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VARIATIONAL INEQUALITIES FOR INTEGRAND
MARTINGALES AND ADDITIVE RANDOM SEQUENCES

C. CASTAING AND F. EZZAKI

Abstract. New variational convergence results for lower semi-continuous inte-
grands, reversed martingales and for lower semi-continuous additive random se-
quences are obtained in connection with Doob’s theorem for reversed martingales
as well as Birkhoff’s ergodic theorem and Kingman’s theorem for superadditive
random sequences. Applications to the law of large numbers are given.

1. Introduction
Let (Q,f ,P) be a complete probability space and let (E, d) be a Suslin.
metrizable space with its Borel o-algebra B(E).
- Let f : Q0 x E =] — 00, +00] be a lower semi-continuous random integrand,
that is, f is F ® B(E)-measurable ‘and for any w in £, f(w,.) is lower semi-
- continuous on E. First we give an existence theorem of conditional expectation
for a class of lower semi-continuous random integrands which has nice appli-
cations to the variational convergence versions for lower semi-continuous inte-
grand reversed supermartingales (resp. martingales) and upper semi-continuous
integrand reversed submartingales and also for lower semi-continuous additive
random S.equen‘ces inthduéed_ in this paper.. -

"The key ingredient of the proofs is ‘based on the _éxistence and the prop-
erties of conditional eﬁcpecta’tioh for random lower semi-continuous integrands
mentioned above and on the parametrized lipschitzean approximations for this
class of integrands. In Section 2 we give the existence and the properties of
the conditional expectation for lower semi-continuous random integrands which
allows to obtain the properties of lower semi-continuous integrands martingales
and lower semi-continuous additive random sequences. Section 3 is devoted to

lower semi-continuous integrand reversed martingales and its applications to
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the variational versions of the Cesaro convergence a.s. (or la.w'of large num-
bers) for this class of integrands. In Section 4 we give a variational inequality
for upper senn -continuous 1ntegrand reversed submartmgales In Section 5 we
present some variational 1nequaht1es for IOWer serni- contlnuous addltlve random
sequences and we indicate some open problems. .

Finally 1t turns out that the results obtained are good enough to deduce

the varlatlonal convergence results for the class of 1ntegra.nds presented in this -

paper.
2. Conditional expectation for lower semi-continuous random integrands

We begin with the following general result:

''HEOREM 2.1. Let S be a Suslin topologma,l space, Ga complete o- subalgebra
of F, faF ® B(S )—measurable integrand from Q@ x S to [0, -I—oo] Tben there
i5a0® B(S)-measurable integrand, denoted by ng, such. that for any g-

measurable set A and for any (g B(S ))—measurable functjon U from Q to S, one

[ B S u) P = [ Fou@)pn),
A : A

Moreover, EY f is unique a.s. and is called the conditional expectation of f-with

has

respect to G.

References For a related result, see Est1gneev ([17]) ThlS theorem is an

unpubhshed result obtmned by the ﬁrst author See Derras ([14] Theorem3 2).

PROOF The uniqueness of Eg f is a consequence of the measurable projec-
tion theorem and an a.rgument due to Castamg—VaIadler ([11}), Theorem IIL 23,
Theorem VIIL36, p.264).

Since f. = supu,. where (un)n>1 is an increasing sequence of positive
n>1

elementary F ® B(S)-‘ mesurable functions, by the monotone convergence the-
orem for conditional e)cpectation,' it is enough to prove the theorem when fis

the characteristic function ¥a of a F ® B(S)-measurable set G. Let -

D ={G € FQB(S) : E%(xc) exists }
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It is easy to check that P is a Dynkin system in Q x §. Indeed, it is obvious
that 2 x S belongs to D. If E and F belong to D with E C F, then one puts

B%(xevs) = B(x) - B (xa)-

Let (Dn)nzi be a disjoinf sequence in D. Then for every p > 1 one sets,

. EG(XD_LUDzU'UDz) = EG(XQ1 +--+ XDP.) __“‘ZEQ(XD-')'

=1
Thus Dy U Dy U--. D, belong to D.
Let ' '

G e— G
P g 0 = g xpon)
Then D is a Dynkin system in  x §. Morever F x B(S) C D. It follows
that | |

D> D(F x B(S)) = o(F x B(S)) = F@B(S)
The proof is complete. -

COROLLARY 2.2. Let G be a complete o-subalgebra of F. Let (E,d) be a Suslin
metrizable space with d < 1. Let g be a F ® B(E)—meésmable integrand from
Q x E to R satisfying the foﬂowing condition:

