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PURSUIT PROBLEMS WITHOUT DISCRIMINATION
OF EVASION OBJECT IN LINEAR DIFFERENTIAL GAMES

NGUYEN VAN CHAU AND PHAN HUY KHA

1. Introduction

We consider a pursuit process as a linear differential game of the form-
T = A.’E.-I—B'U.-—C’U, z(0) =z . | S ' (1)
with terminal set M.= {0} and constraints
. . oo ) R N N X X .
B O R
0 .
floll <1, o -3

Where = R" is the state vector u € R?j 18 the control vector of the pursuer, v €
RY is the control vector of the evadcr A, B and C are matrices with appropriate
dimensions and po is a given positive number,

- Constraint. (2) means that the inequality

ﬂ=pr1/nmnW@zo.'r~ @

must be sa.tlsﬁed throughout the pursuit process. The pursmt process is com-
plete when the state of system (1) becomes zero. ' ' ”

We are interested in completing the pursuit process by a pursmt =trategy of

the form ' P
“Ues) NG
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where p is defined in (4). This leads us to consider the pursuit problem as a

simple nonlinear differential game (G):

= Az + Bu — Cv, z(0) = z,
. ) (6)
p=—llll®, p(0)=po .-

with terminal set {0} x [0, +00), phase constraint

o(t) >0

and geometric constraint (3) on the control vector v of the evader.

In this paper, our aim is to find a state-feedback strategy u = U(z, p) for
completing the pursuit. process in the game (G). This is a pursuit problem
without discrimination of evasion object. The situation of nondiscriminating
the evasion object in the linear differential game with geometric constraints on
controls has been studied in recent works of L.S. Pontriagin and A.S. Misenco
[1, 2, 3]. In these works the authors have given a state-feedback strategy which
is able to complete the pursuit process. Our approach here is based on some
ligleas suggested in these works.

In Section 2, we shall construct some estimating functlons and pursult
étrategws The ability of this strateg,y to complete the pursmt process W1Il

be discussed in Section 3. A simple example 1s presented in Sect1on 4

2. Estimating function and pursuit strategy B
2.1 Basic assumplions

Throughout this paper we shall assume that the matrices 4, B and C satisfy
the following conditions :

I Kalman’s Conclitilon:
Rank [B,AB,AzB, ...,A”"lB] =n,
II. Rank [B,C] = Rank B.

First, we consider the pursuit problem with discrimination of evasion object
in game (1)-(3), in which at each moment the conirol vector v is supposed to

be known.




PURSUIT PROBLEMS 175

Let s be a fixed positive number. It is well known (see [4], p. 213ﬁ214) that

under the Kalman condition the optimal control problem

& = Az 4+ Bu; z(0) = zqg, z(s) =0
. . ] " 9 (7)
minimize [ |[u(#)||*dt
has the unique solution
" Uzo, 5,t) = —E* exp(—tA*)K(s)ao, | (8)
édtiéfying
t
f U0, 5, 8)|Pdt = < 20, K(s)zo >,
where K(s) is defined by
K(s (f exp( tA)BB* exp( tA*)dt)_ (10)
On the other hand because of Condltlon II, the matrix equation . - - .
‘BD=C, o a

has a solution. Let D be a solution of (11). We consider the pursuit strategy
u(t,v) = U(zo,s,t) + Dv. (12)

Let v(t), 0 <t < s, bea measurable function sa,tlsfymg (3). Put u(t) =
u(t,v(t)), 0 <t < s. Then the trajectory z(t) of equation (1) on [0 3] is the
optnnal tra.Jectory for problem (7) and BRI

([ I < <o K S DG (9

In particular, z(s) = 0.

From the above observatlons it follows that if
< 20, K(s)z5 >'/2 +)|D||v/5 — /s < 0, (14)

then the pursuit process in gainé (1-3) will be ooﬁlplete at time s with the use

of the pursuit strategy (12). -



176 N.V.CI{AU AND P.H.KHAI

REMARK 2.1. K(s), s € (0,+00), are positive definite matrices. The function
K(s) is analytic on (0, +c0). Further

lim K(s)™! =0. - (15)

8—-40

2.2. Estimating function

Let d > 0. On R™ x (0,+00) x (0,400) we define the function Fy by
Fy(z,p,s) = <z, K(s)z >V +d/5 — \/p. (16)
Clearly, Fy is analytic on (R™ \ {0}) x (0, +oc) x (0, +00).

