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ON THE ACTION OF THE STEENROD ALGEBRA ON
THE MODULAR INVARIANTS OF SPECIAL LINEAR GROUP

NGUYEN SUM

1. Introduction

For an odd prime p, let SL, denote the special linear subgroup of
GL(n,Z/p), which acts naturally on the cohomology algebra H*(B(Z/p)™).
Here and in what follows, the cohomology is always taken with coefficients
in the prime field Z/p.

According to [3], H*(B(Z/p)") = E(zy,...,25) @ P(y1,-.. ,yn) with

dimz; = 1, y; = fBz;, where 3 is the Bockstein homomorphism, E(.,...,.)
and P(.,...,.) are the exterior and polynomial algebras over Z /p generated by
the variables indicated. Let (egqq, ... , e}, k > 0, be a sequence of non-negative

integers. Following Mui [2], we define

[k; €41y, .- ,8,,] = [k; Chtly-nn s Cn](l‘],. Ty Yy a ey yn)
by
3"'1 P xn
[A N ] 1 .’I:] ) "rn
g I - 1 pekt1 : k41
kN oyt eyl
pen en
% uh o

The precise meaning of the right hand side is given in [2]. For k = 0, we write

[0;615-... ,(’,n] == [61,... ,(’,n] :det(yfej)_
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We set
Lns=1[0,...,8...,n], 0<s<n,
Lpy=1Lpn=1[0,...,n— 1]
Ea';;'h_.[k; ek;l,'. . '.. ,'en]"is an invariant of SL, and [e1, ..., en] is diviéible by L.

Then Dickson invariants Qn s,0 < s < r, and Mui invariants My sy,... 9.0 <

51 < ...< 8 < n, are defined by

Qn,o = Ln ol Ty
: M,”; [kO ."..:,s*k,...,};—'i],
Note that Qn n = 1 Qn 0= L?’_ Mo n—1 =8 =21 ... 20"
Mui proved in [2] that H *(B(Z /p)™)* n is the free modulé over the Dickson
algebra P(Ln, @n.t;- .- @nn1) generated by Tand My, o, with 0°< 51 <
L sp<n., ‘ ‘ Lo

The Steenrod algebra A(p) acts on H *(B(Z/ p)™) by well-known rules. Slnce '
this action commutes with the action of .S'Ln, 1t 1nduces an act1on of A(p) on
H*(B(Z/p)")5L~. ’

Let 75, and ¢; be the Milnor elements of dimensions 2p® —'1 and 2p' — 2,
respectively, in the dual algebra A(p)* of A(p). Milnor showed in [5] that

A(p)* = E(TO}Tl.a--.-) ® P(&,{z,.. )

So A(p)* has a basis consisting of all monomials I NS Y LY 34
with S = (s1,...,8), 0 <1 < ... < s, R = (rl, rm) Let 5t5% € A(p)

denote the dual of T5¢® with respect to this basis of A(p)*. Then A(p) has a new
basis consisting of all operatlons S8R In particular, for $ = 8, R = (k), St5%
is nothing but the Steenmd operatlon P" T

" The action of P* on chkson and Mul 1nvar1ants was exphc1t1y computed
by Hung and Minh {4]. The action of S'% on the ;nva,nant [n; 0] = z1..
was computed by Mui {3] . o o

1SR

In this paper, we compute the action of S on [k; €x41, - - - »€n} and prove

a nice relation between the invariants [k;exq1,... ,€n+ 8,0 < s < n, and the '
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Dickson invariants. Using these results, we explicitly. compute the action of P*
on Mul invariants My s, .. s, , which was first computed in Hung and Minh [4]
by another method. ' o

To state the main results, we introduce some notations. ~ Let J =
(Jo, .50y ) with J, C {k—{-l ,n}' 0<s<myand [[}L, J, = {k+1,.0. ,n}
(dlS]OlIlt union . We deﬁne the sequence Ry = (rj,... ,r5.), 71, and the func-
tion & : {k—}— 1,... n} — {O m} by setting o

=Y, 0s<m,

- jEed,
-'.(I)J(?:):'S' if tedg, k+1<2<n.

The main result of this paper is

1.1. THEOREM. Suppose that e; # ¢ fori # 7, S =(s1,...,8), 0<s <
- < st <m. Under the above notations we have
Sts [L Chkt1y--- ,en] S
: (‘—1)_?(,.'6‘_,:1,) [L" 6815 5805 €k TI'(‘I)J.(k-"t,]:)a"“ 1i€n .‘!-;‘I’J(n-)]j
= g PR .o o R= Ry, for some  J,
0, otherwise.
We have alsothe- followi'ng relation from which we can compute

St5R[k; exq1,.. s en) in terms of Dickson and Mui invariants.