(i) There is A > 0 such that

| 9(w,z) - = g(w,y) [< Ad(z,y)

for(w z y)mQxExE
(11) For any (G, B(E))—measurable mapping u from to E, g( L u(.)) is inte-
grable.
Then there is an a.s. unique mapping E9g from Q x E to R such that
(1) For any z in E, EY¢(.,z) is G-measurable.
(2)| ESg(w,z) — E9g¢(w,y) |< )\d'(-:c,:';c,r) for (w,z,y) in 2 x Ex E.
(3) For any G-measurable set A in § and any (G , B(E))-measurable mapping

u from £} to E, one has

[ B, u@) P = [ oo, uw))P(d)
A A
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PROOF. Let T be a (G, B(E))-measurable ma.ppmg from © to E. Then for any

z in E, we have ' : ' ‘
g(w, ) 2 m(w) = g(ea,i?(ts?)) - A

Since m is integrable, by replacing g. by g — m, we can suppose g{w,z) 2 0 for

all (w,z) in 2 x E.  According to Theorem 2.1. , there is an a.s unique G ® B(E)-

measurable mappmg h from Q x E to [0,+00] such that for any G-measurable

st A and for any (G, B{ E))-measurable mapping u from § to E one has

f B ) P(d) = f o u@)Pd).  @21)

Let D be a countable dense subset of E. By (1) (11) and (2.2.1) there is a set
N in g with P(N) = 0 such that ' o

lh(w w) h(w y) |< Ad(:v y)

for (w,z,y) € (Q\ N) x DXD For (w, z) e % E, define

h{w,x) for (w,z) € (Q\N)XD - = .
k(wyz) =4 lim hw,zn) forw € Q\N, 2= 'ﬁ_{l;‘om"’(m“)"zl cD
0 for (w,z)€ NxE ..~

Then for any in E, k(.,z) is G-measurable and .
l k(waz) — k(w?y) |S Ald(x%y)

for (w,z,y) € @ x E x E. To finish the proof, put EY% = k. It is enough
to check that for any. G- measura.ble set A and for any (g B(E))-mea,surable ¢

mapping u from € to E we have

[ ES g(w, u(w))P(dw) = / o) P(d).

By Castaing-Valadier ([11], Theorem III-6) there is a sequence of g mea.surable
mapping (¢;)j>1 from & to D such that lnn uj(w) = u(w) for w E Q Then by
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(2.2.1) and by definition of k, we have
[ Herus@)P(@) = [ b us@)P(a)
= [ s(o,us()P(d).
Note that for j > 1 and w in O,
0 < g(w,u5(w)) < (e, 8(w)) + M(uj(w), 7)) S g(w, 8w)) + X
Hence, by the dominated convergence theorerﬁ, we get

Jim | o(o,us()P(0) = [ oo, u(@)Pla)
Let z be a fixed element in D. Then for any j > 1, any w ¢ N , we have

0 < K, 4j()) < k(w,8) + Ad(z, 4;())
- L h(w,z)+ A

By the dominated convergence theorem the first member of (2.2.2) converges

to [, k(w, u(w))P(dw) when j goes to co. Finally we have

[ o u@)P(ds) = [ o, uw))P(de)
| 4 A |

for any G-measurable set A and any G-measurable mapping u from § to E. The
uniqueness of Egg is evident which completes the proof.
Now we can prove a general existence theorem of conditional expectation

for lower semi-continuous random integrands.

THEOREM 2.3. Let G be a complete o-subalgebra of . Let (E, d) be a Suslin
metrizable space. Let f : Q x E —] — 0o0,+00] be a F ® B(E)-measurable
integrand such that for any w € Q, f(w,.) is lower semi-continuous on F. Let
m be a positive integrable random variable. Assume that there is a (G, B(E))-
measurable mapping @ from Q to E such that f(.,4(.)) is integrable and f(w, )
+m(w)20for(w,:c) inQx E. .

Then there is an a.s. um'qize G® B(E)-measurable integrand E9f Wi_th

followin g properties:
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(1) EY f(w, .} is lower semi-continuous on E for any win €.
(2) for any G-mesurable mapping u from §) to E and any G-measurable set
A, one has T :
[ B u)Pan) = [ f(o,utw)Pias)
PrROOF. We can suppose that d(z, yj <1for (z,y) in B x E. For each integer
k>1and(w:r:)1119><Eput |
ou(w,2) = inf flkd(, D)+ Fwr) + m(e)]

Then by the measurable pro jection the01 em, see ([11], Them em III 23), gi(., )

is F-measurable for any z in E and we have’
| ge(w,z) — galw,y) |< kd(z, y)

for (w,z,y) in QxExEandforwin,;rin E, T Llim gr{w,z) = flw,z)+m(w).
s -y
Then we can apply Corollary 2.2 to each g since for any (G, B(E))-measurable
mapping u from Q to E, we have
0 < gi(w, u(w)) < grlw, #w))}+ kd(u(w), #(w)) |
< flw, u( )) + m(w) +k

for any w in . So gi(.,u(.)) is integrable. By Comllary 2 2, thele Is an a.s.