Let’s consider equation

Fy(z, p, )—— 0, (17)

for every (z, p) fixed, (z,p) € O = (R"*\ {0}) x (0 +00). By virtue of Remark
2.1, one can see that equation (17) can only have a finite number of positive
solutions and all of these solutions must lie in the open interval (0, 7).

Now, on £ we define the estimating function Ty by
Ti(e,p) = minfs > 0| Fu(z,p,) =0}, (19)
where min{#} = +oc. Denote
| | do-m'l",j:: {-(m,p). €Q Ta(z, p) < -[-oo}.

PRrROPOSITION 2.1. Let {{zi,p:} | i = 0,1,2,..,} be a sequence with (z;,pi) €
dom Ty. If {p; : i = 0,1,2,...} is bounded and _li+m Ta(z;,pi) = 0, then
S : i—foo.

Iim z; = 0.
i—oo

PROOF. Put m(s) = min {< ¢, K(s)e >'/? | ||| = 1} for every s >0. Asa
consequence of (15), : ; ‘ . _

lim m(s) = +oo. S (19)

s—+0

Denotmg 8; = Tq(zi, pi), by assumptmns we have

0= < i, K(si)a; >/2 +d\/5; — f>||x,||m(s)+d¢— \/a'>

> ”m‘i“m(si)_ P i=0a1a2,-- .
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Consequently,
|lzillm{s:} < supy/pi < +oo0.
. 1 ]

Hence, it follows from (19) that lim z; = 0.

1— 00

REMARK 2.2. In general, the estimating function T} is discontinuous on dom
Ty. In the case when A = 0 and rank B = n the function Ty is continuous on
dom Tj.
Put
' OFy
Ed = {(%P) € dom Td : _(T’a £y Td(Cﬂ,P)) = 0} (20)

One can verify that dom Ty \ Ey is open and dense in dom 7}. By a.pphcatmn

of Implicit Function Theorem, we have

PROPOSITION 2.2. Ty is analytic on dom Ty \ Ez. Let (zq,p0) € dom Ty and
s0 = Tu(zg, po). For every ¢ > 0 and § > 0 we denote

V(e,8) = {(z,p,8) | l{((z, p) = (0, po)l] < € and
ls = soll < 6} N {((2, p,5) : Fa(z,p,s) = 0}.

We denote by P the projection (z, p, s) — (z, p). The following proposition

(21)

shows an 1mp0rtant property of Ty. The proof is 51mp1e and will be omitted.

PROPOSITION 2.3. For every § > 0, there exists € > 0 such that
(2,0) € P(V(6,8)) = (2, p, Tu(z, p)) € V&, ). (22)
Denote
Gd(w p,S) -—(;l: P:s) (23)

It is clear that if (z,p) € dom Ty, s = Td(a:,p), then

Gd(i‘,P,S) <0. . (24)

2.3. Pursuit strategy

Let d be a fixed positive, Ty be the estimating function defined above. We

consider the differential equation

{d:_ = Az 4+ Bu — Cv (25)
5= —lhulP
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on dom Ty.

We shall construct a pursuit strategy Uq on dom Ty which may assure the
fastest decrease in value of the function Ty along the solution trajectories of
equation (25). |

Let o > 0 and u(t) and v(t) be measurable functions defined on a neigh-
bourhood of 5. Suppose (z(t), p(t)) is a solution of (25) satisfying the initial
condition (z(ty), p(te)) = (%,p) € domTy. Put s(t) = Ty(x(t), p(t)). We have

Fd(:v(t)’ p(t),S(t)) E‘O' _ _ ) (26)

Assume that (Z, p) € domTy \ Ea, ie. Ga(z, 7, s(to)) # 0. In view of
Proposition 2.2 the function s(t) is absolutely continuous in a neighbourhood

of ty and J _
& Fa(a(0),o(8),56) = 0.
Hence, |

ii —(aaF *(Az + Bu - Cv) + @(—lwl_l?)xad(m, ps)) 7. (20)