1.2.. PROPOSITION.- For 0 <k <my = ¢ =00 i
sl n— 1 o Soriioroe o [ SR
[k; Ckt1y--- 6n_],8n + n] Z( 1)n+s--1 [k ek—}-]a . 7_611_—_1311 +-5]Q£1:
. S Lo :
Using Theorem 1.1 and Proposﬂuon 1.2 we exphc1t1y compute the a,ctlonr
of StS® on M invariant Moy, os when 3, R are’ spec1al Partmula,rly, we

“F

prove B
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1.3. THEOREM .(Hung and Minh [4]). Forsg = —1 < 81 < ... < 8k < Sk41 =

n, ..

PtMn,s;,...,sk = ) . . . . ‘
‘ o - ' S oeipti g '
( Mn,tl,... Sk . : t: Z%) Wlt-h Si—_l < tt S 8,
i=1
$ zl( 1)L+1 ‘M, n ).t i,---,ik-i-xQn:‘-' ’ t_' Z i -’ Wlth Si—1 <t < Sn
i= ) . .
1<z<k+1 tH_; <5L+1 =n,
0, : ' otherwise. -

ACKNOWLEDGEMENT. I would like to thank Professor: Huynh Mui for his ge-

nerous help and inspiring guidance.

2. Proof of Theorem 1.1
First we recall Mii’s results on the 110inomorphism d¥, Py, and the operations
StSE, .
Let Ay~ be the alternating group on p™ letters. Suppose that X is a topolog-

ical space, W A,m is a contractible A,m-free space. Then we have the Steenrod

power map

P : HI(X) — HY" (W Apm X XM,

which sends u to 1 ® u?” at the cochain level (see [6; Chlap.VII]).
The inclusion (Z/p)™ C Apm together with the diagonal map X — X P

and the Kiinneth formula induces the homomorphism
dr, « H*(W Apm i X"y — H*(B(Z/p)™) ® H*(X).

SetMms—MmaLh10<s<mL —Lh h-~(p—1)/2 We have
2.1. THEOREM (Mui [4; 1.3]). Let u € Hq(X) w(q) = (A)I(—1)keta—1)/2
Then

&y Pt = p(@)™ Y (=1 P Mg, . Ms L Q0 - Qi L @ St5 Ry
5R
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Here the summation runs over all (S, R) with S = (s1,...,8;), 0<s; < ... <
si<m, R=(r,...,rn), 0o = q¢—t—2(ri +... +rp) >0, (S, R) =
t+sl+ sS4 2r0 4+ L g, .

2.2. PROPOSI’I‘ION (Mm (2], [3D.

(i) dy, Pm is a natural monomorphism preserving cup product up to a sign.

Precisely,
dy, Pr(uv) = (=1)™"7d% Poud® Pov |

with ¢ = dimu,r = diﬁw
(i) d, * Pryi = Z( 1)m+st s @ y1
(m) d* Pm(331 Ty) =

#(n)m . Z (__]_)12(n-—-i!)-i-r(-‘S',ﬂ)_[lf/lfm,&I . Mrﬁ,st E%—t ® [n — 15, .. ,St]-
0<s <. < <m

Here 8 and yi are deﬁned as in the introduction.
2.3. LEMMA. Ife; # .eJ for 1 ;éj, then-
d P {61, . ,Cn] ‘ .
= Y (FymHORDEIRgI gl
J=(Joserr s Jm) o
®fer +@5(1),... ,en + By(n)],

Wherc_e R and ® ; are defined as in Theorem 1.1.

PROOF. Let %, be the symmetric group on n letters. Then
[e1y-.. ,en] = Z sign JHyfzam.
sEL, i=1

From Proposition 2;2; we have | |

()

T

L (re)
=T(Semar on™),

i=1 3=0

-
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Expanding this product and using the definitions of @ 5, R; and the assumption
of the lemma, we get o ' - '

n Ca{i r r . o n- Ca(i +‘:’ (0’(!‘))
dfan(Hyf ()) _Z( l)mn+r(@ RJ)Q Jo . er.:,r:n_—l-]®1—‘[yf .(). J' - )

Hence, from, the above equalities we obtain
d* [61 y - y en]

, eo(i) 4 (2 ()
= E( l)mn+r(ﬂ RJ)Q I Quimt L ® Z sign a]:[y! (" ,J

JEE
= Z( Pt @RAQM Q@ [el + <I>J(1) e en + @(n)].