unique mappmg EY gx from Q x E'to R such that
For any @ in E,E. g;,-(.,-a:)-l_s G — measurable. .- . (2.3.1)
| Egg;,(w &) — Egjk(w,y) |< kd(a: y) - (232)

for(w T y)mQXExE
For any G- measurable set A in G and for any (g B(E ))-measurable nlappmg u

from Q to E one has o ) '
/_Eg-gk'(w,u(w))P(dw)': ] gk(w u(w))P(dw) : (2.3.3)
A .

Since (gx)r>1 is 1nc1ea,s1ng, using aganl mea.surable projection theorem ([11]

Themem I11-23) and an argument given by Castaing-Valadier ( [11] Theorem



VARIATIONAL INEQUALITIES 143
VIII 3.6, p. 264) we ﬁnd a set N in g with P(N) = 0 such that-
- E%gi(w, z) < Egng(w z)

for (w z L) in (Q\ N) x E x N*. Put
' ' supE9gi(w,z) for (w,z) € (Q \ N') x E,
h(w z) k21
0 for (w,z) € N x E

Then A is G ® B( E)-measurable and h(w .) is lower semi-continuous on F for
any w in (2. For any G- measurable set A and for any (G, B(E)-measurable
mapping u from £ to E, we have, by (2.3.3) and by the monotone convergence

theorem, :
f h(w, u(w))P(dw) =1 lim f EF gy (w, u(w))P(dw)
. A oA
=1 jim [ oo u)p(a)
= [ £, u)) + m(@)}P(d)
=/f(w,u(w))P(dw)-l-fm(‘-’-’)P(d‘*’)
A - : A ‘

:ff(w,u(w))P(dM)—i-f Egm(w)P(dW)a

“where E9m is the condxtmnal expectation of the mtegrable random vanable m.
Put E9f = h — Em. Then ESf is ¢ @ B(E)- measurable E9 f(w,.) is lower

semi-continuous on E for any w in  and

/ B9 f(eo, u(w))(dw) = / fleu)P(de)

for any A in G and any (G, B(E))-measurable mapping from £ to E.
References. Castaing ([9]), Castaing-Valadier {11}, Castaing-Clauzure ([8]),
Dynkin-Estigneev ([16]), Estigneev [17], Thibault [33], [34])), Truffert ([35]),
Valadier ([36],(37]), particul.arly, there is a rich biblibgraphy on the subject in
Truffert ([35]).

Theorem 2.3 allows us to introduce the notion of lower semi-continuous (Isc)

integrand martigales as follows.
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DEFINITION 2.4 ‘Lét-‘(Bn)nzl be a decreasing sequence of complete o-sub
algebras of F and Beo = ncriBn. A sequence (fn)a>1 of integrands from £ X E
to ] — 0o, +oo] is a Isc reversed supermartingale (resp. submartingale)(resp.
martingale) if (fn)ap1 has the following properties: _
(i) For each n > 1, fn is B, ® B(E)-measurable and fn(w,.) is lower semi-

continuous on E for any w in . ‘

(i) There is a (Boo, B(E))-measurable mapping 4 from (2 to E such that for
all m > 1, fal.,@(.)) is integrable.

(iii) For each n > 1, there is a positive integrable random variable a, such
that fn(w,z) + an(w) = 0 for all (w,z) in Q x E. ‘

(iv) For each n > 1, A in Ba41 and each (Bi+i, B(E))-measurable mapping

u from §) to E, one has

[ fuistoru())P(d) 2 [ o ) (@)
A . A
resp fA Furi(w, u(@))P(dw) < fA Falto, u(w)) P(d)

cosp Foaa(yu())P(d) = [ foli, s(@)P().

Note that by (1), (ii), (iii), for each n in N*, the conditional expectation
EBn+1f, and EP~ of f, with respect to Bpyq and B, respectively, are en-
sured by Theorem 9.3. For instance, if ( fn.)n'_>_1 is a lsc reversed supermartin-
gale, then EBn+1f, < fapq as., foralln 2 1, that is, there is a negligible
set N such that for all (w,z) in (£ \ N) x E, EBn+1f,(w,7) < fap1(w,T).
Similarly, it is possible to introduce the notion of Isc integ,rand martingale (sub-
martingale) (supermartingale) with respect to an increasing sequence {Fn)a>1
of o-subalgebras. : '

If f, is positive, B, ® B(E)-measurable on QO x E for all n > 1, and if
semi continuity condition is not required for the conditional expectation of
EBn+1f, and EBe f,, then the integrability condition (ii) and (iii) are superflous
by Theorem 2.1. In this case, we say that (fn)np1 is 2 positive integrand

supermartingale (martingale)(submartingale) if ( Fn)np1 satisfies (iv).
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3. Lower semi-continuous integrand reversed supermartingales.

