential and integral operators
In the sequel we shall need the following differential operators
A"I:ln(p(:ﬂ) — 1_-*;1—1/2(Dx.m—1 )ma:m+;:+1/2l(?($)’
VJ\TI:JV(,O(J.‘) = :r:""';f‘l%]_/?(}lr_]D;)"':c"“"ll/?(p(m),

where'mm € Ng, pu 2 —1/2.
Note that the operators M), N have been introduced in {5] and ‘denoted

there by M), and Ny, respectively. By induction one gets the relations

m—1 -1
A'/[;:} = H A'I.u-i-j’ N:;n = H AN.u-i-mfl—j (2'1)
j:O . ) 1 =0 . - .
It is obvious that
M 2, ()] = Ny P (P =0, (2

where py—1(2) is an arbitrary polynomial of degree m — 1.
Using (2.1) and Lemma 5.3.3 m [5] one can prove that M. (respectively,

N} defines a continuous mapping (an isomorphism) from H g into M, (from
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H, onto Hyim). These operators may be extended to generalized functions by

the equations

<MPfp> =< f,(-1)"Nlp> w€H,, f€ Hﬁ.m, (2.3)

<N fip> =< f, (-1 )mML"“cp >, ¢ € Hypm, fFEH,, (2.4)

where < f,p > denotes a value of a generalized function f or a test function .
Let D'(J) denote the space of distributions on the interval J = (a,b) C
Ry. For f € D'(J) the operators M} f and N f are defined by (2.3) and
(2.4), respectively, where ¢ belongs to the set Co (J) of infinitely differentiable

functions with support contained in J.

It is not difficult to verify the following formula

B,[t™ fl(z) = MmB#+m[f]($) feEHysm: (2.5)

Let us consider the followmg fractional 1ntegrals

—m " wtifz pt+1/2 2ym=1
M, [ fl(z) = Tm__;f(—f FEORT (" — eyt (2.6)
M-G[f] —-f M [f] = ,uO [f]a .
( l)mxﬂ-f-l/z ‘ —m—p41/27,2 2ym—1 .
NP f)z) = 7"_‘_1“(_)_/ fEm T — 2t (2.7)

Nolfl=f, N;™([f]:= Ny wlfl,

where m € N, F(m) is the ga.mma-functzon
If it is necessary to indicate the belonging of 2 to a certain bounded interval
= (a,b) C Ry we shall use the notations M [f] and N7 [f] for M"m[f]
and N, *( flla<z< b); respectively. In th1s case we make the’ assumptlons
t”"'l/zf(t) € Ly(J) for M, 7(f] and t~™ 212 £(1) € L,(J) for N TS
Let I, 4 and K, 4 be the Erdelyi-Kober fractmna.l 1ntegrals given in [1,3].
From (2.6) and (2.7) we have

M;™[f)(z) = 272 L jo 1 jaml f)(2), @ >0, (2.8)
N;m[g](m) = (—2)_m1{p/2+1/4,m[tmg](m): x> 0.
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Note that if f(t), t™g(t) € L1(Ry) then M ™[f]land N m'[gr] belong to LI(R+)

(cf. [4]). e
In the sequel we shall also need M, 7{f], where f € D'(J). To thend M,u—?
let us use the followmg equa.hty 3] ' Co T e ‘

- l,mm(w)— e 1,4+mus e ol (=), m‘>0 (2.9)

where Sp q denotes the modlﬁed Hankel tra.nsform defined by [4 ]

Spalfl(e) =217 Bpygli' (D)), @ > 0. (210)
A suﬂiment cond1t1on for the fulﬁlment of (2.9) is, for exa.mplo t“"'l/ lf) e