Thus, in order to rmmmize %:—91 the control vector u(tg) must be chosen among

the solutions of the optimization problem
min J(z, p, s(to), ¥),
EH

where

aF“‘(AHB - 2 2. (28)

J(J:, p? 31 u’) a
- p

By direct computing we obtain | |
J(x,p,s,u) = <z, K(s)z >1f2% K(s)z, Az + Bu > —/pll]l?/2. (29)
Therefore, the problem minJ (x, p,s,u) has the solution
Uz, p,s) = —/p <z, K(s)z >/ B*Ix(s)”c | (30)

Now, for the estimating functaon Ty we dcﬁne the pursult strategy Uq on dom
Ts: by
Ud(m,P) = U(Sﬂ,p,Td(.’J’,‘, P))‘ (31)
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Like Ty, the function Uy is discontinuous on §2. But on dom Ty\ E4 it is analytic.
Denote by D the solution of problem min {||D|] : BD = C} and d = |[D|].

Put OF oF
Ed(mapv'S?U): a—;(A$+BUd_CU) d”U H‘Z

LEMMA 2.1. For any v € R, (2, p) € domTy and s = Ty(z, p), we have

Eu(z, p,5,v) ~ Ga(z, p,5) < —d(1 — &|]o]|? )57 (32)

\[

PROOF. First, one can verify that K (s} satisfies the following Riccati equation
K(s = AK(s) + K(s)A — K(s).BB*K(s)  on  (0,40c).
By using this equation we get

v o : I d
Ga(z, p,s) = < z,K(s)z > V2 (< K(s)zx, Az > —§|IB K(s)z|*) + N
(33)

and

Euz,0,8) = <o, K(s)e > V2 (< K(s)a, Az > —~%\/5||B*I{(§)m||2)
— < K(s)z,Cv >. ' ' (34)

Since s = Ty(z, p), we have
1-B<a,K(s)x > = —d/fs < z, K(s)x >~ /2. (35)
By the definition of D and (33)—(35'), we have
Ey(z,p,5,v) = Gu(z, p,s) =
= (o, K(s)2) .1 = y/ple, K(s)e) /)| | B* K (s)]

. d
— 2{K(s)z,Cv)]— NG
= (o, K(s)a) V23 (o, K (s)o) )| B K (el

~ 2(B*K(s)x, Dv)) — 4

2Vs
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< (K2 Syl K(s)m) B K o)

+ 2d||v||(B*K(.s)x Dv))

v
(m K(S)m) 1z, —(sup( dy/s(z, K(S)w) 11%)q?
"+2duvua)—%
< —d(l 452”?’”2 d2)2\/'
COROLLARY 2.1. d> d, then
Ed(mapaTd(mr p)5v) < Gd(mv Py Td(‘?ap)_)" ] = . (36)

for all of vectors v, o] < 1. _ __ . _
, Let. (a: p) € domT,,- \ Ed Denote by grad Ty(z, p) the gradient vector of
funétion Ty at (z, p),

aTd BTd

“grad Td(x p) —( )(ﬂf p)-

- "Lemma 2.1 together with (27) implies the"following :

COROLLARY 2.2. Ifd > d and (z, p) € domTy \ Eq4, then
< grad Ty(z, p),(Az + BU; — €, '-||Ud||2)_ ><1, (37)

for all vectors v, ||v]] < 1.

3. Existence of solution for the pu‘rsuit. problem

Let d be a given number d> d Ud and T are the functmns constructed in
Sectlon 2. We consider the following differential equatlon '
{:I: = Az + BU; = Cv
p=—||Ual}?

on dom Ty, where v(-) is some measurable functmn w1th |]v|| <1

(38)

Let (%0, po) € domT,. In view of the pursuit, we shall consider the existence

of solutions (z(-}, p(-)) for the differential equation (38) with the initial condition
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(z(0), p(0)) = (0, po) defined on an interval [0,T) with hmm(t) 0. Such
solutions are called solutions of the pursuit problem.