The main result in this section relies on the following lemma.

LEMMA 3.1. Let ( fn)n>1 be a posmve lsc mtegrand revemed superma.r{;mgale
Let A > 0. Let ' ' ' '

faw,e) = infyep(Ad(@,y) + falw,9)]
forn'3 1,(w,z) in Qx E. Then (f;,Bn)n>1 is a positive A-Lipschitzean reversed

supermartingale and there is a negligible set N such that
lim f;}(w,:c) = lim E®[f3(.,2)]|(w)
for (w, a:) E(Q\N,\) X E.

ProOF. Without loss of generahty we can suppose d(:c y) <1 for (a:,y) in
E x E. By the measurable projection theorem ([11], Theorem III. 23) 2, z)
is B,- measurable for any z in E. " Moreover | fMw,z) — fMw,y) |< Ad(z, y),
Y(w,z,y) € @ x E x E. Now we show that (fn,Bn)nN is an mtegrand re-
versed superma.rtmgale For each n, denote by Lg(B, ) the set of (Bn,B(E))
measurable mappings from 2 to E. For A in B at1-and uin £ E( n+1) we have,

by a trivial modification of a result due to Hiai-Umegaki ([21], ‘Theorem 2.2)

vECE(Bn+1)

ffn_'_l(w w ))P(dw) " inf //\d(u(w),v(w))

i v(w))P(dw)> _inf f ,\d(u(w) v(w))-i— fn(w 'v(w))P(dw) -

€LE(Bn)J A

- / P, ulw)) P(d)
Ja o ‘ _ -

Hence ( f,’;,Bn),,?_] is a positive integrand reversed su1)er1narti11gale, since by
hypothesis, there is @ in Lg(Bs) such that fn(,,ﬁ(.))--'is integrable, so by the

definition of f,i‘, we get, for any z in E jz_a.n_c__l’_(.u in 2

Nw,2) < fNw, 6w)) + M(z; 5w)) < falw, 8(i0)) + M(e, G(w)).

" Hence f,’:(,u()) is.iﬁtégra,ble' for é.ll_ win Lg(Boo). Now let D be a countable

dense subset of E. Let EB« f) e the conditional expectation of f given by
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Corollary 2.2 which shows that EB= f) is A-lipschitzean, namely ‘
|EB°°fi‘(w 3?) EB“’fn(uJ y) 1< A(z,y)

for (w a:,y) in Q x Ex E. By Neveu ([30] Propos1t1on V.3. 11) for ea.ch z in
E, there is a negligible N 2 such that

i ) =t lm B0 @LD
for w in @\ NX. Let N* = Y N Then P(N» =0and
hm fi‘(w 7): T Jim E3°°[fi‘( 2)|(w) (3.1.2)

for (w,z)in (R\ N*) x D. Smce by Corollary 2.2, EB~ fA is )\ 11psch1tzean by
(3.1. 2) it follows that ' : : : Lo
o lim 2 fAw,2) =t lim B[, 2)@) (3.1.3)
for (w :c) in (Q\NA) X E

COROLLARY 3 2. Let ( fn)n>1 be a posmve Isc reversed supermartmgale For'
~ each integer k- > 1, let

fu(w,2) = inf [kd(w,y)+fn(w,y)]

for n > 1,{w,z) in. Q x E. Then for each k> 1, (fn,Bn)n>1 is‘a pos:tjve k-
11psch1tzean mtegrand reversed supermartmgale and there is a neg11g1b1e set N
such that : ' RURI e '

sup Hm fn(w :c) hm E8°° [fn( ,:c)](w)

: S >3 R
for (w,z) in (Q \ N)x E
PrOOF. By Lemma 3.1, each (fF, B;)nzl- is a k-lipschitzean integrand reversed

supermartingale a_‘ndjth_ere IS & negligible set N¥ such that

im0 =1 lm ERR(fAGaW)  (32d)
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for (w,z}) € (A\'N*) x E. Let N, = kgolNk.- Then P{N;) = 0. Taking the
supremum over & in (3.2.1) we get ' '

sup hm f¥w,z) —supT hm EB[fR( . 2))(w)
k>1 R0

lim sup B [£A(,2))) (3.2.2)