L1(0,1) and tY/2~™f(t) € L1(1,00). Remark also that if 2p + ¢ > —1/2,
gt/ qf(ﬂf) € Li(R4) and 90(-"3) € H2p+2q+l/2a then

fom Spal fi{t)p(t)dt = /f(:v)sp,q[(p](:c)d:c, o (211)

where o | : : |

Spalel(e) = 272" S, 1z, il @ (212)
The equality (2.11) was established by using (2 10) and the Parseval equation
for the H_an.kel_ transformation. We shall maké use of the followmg theorem in
THEOREM 2.1. If2p+q > —1/2 then ‘the operator .S'p g is an isomorphlsm from

H2p+2q_1/2 on to 'Hzp ~1/2 With S P+q _q

_ As a corollary of Theorem 2. 1 note that if 2p+¢ > —1 / 2 then Sp g deﬁned by
(2 10) is an 1somorphlsm from H2p+2q+1 /2 on to Hapyy/p with .S' p4q,—g
by virtue of Lemma 5.3.2 [5] I

- We are now gomg to deﬁne Sp ¢ for generalized functlons Ba,sed on (2.11)

and the above remark we put

- < SP:?_[f]a‘? >°= < f1§P;9‘[(P] >y

where

fe H;p+1/2’ @ € Hypingr1/2 2Pt a2 —1/2.
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According to Thecrem 1.10.2 in [5] the generalized operator Sp,q Is an isomor-
phism from H;_ ., onto H’2p+2g+_1/2- Moreover, S, = ra,-ge

Let 2p+ ¢ > —1/2 and 2p 4 2¢ > —1 /2. The generalized Erdelyi-Kober
operator I, , as a mapping from H2p +1/2 mnto ’Hzp +29+1/2 18. defined by the

equation :
P;q[f] = Opy, OSp q[f]

We now define the generalized operator M, ! acting from H,, into H by

st m
the formula (2.9), where f € H’ One can prove the following equality

<SMIMfle > = <f(-D"Nml >, p € CR(Ry). (213)

Let f € D!/(J), J = (a,b) C Ry. Denote by fa. the extension of f such
that f, € H), and f, =0 on (0 a) if a > 0. We define the generalized operator

M T(f] by |
M, 7f)(z) = rJ_M;’"[fa](:c), (2.14)

where r; denotes the restriction operator to the interval J. Using (2.13) one
can prove that the generalized operator M .7 Lf] does not depend on the choice
of the extension f, € H,.

PROPOSITION 2.1. The following equalities are valid
MM 7 fl() = f(=), z € J, o (2.15)
M3 M f)e) = f() + o™ 2 ((a?), s e J,  (2.16)
where f € D'(J) and ppm—1(z) is a certainr polynomial of dggree m—1.
PROOF. First we prove (2.15). For any ¢ € Cs°(J) we have (sée (2.73))
< MIMCG(flp > = < MBI (- NPle] > =

<TIMEMFL (D)TNTlR] = < M ™[f, ()N ] >
R o ' (2.17)

For every ¢ € C§°(R.) there exists the equality

NNl = . (218)
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By virtue of (2.13) and (2.18) we get from (2.17) the following relation
< MPM7Ifle > =< fa,so_>_: <fip >, Vo € CP(T).

This implies (2.15).
We now prove (2.16). According to (2 15) we have

MIMITMP(f) = MP(f) | (2.19)

Thefefore,_taking--into account (2.2), from (2.19) we obtain (2.16). Q.E.D.

3. Solution of the equations (1.1)

Without loss of generality we may assume that 0 < a7 < ag-++ < ak: First
consider the case a; > 0. We introduce some classes of functions. Denote by

C w~*(Jo) the class of functions u(z) satisfying the conditions

NPul(z) € C(Rs), NP[ul(z) =0, z € Ry \ Jo (n=0,1,..,m — 1),
R - | | (3.1)
NPl e L) | (32)
Denote by 07(Jx) the class of functions v € LQ(R+).\.Vith supp v C Jk such
that ) - ' ' '

' k
/ gt (2)2?dx =0, n=0,1,..,m — 1.. (3.3)

a

Let 6(x) be the Heaviside function. Consider the function

- pht1/2 '
“#) = 5t & Z f o= o =ty 0
where v (t) € 07 (Jk).