In general, the right hand-side of equation (38) is discontinuous. Thus,
to study this differential equation, one may-make the use of the differential
incluéion derived from it (see [5]). However, such an approach seems to be
unconvenient for our purpose. We shall therefore use a direct approach to
examine equation (38) and to get some affirmative answers for the existence

problem.
3.1. Main theorem

Consider the differential equation (38) with function v(-) defined on [0, +00)
and satisfying the following condition

(%) There exist a partition 0 =1, < #; <ty < --- of the interval [0,+00), a
positive number €; and C*°-differential functions v; defined on (trytrtr), k=

0,1,2,... such that
'U(t) = ’Uk(t) Vi € (tk,tk+1).

THEOREM 3.1. Let d > d. If v(-) is a function satisfying condition (%) with
lv|l €1, then for each (2q, py) € domTy there exists a solution (z(-), p()) of
the differential equation (38) on an interval [0, T) satisfying the following

(1) z(0), p(0)) = (2q, po) and tll_r}}"c(t) = 0;

(i) The function Ty(z(), p(-)) is strictly decreasing on [0,T) and

= Ta(x(t), p(t)) <
wherever the derivative exists;
(iti) T < Ty(zq, po).

Before giving the i)l‘OOf of Theorem 3.1, we shall study the local existence
of solutions of equation (38). Let v(-) be a function satisfying condition (%),
lvl| £ 1. Let (%, p) € domTy, f > 0, and 3 = Ty(#, 5). Consider equation (38)

with the initial condition

o(2), (D)) = (2, 5). (39)
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We shall only be concerned with the existence of solutions for (38)-(39) on
some interval [f,% + ¢). Hence, without loss of generality, we may assume that
v(+} is C*-differentiable in a neighbourhood of {.

 In the case when (Z, p) € domTy\ E4, the right hand-side of (38) is differen-
tiable in.a neighbourhood of (%, 5,1). Hence, a unique local solution of (38)—(39)
exists in some neighbourhood of £, even in the case when v(-) is measurable. In
view of Corollary 2.2, this local solution satisfies Property'(ii) ‘pointed out in
the statement of Theorem 3.1.

Now, consider the singular case when (Z, ) € Ey, i.e. Gu(Z, p,5)=0.

Applying the Weierstrass Separatlon Theorem and Proposmon 2. 3 we ha,ve

LEMMA 3. 1 There exlsts a neighbourhood V of (n: p,s) w:th the foﬂowmg
properties

- (i) On'V, Fd can be represented in the form

k-1

Fi(z,p) = [(-1)"(s —3)* + Sis-9) 7 < aj(=,p) (2,0) >]F(w p,S) (40)
;=

where. F' is some analytic function ‘with' no- zero in V and a;(-) are some

differentiable functions; : : A o
(i) (@, p) € PU) = (o Talmsp)) €U, (41)
where U = V 0 {(z, p,s) : Fa(z, p,s) =0}. S
Note that in (40) if (%, ) € Eq, then k > 1.

LEMMA 3.2. If Gu(%,5,5) = 0 and Dy(3,75,5,0(F)) < 0, then there exists a

solution (z(-), p(+)) such that Ty(z(-), p(-)) is differentiable on [2,£*) and .,

(m(t),p(t))Edode\Ed, Vie(ft). 7 (42)

PROOF. The proof can be.carried out by an analogous way as in [‘7] (see part
I1, 2 in [2]). Only a sketch of the proof is provided here. o

' First, by assump’tions we can choose the nelghbourhood Voof ( :?, 7, §)' speci-
fied in Lemma 3.1 and € > 0 such that SRR :

H(z,5,&7) = Ea(z, p, 5,0(t)) < 0
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with the initial condition

183
onV =V x (t—e€,t+¢€). On 1% consider, the differential equation

d - G(z,p,s)
E= (Ax —i—BU.(:c,p, s) — C’v(t)) Hz, p,s,t)
d _ 2 -—G(&:,p,s) '
dsp - —”U(:B:pas)” 'H(a:,p,s,t) . (43)
i _ _G(vaas)
ds’  H(z,p,s,t)’

(2(5,p(3),4(38)) = (2, 5,8), (44

where G(z, p,s) =

Gd(xa pas)‘

By using the representation of Fy; given in Lemma 3.1, we can rewrite

equation (43) in the following form

d :
— =7

ds

1

( l)k 1.