ﬂ—*OO

Since T f¥ = f, for each n > 1, by the monotone convergence theorem for
conditional expectation, there is a negligible set Ng‘ (see the proof of Theorem
2.3) such that

sup EP=[fa(2)l(w) = B®[fal., 2))(w) - (3.23)
for (w,z) € (Q\NF)x E. Let N = U3, N3 and N = N{UN;. Then P(N) =0
s0 (3.2.1), (3.2.2), and (3.2.3) yield

sup lim fi(w,2) = lim E®=[fi(,2)](w)
k..>..1 n—oo n—oo -

for (w,z) in (Q\ N) x E.
REMARK. Analogous results for lower semi-continuous in:t'egra'nd martingales
and amarts were obtained by Choukairi ([12]) when E is a separable Banach
spa.ee. 7 | | - ' '

Let us focus our atteﬁtion to the lower semi-continuous integrand reversed
martinga,les First we glve an easy and useful lemﬁla which is 5, consequence ef

Doob’s theorem for positive reversed martmgales

LEMMA 3.3. Let (f.)n>1 be a sequence of posﬁwe random Va,nables Let
(B Ja>1 be a decreasing sequence of o- subalgebras of F and Beo = Nyz1Bn-
Then

liminf BB~ f > EB°°(11m1nffn) a.s.

n—o0
PRrooOF. For each integer m > 1 put Im = 1nf fn Then EB"f > EbB» gm a.s.

for n > m. So we have

- lim inf EB~ fn2> hm EbBrgn, = = EB=g,, as.

n—oco

because (E®" gp)n>1 is a positive reversed martingale for each m > 1, which

converges a.s. to EB=g. by Doob’s theorem, see eg. Neveu ([30], Corollaire
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V-3-12). Hence by taking the supremumn over m in (3.3.1) and by using the
monotone convergence theorem for conditional expectamon, we get.
S liminf E®» f, > sup Ef*gm
¢ n—e n>1

= EBG"'(SUP gm)
mzl

# EBe(liminf f,) a.s.

Before giving: the main result of this sect1on, recall the following definition
of Mosco-convergence for a sequence (gon),,;.l of lower semi- coutmuous convex
functions on Banach space F.. Let p be a lower semx—contmuouc; function defined
on F (cpn)n>1 MY & -converges t0 oo if &) for any sequence (Tp)n>1in F which
converges 0 Zoo for J(F F) topology, we have 11111 mf gon(a:n) t,ooo(:roo) b)

for every y in F, there is a sequence (yn)n>1 in F Wh1ch converges t0 ¥ such

that limsup@n(yn) < @ooly)-

n—oo

We begin with some lemmas.

LEMMA 3.4. Let (B,,),,,>; be a decreasmg sequence of compIete o- srlbalg,ebras
of F and Bo = ﬂ°° B,. Let S be a topologwa] Suslm space and f be a
posrtive F @ B(S)- measurable 111tegrand defined on §} X S . Let ¢n = EB“f
for n >.1. Then (cpn)n>] is an integrand reversed martmgale Moreover,
if S is metrlzable f is lsc, f ® B(S)—measurable integrand and there ex15ts a
(Bm, B(S))- measurable mappmg % from Q.to S such that f (. u()) is 111tegrable,

then. (cpn)n>1 is a lsc 111tegrand reversed ma.rtmgale

PROOF Smce (Bn)n>1 is decreasmg, by Theorem 2.1, for any .n = 1 any A in

Bn+1 and any (3n+1, B(S)-measurable mapping u from Q to S, we have
[ B st P@) = e w)P(d) = [ B £l u@)Pd)

This proves that (E n f, n)n>1 is an mtegrand reversed martmgale It S
is metrizable, f is a ls¢, F & B(S)-measurable 111tegra.nd and if there is a
(Boo, B(S))-measurable mapping @ from:Q to S such.that f(.,u(.)) is inte-
grable, then EB~ f(.,u(.)) is B,,—measurable and 111teg,rable Hence by ’I‘heorem
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2.3, EB~ f is lower semi-continuous on S for each n > 1, so that (E®~ f, Bp)n>1,

is a lsc integrand reversed martingale.

By combining Corollary 3.2 and Lemma 3.4, we can prove the main theorem

in this section:

THEOREM 3.5. Let f be a positive Isc, F ® B(E)-measurable integrand. As-
sume that there is a (B, B(E))-measurable mapping u such that f(.,u(.)) is
integrable. Then there is a negligible set N such that

sup. Tim_inf [kd(z,y) + B f(w,)] = B [(,2)](w) C(35.1)
EENS 00 yE ‘

for all (w,z) in(Q\N)x E.
If E is a separable Banach space and if f(w,.) is convex on E for any w in (2,
then (EBf Jn>1 satisfies the following variational inequality. For any sequence

(2n)np1 which converges weakly to 2o, one has
liminf BB (f(.,z,)|(w) > E®~[f(.,2.)] a.s. | (3.5.2)

PROOF. By Lemma 3.4, (E®~f),>; is a lsc integrand reserved martingale.