o
THEOREM 3.1. In order that'u(z) belongs to the class C m—1(Jo) it is necessary
and sufficient that it is represented by the form (3.4).
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PROOF. Sufficiency. If 2 € Jx = (ax, bi), by virtue of (3.3) and (3.4) we have

(_l)nxn+p+1/2

: . b .
N [u](z) = 2"‘—”—_1F(m ) /,: ?""_”+1/2vk(t)(t2 — p2ymn=lgy
' o ' (3.5)
(n=0,1,..,m —1),
u(z) = (~1)" N, [oil(z), (3.6)

where N [vi] is deﬁned.by the formula (2.7). Now, let by_, < z < ax: From
(3.4) and (3.3) it follows

( 1)11 n+p+1/2 K
2m=r=1D(m — n)

b; o ,
Ny)(z) = [ e - ety =o
“ (3.7)

(n=0,1,..,m—1).
It is clear that if 2 > by then Niul(z) =0(n=0,1,2,...,m). Therefore, from
(3.5) and (3.7) we get (3.1). Taking into account (2.15), from (3.6) we obtain
(3.2).
Necessity. Let u(z) € C—(Jy). We put

[ (~D)"NPlul(e), = € T,

)= L0, 2 e R\ (k=12 10

(3.8)

By virtue c_if (3.2) we have vx € Ly(Ji). We need only to prove that the functions
v satisfy (3.3). Indeed, taking integfa;fion by parts, we get' conditions (3.3) in
view of (3.1). It is not difficult to see that by virtue of (3.1) and (3.2) the form
(3.4) follows from (3.8). Q.E. D.

Taking the Hankel transform B, of u('r:) defined by (3.4) we get
a(t) := By [u](t) = Z Byml[vi](2). (3.9)

One can easily prove the following result:
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PROPOSITION 3.2. A function u(z) belongs to the cIass '(03"”‘1(30‘)7 if and only if
its Hankel tra.nsfonn B, has the form (3.9), where vy e 0n(Jk), k =1, 2 K
. We now turn to the equation (1.1}, We shall ﬁnd a the functlon u(a:)
#[u](m) in the class Cﬂ‘ 1({Jo} for m € N. Using (2.5) we rewrite this equation

_in/theform
M Byl ARIDI(E) = file), s € T (h=12,.,K),  (310)

where u(z) := B,[dl(z) € O~ (Jo) i m € N, u(z) € Ly(Jo) if m =0, and
fk(a:) € D’ (Jk) for which there exist generalized operators _’}‘k Lf&l:
Takmg into account that rgM m[g] = M}[rkg] one can apply M 7, to

(3.10). According to Proposition 2.1 we have

| nBuanli” AQIO)) = Fu(z) + Gk(m) e
(:cEJk,,k-lZ I{),:___

where 7 |
Fu(e) = M3 @), Gala) = o™ P a (), (B12)

pk m-1(2) is a polynomial of degree m — .1 and ideht:i'ic:al'ly equals zero it m = 0.
Now in (3. 11) we substitute A(t) and @(t) by using condition ii) and (3. 9),
respectwely Note that B, ptm F.].m[v] = v. Then a.fter some transformatlon we

obtaln the followmg; system of mtegra.l equa.tlons -

uk(m)+z eHm(:.; t)vj(t)dt Fk(m)—!-Gk( 5 (313)

Cg=rYe

(@€ Ji, k=1,2,. K)

where

Cyim(z, ) = /0 (,\)\/_ J +m(a:)\)\/_ Tum()D. (314

Obviously, under the assumption 11) the mtegral (3 14) is absolutely convergent
Hence £,y m(%,t) € La(Jx x Jj).
Using transformations inverse to those used above from (3.13) we come to

the dual equation (1.1) where i(t) is defined bv (3.9). Due to Theorem 3.1
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and Propositionn 3.2 the function u(x) := B,[i(t)](z) belongs to the class
é’f‘l(Jq). Therefore, we obtain the following theorem:

o 5.
THEOREM 3.3. The dual equations (1.1) considered in CT"1(Jy) with respect
to u = B,[ii] are equivalent to the system of integral equations (3.13), where

vk(z) € 0;*(Jx). Moreover, they are connected with the function u(z) by the
formular (3.4). '