m -—g)k—l +a3(s,t)(s —E)k-}“

+ Gf?(sat)(s - S)k_l(t - f) + O"I(ma P8, t)((.’l:, P) - (5515))

d

(-1

=p) (s — F)~ t)(s — 3)F
N4 “le(:?:,ﬁ,E,/—\)(s 8+ Ba(s, t)( )*+

+ Bl (s = = D) + Bilz, p,5, (2 p) — (3, 7))

d

—1i =T1

( 1)L lk

ak—1 =k
LY AL s —
H ’I: p,s’a S 3) +.73(31 )(‘S S) +

(s, (s ==+ na(e,py5,D(:0) ~ (7,5)). (45)

This implies that the unique local solution of (43)-(44) has the form

(2(s), p(s), 8#(s)) = (%, 5, F) + (s — 5)"(&(5), 5, 1(5)), (46)

where 7, 3,1 are C-differentiable functions.

(~1)*+1k

A (C )

£ 0.
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Hence, on an interval (8, §) the function #(s) has an inverse function s(t)

that is defined on an 1nterval [t,#*) and has the form
“(f) =s+(t- f)”k*(f) | (47)

where 3(t) is differentiable on (t.;,t*) and s(f) < 0.
Putting (47) into (46), we obtain the function

(z(t), p(1)) = (2, 5) + (£ — EN&(2), 5(1)) - (48)

defined on [£,#*). This function satisfies equation Fy(z, p, Ty(z, p)) = 0 ou £, t*).
To continue, we shall show that function (z(-), p(:)) is a solution of (38),
(39) and (z(t), p(t)) € domTy \ Eq for all t € (£,t*), where t* is chosen enough
close to t if necessary. For this we have only to:pfove that for any ¢ close enough
to £, Tu(w(t), p(£)) = s() and (z(t),p(t)) ¢ Ea. -
Let t > f. Suppose that Tu(xz(t), p(t)) # s(t) or (z(t); p(t)) € E4. By the
definition of Td, there exists sl(t) such. that

T(x(0, 1)) < 54(0) < s(t) N (49)

and ‘ o |
GOsm=0. @

By using the representatlon of Fy in Lemma 3.1, from (50) we get

0= (=1)*k(s1(t) - 5)* '+
k—1

oy me ~ 5 < aj(a(8), p(1)), (2(t), p(1)) — (5,5) > -

Then | |
|s1(t) — 3] < Chli(2(t), p(1)) — (2, B)|| ¥, (51)

where C} is a positive constant.

On the other hand, (47) and (48) imply that

Is(t) — 5| > Cylt — /¥ (52)
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and - .

[I(=(®), p(1)) = (2, P)]| < Cult — 4, o (B3)

_f01: ‘any'positﬁe :.cor‘lsta,ﬁt. .Cz;c;;. o | o o '
-Co'mbin'ing (49)-(53) we get

Coft —EM* < |a1(t) - .s| < CsCalt —t|f—1.

This can not happen for ¢ enough close to'f. Thus we can choose ¢ > 1
such that (z(2), p(t)) is a solution of (38)-(39) and (z(2),p(2)) € dode\Ed for
all ¢ € (£,%%).

PROOF OF THEOREM 3.1.

Let v(-) be a function satisfying condition (%), |[v|| < 1. Since d > d, from

Lemma 2.1 it follows that

‘ Hd(xa Pa‘s?v('t)) - Gd($1 P)S) <0

for all (x,p)k € domTy, s = Tu(z, p) and t € [0,+00). There.fore, in view of
Lemma 3.2 and Corollary: 2.2, for every (z,5) € domTy the equations (38)-
(39) have a local solution satisfying Property (ii) contained in the statement of
Theorem 3.1. Hence, by using standard’ arguments for the extension of solutions’
it follows that there exists a max1mal solution (z(-), p(-)) of (38) with the 1n1t1al
condition (z(0), p(0)} = (zo,p0) defined on an interval [0,T) and sat1sfy1ng
property (ii). .