Hence we can apply Corollary 3.2 which shows that

sup Hm 1nf [kd(a: v)] + EBnf flw,y)] =
AEN' n—»oo

lim Ee [f( 2)[(w) = B%[f(,2))(w) a. s.

since Boo = Ny Ba.

Since f(w,.) is convex on E for any w in Q, E® f{w,.) is convex too. See
also Castaing-Valadier ({11], Theorem VIII-36) for the convexity of EP= f(., ).
Hence f(w,.) and Ef> f(w,.) are weakly lower semi-continuous on E. If (Z4 )a>1

is a sequence in E which converges to z, for o(E, E') topology we have

lminf f(w,z,) 2 f(w, Teo)
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By property of conditional expectation of lsc random integrand and Lemma 3.4,

we get
liminf B [f(, zn)](w) > B%liminf fC,z)l@)
2 EB.w [f(': xoo)](.w)a.s.- )

REMARK: It is known that 3.5.1 implies that (EB» f)p>1 epi-converges a.s. to
EB f. See Hess ([20], Proposition 2.5). We refer to Attouch ([1]) for variational
_convergence of integrand. In particular, note that (3.5.1) and (3.5.2) imply
© that (EP» f).> Moéco-co11vergés as. to EB f. Moreover if E.is reflexive,
(EBf Jn>1 Mosco-converges a.s. to (EB= f)* where ©* denotes the dual of a
Isc convex functlon . For the decription of (EB°° f )*,- see Castamg Valacher
({11], Theorem VIIL- 40)

APPLICATIONS. LAW OF LARGE NUMBERS.

Let F be a Banach space with seﬁara.ble rclua_,l. ;L_et (Xn)a>0 be a sequence
of integrably bounded multifunction from € into the set wek(F )-of nonempt}
convex weakly compact subsets of F. Supi)bse' that (Xn)n>o0is independent and
identically distributed.. See Hess ([19]) for details concerning iid random sets.
Define | 7- | - ' '

Si(w) =Y Xiw)
i=0 _
fork>1 and w 1n Q It will be proved in a forthcoming paper that there 1s a
decreasmg sequence (Bn)n>g of a subalgebras of F such tha.t for each n, = Sn =
B Xu , B . . B |

By Valadler ([37]) the condltmnal expectatmn E‘B XO of Xo w:th respect
to B, is an integrably bounded multifunction from € to wck(E) such that
fA EB2X,dP = fA XodP for A in ' B,. Moreover ' we have

She.x, = {E®f: fe Sk}

where Sk (resp. Sps, x,) is-the set of F-measurable (resp. Bp)-measurable
selection of Xy (resp. E®~ Xj). |
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Now put fo(w,z’) = EB[6*(z', Xo()){w) for (w,z') in @ x B' and for n > 0,
where §*(., Xo(w)) is the support function of Xo(w). Then by properties of

conditional expectation for convex weakly compact random sets, ([37]), one

checks easily that (f,)n>1 is a lsc mtegrand reversed martmgale

By the previous arguments, it is clear that the Mosco convergence of the
law of large numbers for convex weakly compact iid random sets is equivalent
to the Mosco convergence of the reversed multivalued martingale EP» X, in the
case where E’ is strongly separable, and the Mosco convergence of the sequence

of Isc random integrands (%, ).>1 defined on Q x E' by

n—1

hon(0,2") =% S (@, Xelw))

=0
for (w,z') in Q x E', is equivalent to the Mosco convergence of the lsc integrand

reversed martingale (f,).

We refer to Hess ([19]) and Hiai ([22]) and the referénces therein for the
Mosco convergence of the law of large numbers for closed convex iid random
sets . ‘ : : _ o :
We refer to Attouch-Wets ({2]) and Hess ([20]) for recent results of epicon-
vergence for Isc pairwise independent and identically distributed 1ntegrands via
the Etemadi’s strong law of large numbers.