Note that a; = mkin{ak} > 0. Then as it is clear from (3.12), Gi(z) €
C(J1) C La(Jy) (k=1,2, ..., K). Suppose that the functions fe(z) are given
so that the functions Fy(z) defined by (3.12)_beloﬁg to Ly(Jy), k = L,2,.,K.
Using the assumptions i}, ii), (3.3) and the Parseval equality, one can veryfy that
system (3.13) has at most one solution in Hf:] Op(Jy C Hf:l La(J¢). Since
the kernel functions are symmetric and square-integrable, the dual system has
at most one solution either. |

- Thus by the Fredholin alternative, we have: -

"THEOREM 3.4. The system of integral equatlons (3.13) has a umque solutmn
in H Om(Jk)

EXAMPLE 3.1. Let J = (a,b), 0 < a < ¢ < b. Denote by §s(z — ¢) the

restriction to J of the Dirac §(x — ¢) function. Let us consider the equations

Bo[t*a(t)](z)vebs(z — ), a < z < b,

_ (3.15)
u(z) = Byli)(z) =0, 0<z<a, 2> .
One can show that (3.15) can be reduced to the form
MoNou(z) = —/ebs(z —¢), a <z & b, (3-16)
where : ' :
Mo Nou(z) 1= ¢~1/? i:1:—C-l-:r:-l/ztlg(a:).
dz dz

Using (2.10), Problem 5.5.1 in [6] and formula 6.575 (1) in [2] one gets

0, a<z<ec,

Mg 3 [Vedj(z ~ o))(z) = {

%,c<w<n.
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In this case u(z) and v1(z) = v(z) have the forms

o gV f:t-;lfzv(t)dt; a<z<b,
u(z) = ‘ (3.17)
0, z € Ry \ (a,b), .
\/-52:/2, a<z<c,
vz)=§ Tz~ \/—T:%/Lz,c<:c<b,

01 TE R+ \(G., b)
Calculating the integral (3.17) we obtain

u(x) = - c\/_f;ngjcfnb/m + e/zlnb/zb(x — c)+

4 e/rlnb/cb(c—z), a <z < b

It is clear -that_ u(a) = u(b) =0. Tilerefore u(z) satisfies the diﬁ'erential equation
(3.16).

We now consider the case a; = 0. This case is more complicated than
that con51dered above since there are e,xamples having an infinite number of
solutions in the class C’ m=1(Jp). We make the assumption g > 0 and introduce
the following notion.

Denote by 0’“(.]1) (J1 = (0,b)) the class of functlon U(:B) € Lg(Jl) such that
the functions defined by

by . _ . _
Val[ol(z) := f g~ a2 ()82 — 2P)*dE, n=0,1,...,m — 1 (3.18)

have bounded values when x — +0. o
The solution U(z) of (1.1) is sought to be in the same form (3.4), where
n(z) € 0 (J1), vk(z) € 0 () (k =2,3,. .., K). The set of such functions

~m1

U(z) is denoted by Cu (Jo). Asin the case a; > 0, the function vi(z) are
determined similarly by the system (3.13). Let Gi(x) be the functions defined
by the formula (3.12).

LEMMA 3.1. Let u > 0. The function G;(z) satisfles the conditions (3. 18) iff
Fl(x) =0.
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PROOF. Representing function Gi1(z) in the form

m=1

Gi(z) = pm—at1/2 Z Cl'jcczj?
j=0
‘we have
m--1
ValGil(z) = ) C13Un (), n=0,1,...,m -1,
j=0
where

by
Un,j(x) — / t2]—2m—2n+l(t2 . :Ez)ndt.