Since @m0 = I:?n, the lemma is proved.

2.4. PROOF OF THEOREM 1.1. Let I be a subset of {1,... ,n} and I' its com-
plement in {1,... ,n}. Writing T = {i1,... ,ix} and I’ = {iks1, ... s in} with
i1 < ...<idpandigyy < ... <in. Weset zj = zi ... Zi, [ert1s. .- sen]r =

: i e n .
[ekt1s- s enl(Wisprs - 1 ¥in) and o = (z . ) € Tp. In [2; 1.4.2], Mui
Lo 4, "’ : _
showed that - '
[k; ext1y--- ,gn] = Zsign orrrlerity.-- s€nll-

From Proposition 2.2 and Lemma_ 2.3 we have _

: '.d:@Pm(wf) = (k)™ ' Z ( 1)t(k t)+r(S G)M ’MW,S:Efn_.t@]

' ’ ’ 0 <. <3¢<'m o
' [k —t;81,--.,8:)1

where [k —t;51,... ;5= [k —t551, 0,80 )(Tiyseee s Tigy Yirse o 2 Yin )y

d% Prlekst1s--- senlr : .
I DI S i ) Al B
T=(Joyr ydm) _
[_Ck+1 +@y(k+1),...en + ® j(n)]r.
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Set ¢ = dim [k;ep41,... 0] = b+ 2(p**+! + ...+ p**). An easy computation
shows that u(g) = (—1)*"*u(k), and r(S,0) + r(B, R) = (S, R). Hence from

Proposition 2.2 and the above equalities we get

dy, Plk; exg1s ...y e4)

m —t)+T Y Y > hk—t42 r T,
= p(q)™ Y (I EOHSRANL L Mo L QT QU
5.J

Zsign orlk —tis1, .. sililertr + @u(k+ 1),... ,en + @ 4(n)];.
I

Then, using the Laplace development we obtain

drnpm[ka Chtry-avy ("n}

m — s - -~ Fh—t+2r r Lt
= (@)™ Y (~DTOTSEINL, Mg L QI QU0
5.7

[k —tisii.onsneppn + @k 41),...,en + &4(n)).

Theorem 1.1 now follows from this equality and Theorem 2.1.

3. Proof of Proposition 1.2

First we prove the stated relation for k = 0,

n—1
[61,.. . €n—1,En -I—T?.] — Z(__l)ni-s—][el,... 1€n1;€n +S] 7:: (3.1)

=0

We will prove (3.1) and the following relation together by induction on n,

-2
[61,. e Bn—1,€n + N — 1] = Z(_l)n_‘-s[els- -« 1E6n—1,€n + ‘9] I:z:l,s

=0

+ler,. o yent VI (3.2)

Here, V, = L,/L,._,.
We denote (3.1) and (3.2) when n = m by 3.1(m) and 3.2(m), respectively.
When n = 2, the proof is straightforward. Suppose that n > 2 and that
3.1(n — 1) and 3.2(n — I)Iare true.
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By the Laplace development and 3.1(n — 1) we have
[ela cebp-1:€n + Tl.—- ]-]

= Z(—l)n+t[81, e ,ét, cer 3 €n—1:€n +n— ].]'y:;e‘

. + -1
. —|—[61,... ,en_l]ygeﬂ "

n—2 '
= Z(—l)n+t(2(_1)n+s[e‘l,ﬁ. i s €tyeee sEno1,6n s] zjl,s)yﬂ t

t=1 =0
enp+t+n-—1
+ [61:; . ,_en_.lly,g
n—2 n—1 .
= Z(—l)n+s(2(_1)n+t[el,. ce 3 Byenn y€n—1)€n + S]yﬁ *) ‘ fl—l,s
3=0 1=1
' entn-1 ’
+[e1y- - €n—tl¥h
n—2
= Z(—I)Tﬂ-s[el, [ ,:. v 3€p—1,€n +'S]Qfl__1’s
s=0
7 en-l-.!
+ [611 en“‘l] Z( 1)n+s 1Qn 1, syn

s=0
Since V,, = Z;:g(—l)“"’""}Q-,l,‘_l';s"ﬁf: (see [1] ,. [2]), 3.2(n) is proved.