- It is known that the classical theorem of the strong law of large numbers for

1id random variables is a consequence of three classical theoremns, namely

- Doob’s theorem for reversed martingales

- Birkhoffs ergodic theorem

- Komlos’ theorem.
See Valadier ([39]) for the proofs and the references concerning the previous
implicatibns |

The reduction formula 1 S,, = EB X o, 1 2> 1, offers many nice applications

for the variational convelgence problems related to the law of large numbers

. mentioned above. It is worthwhile to note that Theorem 3.5 allows to obtain

the Mosco convergence of infegral functionals (I, Ja>1 and (I, ):‘12] with :tpn =
Efnf and ¥ = (E%f)* for n € N * U {0} to I, and I« respectively.
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See Salvadori ([31]; Theorem 3.1) and ([32], Theorem 1) for details. So to
illustrate the ppssibilities of applications of Theorem 3.5, we give without proof

the folloivi’ng va.riationa,l result.

PROPOSITION 3 6. Let E be a reflexive separa,ble Ba,nach space Let (B )n>1
be a decreasmg sequence of complete o- subaIgebras of F and Beo = ﬂ B Let
f:QxE— [0,40c0] be a ra,ndom Isc convex mtegrand suah that f(w 0) =0
for all w in Q. Put, fqr each n in N * U {oo},

Pn = EB"f—
()= [ oulou@)Plde), ¥ u € L (B)

Iy () = ] 20 W) PV v € LB oo>'

Then I,, MY -converges to I, in LE(B ) and I» M - converges to Ipx in
L% (Bo). In partzcular for any sequence (un)n>1 'whzch converges 10 Usg for
O'(L (Boo) L% (Boo )) topalogy, we have

n—odo

~ liminf EPB» f(w,up(w))P(dw) > jEB”f(w,um(w))P(dw)

3

4 - Upper semi-contiriuous integrand reversed submartingales.

- Let (B Jn>1 be a decreasing sequence of complete o-subalgebras of F and
Boo = n Bn. '

DEFINITION 4 1. A sequence (f;)n>1 of integrands defined on Q x E with va.lues .
in R is a usc integrand reversed submartigale if (fr)nz1 satisfies the following

conditions.

| (i) " For each n > 1.fn is B, @ B(E)—méasurable and for aﬁy w in
Q, fn(w, ) is upper semi-continuous on E. ' S
(11) For cach n > 1 and for any (Boo, B( E))~mea.surable ma,ppmg u from Q
to E, ful. ,u( ) is 1ntegrable '
(ii1) For eachn 2> 1, there is a posﬂuve 1ntegrab1e ra,ndom varlable a, such
that o

 falw,2) € ()
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for all {w,z) € 2 x E:
(iv) For each n > 1, for any A in Bpt1 and any (Bpy1, B(E))-measurable

mapping u from {2 to E, one has

[ fraeo,uw))P(de) < [ e )P
A A

The previous definition shows that the sequence (- fryBr)n>1 is a lower
semi-continuous integrand réversed supermartingale given in 2.4. By (i), (ii),
(iii) and Theorem 2.3, for each n > 1, the conditional expectation EB~+1f, is
a Bny1 ® B(E)-measurable integrand such that EBr+1f (w,.) is upper semi-
continuous on E for any w in . Moreover (iv) means that fn,4; < EB»+1f,
a,.s.. In view of a convefgence result given below, we need integrability condition
(ii) as in Doob’s reversed integrable submartingale convergence theorem. See
Dubley ([15]), Theorem 10.6.4) and Neveu ([30}, Corollaire V-3-13).

Here is the main result in this section which is a variational convergence

version for integrand reversed submartingales.

THEOREM 4.2, Let (fn)n>1 be a usc integrand reversed submartingale. Then
there is a negligible set N such that -

R, Jim sup [fu(w,y) — k(o)) € EP= (£, 2))w)

for all (w,z,n) € (A\N) x E xN*,
PrOOF. We can suppose that d(z,y) < 1 for (z,y) in E x E. For (k,n) in
N*x-N* put |
falw,z) = suplfa(w,y) — kd(z, v)]
yEE .
for (w,z) in @ x E. Then

[ fa(w,2) = fi(w,y)l < kd(z,y),¥(w,z,y) €Qx EX E
'l lim fA(w,2) = fa(w,2),¥(w,2) € A x B
0a(@)> fHw,2) 2 fulw,2),¥(w,2), EQ X E
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Moreover fX(.,z) is Bn-measurable. For any (Boo, B(E))-measura.ble ma.ppmg

u from  to E, we ha,ve
Can(@) 2 fou@)2 heue) ()

for w in §2. By condition (ii) and (iii) of Definition 4.1. and by (4.2.1), £%(., u(.))
is integi'able According to Corollary 2.2, EB= fF is k-lipschitzean. By unique-
ness of cond1t10na.1 expectatlon and by the dominated convergence theorem, we

have a.s. |
| im EP~fi=E°f, (422)

since f}f satisfies (4.2.1), (see the proof of Theorem 2.3)