Let us consider Uy ;(x). Since j < m—1+pu, g >0, U ;(z) (5 = 0,1,2, ..,mul)
are not bounded at z = 0. This implies Cy; = 0 (F = 0,1,2,. — 1), ie.
Gi1(z) =0. Q.E.D.

| Obviously, the integrals f Py m(, t)v;(t)dt (2 € Jy), where Lyim(z,t) is

defined by (3.14) satisfy the conchtlons (3.18). According to Theorem 3.4 we

have

THEOREM 3.5. Let u > 0, Fi(z) € Lo(Ji) (k = 1,2,..., K), Fy(z) satisfy the

conditions (3.18). Then the system (3.13) with respect to v,(z) € 6;}‘((71),

vk(z) € 07 (Jx) (k = 2,3,..., K) is one-valued solvable.

Let us consider some examples. For simplicity, let A(t) = 1.

EXAMPLE 3.2. Let Jo = (0,51) U (az, b). Consider the equations
Bo[t*a(®))(z) = —Vzdi, z € Ji, (k= 1,2),
u(z) := Bold|(z) =0, = € Ry \ Jo,

where dy = const, J; = (0,b;), J2 = (ag,bz). We have

Fi(z) = __-23:.93/2 (0 <z <by), Fz)- 523,-—1/2(,@2 —a?) (az < & < by),

(5.19)

d;
v (z) = _?m3/2 (0<z<b)
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VolFil(e) = Voloal(e) = (8 - 22),
dy 2% —d? da bi—a

2
1
e 2 _ 2 b
vlz)=-3 7% +2Enbg/a2( 5~ alnb/e) Z

(az < z < by),

by -
u(w)==r”2/ 9(t—:r)t—‘/2v1(t)dt+a;1/2[ H(t :c)t*lfzvg(t)dt.
0 as

Calculating theses integrals we get
¢ ,%31{2(53 —z%), 0Lz < by,

Os bl Lz < ag,

‘ u(-’!:) = 4 d2 . 1/2(p2 2 d2(bz“'a'2) 1/22 b <z<b
-5 ( 2 — & )+ 4€n62/a2 n2/$ as e 24
L 0, T 2 52. ‘

Note that {3.19) can be reduced to the form
P 1/2u(af:) dkﬁ, z € J.

Tt is not difficult to verify that the obtained function u(z) satisfies the last

differential equation.

The following example shows that if conditions (3.18) are not fulfilled then

(1.1) may have many solutions in 6’:‘_1(.]0).
ExAMPLE 3.3. Consider the following homogeneous equations:
Bultta(](z) =0, 0< z <b,

u(z) = Bn[ﬁ(t)](m) o, ;::_2 b._ (3.20)

We shall show that if u(z} is in C’1 5(0,b) but. not in C (0, ), then (3.20) will
have non-trivial solutions. By (3.4) and (3.13) we have

t‘3/2v(t)(t2 2)6!(1!: —z)dt, = >0, | (3.21)

0
v(z) = 2732(Ch + C17%), 0 <z < b,
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where Cy and Ct are arbitrary constants. Note that v € L;(0,b) if and only if
Co = 0. It is clear that
Vol[v](z) = Cilnbd/z.

Hence, the conditions (3.18) are not fulfilled if C; # 0. Calculating the integral
(3.21) we get :
Qe (¥528 — 2%nb/z), 0 <o < b,
U(w)={0, T > b |

From this it follows that

No(u)(z) = Clmsfzﬂn:c/b, 0<a2<hb,
=0, z>b,
Ng(u)z) = C12'/2, 0 < z < b,

= 0, x > b.
Obviously, u(z) € 53(0, b). One can show that
Bo[t*i(t)|(2) = MZNZu(z) = -C1[gb_1/25(a:‘,— b) + /26 (z — b)).

Therefore, (3.20) is fulfilled for any constant C.
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