Let (z(),p(-)) defined on [0,T) be such a solution. We shall show that
lim :v(t) -0. Then, by property (ii), it is clear tha.t T < Td(a:o,po) and
(:1:( ), p(*)) satisfies-all of the properties (i) (ii) and (iii).

First, we observe that hm p(t) = p* > 0 and l1m Td(m(t) p(t)) =s* > 0. We
must only prove s*-= 0. Thls fact together w1th Proposﬁ;lon 2.1 implies that
}51%1 z(t) = 0. Assume __theﬁ.contradltlon that s* > 0. We have

0= Faa(t), p(t), s()) = .
= lim(< a(2), K(s()2(2) >'/* +dv/s(8) = V/p(?))
= lim(< 2(2), K(s())a(t) >/% +aV5" - /7")
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where (1) = Ta(z(t), p(2)). Tt follows that p* > 0, the set @ = {z : z(t;) — z,
for. some sequence t; — T} is nonempty compact, and Q x {p*} C dom Tj.

Consider the set Q. One can see that for ¢ close enough to T the point (xz(2), p(t))
belongs to a neighbourhood of the compact set Q x {p }x {.s } Consequently,
£ () is bounded on [0,T). This follows that

»T
]ﬂ uwa:(t)ndt < +co.

Thls fact means that @ = {z*}. Thus, we have that 11m :c(t) = z*, (z*,p%) €
domTy and Ty(z*, p*) < s* . Therefore, the solution (.1:( ), p( )) may be extended
for the points outside [0, T). This conflicts with the maximality of tl’llS solution:
Thus, we get s* = 0. The proof is complete.

5.2, Measurable case

Consider the case when v(-) is a measurable function. In this case, for an
initial state (3’3, ﬁ) € domTy\ Eq there exists a unirque local solution of (38)—(39).
R I_)enol:e ' ' R - - a

Ei= {(w P) € Ed | (——")(ﬂ: P,Td(fv P)) = 0}

Clearly, Ed CEiC dode Note that Ed and Ed are, contamed in the images
of_ ieome_semranalytm sets of dimension n and n — 1 via the projection map:

(z,p,8) = (=, P) respectively.

G

THEOREM 3.2. Let d > d andt > 0. If v(:) is a measurable. function on
[0, +o00) with ||v]|.< 1, then for every (2, p) € domTy\ E] there exists a solution
(z(-), p(+)) of (38)-(39) on an interval [f,t*) which satisfies the following property *
() The function Ta(z(-), p(-)) is continuous and strictly decreasing on [t, t*) g
Furthermore, L ,. -
1 a(0,0(0) < -1

provided the derivative exists.

PROOF. Let (z,p) € domTy \ Ej. We consider only the case when (Z, p) € Ea.
Put § = T4(Z, p). By the definition of E7, Gu(Z,p,5) =0and (igi)(:i', p,8) # 0.

Therefore, the local representa,txon of F 4 at (3: P .s) gwen in Lemma 3.1 becomes

Falw,p,5) = ((s =) + al(:v p)s — 58} + ao(x, P)F..
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Denote A(z, p) = a1(w, p)? —4ao(z, p). By virtue of Lemma 3.1, there exists
¢ > 0 such that

W={@p|lz.p~ @2l <ec md Alzp)>0}CdomT;
and | : . .
Tu(z,p) = 5(=a1(z, p) = VA%, p)) +

for all of (z,p) € W. It is clear that W is a nonempty compact set and Ty is

continuous on W.
Now, suppose that v(-) is a given measurable function on [0.,—!-00) with
|lo]l < 1. Take 6 > 0 and some C*-functions v; defined on [f — 6,5—_# 8] with
Hvt(t)” <1, 2-2.1,‘2,... - _ (54)
such that v;(+) almost everywhere converges to v(-) on [f,f —|—6] '
For any 2, ©: = 1,2, ..., we consider the differential equation on W
{ t; = Az;+ BU; - Cuv;
pi= U4

In view of Lemma 2.1, (54) yields

- (55)

Hy(z, p,s,0:(t)) <0

for all of (z,p) € W, s = Ty(z,p) and t € [t — 6, + 6]. Applying Lemma 3, 2,
we obtain that for every (z,p) € W and ¢y € [t — §,% + 4] the equation (55) with
initial condition (z(%p), p(te)) = (&, p) has a local solution satisfying condition
(*). By standard arguments of the extending solution it follows that there exists
a maximal solution (z;(-), pi(-)) of (55) with the condition (z;(%, p:i(¥)) = (Z, p)
which is defined on an interval [tg,?;) and satisfles condition (x).