Now we prove 3.1(n). From 3.2(ﬁ)'ai1d the relation Qn,s = Qi_.l,.s_.l +
Qn—1,sVP ! (see [1], [2]) we obtain

[€15--+ y€n— 1,en+n]- |
_'Z( 1y l[el, e QT
4 ler ,- ,én—l]Vfcn#l
= S ey enty en + SIQDS

- ey senty e+ = VP
n—2 ’ N | |

3 (-Z(—"l)n+s[el,... , En—1,En +’S]QI:1_‘_,1,'3- e
s=1 . o

+ler,. e;l_l]V,{’c")VéP—l)p""
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Combining this equality and 3.2(n) we get

n—1
[61,--- ,en—],en+n] — Z(—l)n‘i‘sml[el,... ,6,1_1,811 +S]Qf::
. s=1

- (_1)"[61" .- 1811] L V(p_])]’e".

n-—-1,0"n
Since Qno = @n_i0VP™!, the proof of 3.1(n) is completed.

For 0 < k < n, Proposition 1.2 follows from (3.1) and {2; 1.4.7] which asserts
that

[ egrr- - s en] =

(_1)k(k_])/2 Z (_1)3!+“'+3th,31,.’..,sk['sla'" s SkyCh41ye - 1611]/Ln-
g1 <...<8 <n

The proposition is completely proved.

4. Some applications

In this section, using Theorem 1.1 and Proposition 1.2, we prove Theorem

58 on the Mui invariant Mys,,... se

1.3 and explicitly compute the action of S

when S, R are special. First we prove Theorem 1.3.

4.1. PrROOF OF THEOREM 1.3. Recall that P! = St From Theorem 1.1

we have

PtMn,Sl,... 3k
b 0 . - . sl PSS !
[#; ,...,tl,...,tk+1,..‘.,n], t= ZL“_'L"pq , with
i=1
= i1 <t <s;,1<i<k+1,
0, otherwise,

If txyr = Sk = n, then [k;0,... ,#y, .. fpgr,... 0] = My 4, ... 4. Suppose

L]

that t;41 < n. By Proposition 1.2 we have

~

,[k;O,... 7t1:"- ,fk.*_l,... ,TL]

2
|

= (-1)“+3—1[k; 0,... ,{1,... afk-_l-lg--_- , 1 — l,S]Qn,s
0

[~
I
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k+1 _
_ k41—t ' '
Z( ]‘) IMn 3Bl geee ,E,‘,... k1 Q“;ti'
Hence T heorem 1. 3 follows.

4.2. NOTATION. Denote by 5'.: sk+1 < ... < Sn—1 the ordered complement
of the sequeﬁce $:1 < s <...<sp <nin{l...,n—1} Set A; =
(0,...,1,...,0) with 1 at the i-th place (1 < i < n), Ay = (0, ;0) and
R=(ry,...,mn). Here, the length of A; is n. '

The following was proved by Mui [3; 5.3] for B = Aq.

4.3. PROPOSITION. Set sy = 0. Under the above notations, we have .

( (- 1)(k Din—1=k)tse—tpr o ,é:,u__._',sk . R=A,,,

, i ST
Sts ,RMnil: Py 1= Z )k(n k) tMn 30. - I ,San,St- L R - AN -
0, otherwise.

ProOOF. Note that M, ,,_1“:=—[n —1;0]. From Theorem 1.1 we obtain

( 1)&(7’1 —1— L)[k 1 ,.'?‘--,gkf"‘:' ,'n,—}.,?:] L
StSRM, i y={" " R2A; withi=s, 0<tSkori=mn
0, o otherw1se - | - |

[t is easy to see that
[k$ i,... 381, - ETIVNNN A l,St] = (_1),1_1_k+3‘_t'nd-",sow- 2814

9k

According to;Propositiqﬁ 1.2 we have

n—1 . )
=3 D)™ LB B = 18] Qn
3=0) : X ) B : .

k
= E(_l)k_tMnssﬂv" a‘at_!"' 19k QT‘I'S.‘ N 7
t=0 ’

From this the proposition follows.

By the same argument as giyéﬁ in the proofs of Theorem 1.3 and Proposition

4.3 we obtain the following results.
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4.4. PROPOSITION. Let A; be as in 4.2 and s = 0. Then
(;1)3£—tMn,ao,... R PO T 51 > 0) 1= Sty
B,4; k 1 .

St™ 'Mn,sl,... WBE Z(_l)n—t— MR,BO,---,ﬁn--v »SkQﬂ,Sn 51 > 01 t=mn,
=0
0, otherwise.

The following proposition was proved by Hung and Minh [4] for s = 0.

4.5. PROPOSITION. For0 < s < n,

k - .
(_1) Tt tﬂ/-[n,sl,... i T T 3 = 8¢,
(),(0) a bt
St Mnasls--- e T Z(_l)n+ +it Mn,sl,... By e 8 Qn,s.; §=n,
i=1
0, otherwise.
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