Consider a family {z;(-),pi(-) : ¢ = 1, 2,...} of such maximal solutions. Note
that the right hand-side of (55) is bounded by a constant independent on the
indices 7. ' S

Hence, there exists a number t* such that { < t* < ¢; for all of the indices
i. Then, the family {(z;(:}, p:i(*), Ta(z:(-), p:i(*))) : 2 = 1,2,...} is bounded and

continuous on [¢,#*). Consequently, in view of the Arzela-Ascoli Theorem, we
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can ‘assume that (z;(-), pi(-), Ta(z:i(+), pi(+))) converges uniformly to a contin-
uous function (z(-), p(+),s(-)) on [f,#*). Since vi(-) on [t,# + &) converges to
v(+), (z() p( )) is a solution of (38) (39). It is clear that (z(-), p( )) satisfies
condition (*) The proof is complete.

Note that the proof of Theorem 3.2 is based on the continuity of 74 on the
compact set W. In the case when Ty is continuous on dom Ty, we have the

followmg theorem.

THEOREM 3.3. Suppose that d > d and v(-) is a measurable functwn on [0, +c0)
with ||v]| £ 1 If Ty is continuous on dom T, then for every (2o, p0) € domTy
there exists a solution (z(-), p(- )) of the differential equat:on (38) on an interval
[O,T) satisfying the following | | | o
(i) (2(0), pl0)) = (2, po) and lima(t) =0,

(ii) Function Ty(z(-), p(-)) decreases strictly on [0,T) and . -

'%Ta(a:(-),b(-)) <-1

provided the derivative exists; | o |

(i) T < Tu(za,pa). . -

The proof of Theorem 3.3 can be carried out by an argunient. analogous as
in the proof of Theorem 3.1 and Theorem 3.2. -

4. Example :
Cons1der games of the 51mple form - R PR .
R | (56)
1lze R ueRP;veRT ) ERE
Suppose that the ba.sw a,ssumptlons in subsectlon 2 1 are sa,tlsﬂed ie. - P2 >n

and ra,nk B = n. In thls case '

K(s)—( f BB"‘dt)“ (BB
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Since (BB*)™! is positive definite, (BB*)™! can be rewritten in the form

(BB*) ! = Q*@Q, where Q isa symmetrxc invertible n x n-matrix. Then
K(s) = _IQ Q,

“and | -

Fy(z,p,8) = Vs7|Qz|| +dv/s — /p.

For (z,p) fixed the equation Fy(z,p,8) = 0 has some solutions iff p —
4d||Qx|| > 0. Consequently,

domTy = {(z,p):x#0, p>0 and p—4d||Q(z)]] > 0}.
By direct computation, we obtain that on dom Ty
1 1
Tu(z, p) = 5p = 5(elp — 4d]1Q)INY? ~ 4d]|Qa|

and

Ua(z, p) = —2/p(/p — (p — 4d||Q()|)*/?) ' B*Q* (”Q -

It is clear that T, is continuous on dom Tj. In view of Theorem 3.3, one
can complete the pursuit process in the game (56) by using pursuit strategy Uy

with d > d. Under action of the strategy Uy, the equation (38) becomes
= —2y/p(y/p — (p — 4d||Q=]|'*)7(
= —4p(v/p — (p — 4d]|Q=||)! /%) 2.

In this example, Eq = {(z,p) | ¢ #0 and p=4d||Qz||} and E} = {#}.

ae) ~ Cv

5. Conclusion

Pursuit strategies without discrimination of evasion object for differential
linear games with terminal set {0}, geometric constraint on evasion controls
and integral constraint on pursuit controls have been constructed. Our method
may be generalized to some other cases when the terminal sets are A-invariant

subspaces or neighbourhoods of zero.
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