First we prove that (X, B )'n>i is a k-lipschitzean integrand reversed sub-
martmgale Let A be in B4 and let u be a (B41, B(E))- measurable ma,pplng
from Q to E. By a result due to Hiai- Umegaki ([21], Theorem 2. 2)

/A Py u())P(de)

— s / fara(w, v(w)) d(ule), v(w))P(dw)

vELE(Bnt1)

UEﬁE(Bﬂ

< sup [ Flw, 0(@)) = kd(u(w), v(w))P(dw)
= [ st “)P(a) | o

In pa,rtlcula,r for each xin E, (f¥ ( :c))n_l is an 1ntegrab1e reversed submartin-.
gale. By Doob’s theorem, see Dudley ([15], Theorem 10.6.4) and Neveu ([30],
Corollaire V-3-13, fX(.,z) converges a.s. to a Boo-random variable gk (., z)
such that g% (.,z) < EB«[f¥(.,z)] a.s. foralln > 1.-Let D be countable dense
subset of E. Then for each x in D, there is a negligible set N ¥ such that

JLim fhw,o) < B [f5(,2))(w)
for all (w,n) in (A\N2) x N* Let N= |J ‘NF

E>1
zED
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Then P(N) = 0 and
lim fi(w,z) < Ef={f(,2)|(w) (4.2.3)

for all (w,z,n, k) in (Q\N)x D x N *x N *. Since both sides of (4.2.3) are

k-lipschitzean, we have
lim fi(w,z) < EP=[fi(.,2)}(w)

for all (w,z,n,k)in (A\N) X ExXN*xN*

Taking the infimum over &, we get

inf lim f (w r) < EBm{fn(ax)]( )

kel * n—oo

since | klim EBs f¥ — FBe f, as. by (4.2.2).

5. Lower semi-continuous additive random sequences

We introduce the notion of lower semi-continuous integrand superadditive

random sequences.

DEFINITION. Let T be a measure preserving transformation of € into itself. A
sequence (fm)m>1 of F @ B(E)-measﬁrable integrands from Qx E to |— oo, +00]
is a lower semi-continuous superadditive random sequence if (fm)m>1 has the

folloﬁving properties.

(1) For each m > 1, fiu(w,.) is lower semi-continuous on E for any w in .

(ii) For all positive integers m and n, and for all (w,z) in Q x E

fm+n(w:37) > fm(w,x) + fn(Tm(w: ‘T))

where T9 = ToTo... T to j terms with T® = Identity on .

(iii) For each m > 1, there is a (J, B(F))-measurable mapping u,, from £
to E such that f,,(.,un(.)) is integrable where J is the o-algebra of
invariant sets A in F, that is A = T“l(A)

Ifin (1), frn{w,.) is continuous on E for any w in §, we say that (fm)m>1 is

a Caratheodory superadditive random sequence.
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In the rest of this section, (E,d) is a compact metric space, (Q,F,P) is .
({0, 1], 7x([0, 1}, A) where A is the Lebesgue Imeasure on [0 1] and 75([0,1]) is the
o-algebra of Lebesgue sets in [0 1]. R

- We begm with a useful lemma.

LEMMA 5.1. If f is a real continuous function defined o_n QO xE anduis a
(J, B(E))-measurable mapping from Q to E, then

Jm LS AT uw) = B uONe) as GLD)

PROOF. First observe that if f is a 1inear combination of elements in C() R
C(E), then (5.1.1) is true. Indeed it is enough to check (5 1. 1) When f isgxh
with g in C(2) and h in C(E). - ' : :

By Birkhoff-Kingman'’s ergodic theorem, we have

nlirr;o% i g(T-’(w)) = Ejg(w) ats.
Then . . '
 lm ;2 AT (), uw) = Jim ~ Z_gm(w»hgu(w))

= E7[g(.yh(u(-)](w) 1)
because h o u 1s J-measurable. C

It is well knowu that there isa sequence ( fp)p>1 in C(Q X E) such that each
fp is linear combination of elements in C () ® C(E) which converges umformly

to f. It is obvious that for w in €} and for positive integers n and p,

IR Z ST )~ z fp(T’(W),u(w))|
<7 Z AT ), ) fp(T’(w),U(w))l

<A pi -

=0
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where ||p]| = sup  Je{w,z)| for ¢ in C(§ x E). So we have
E

(w,z}EN X

IS (m@ usw) < 1Y K@) ue) +if - gl

i

It follows that, for any fixed p > 1,

n—1 ]
limsup— Y f(TI(),u(@)) £ BT u@) +IF -5l (513)

n—oo 3=0

a.s. by applying (5.1.2) to cach f,. Since (f5)p>1 converges uniformly to f when
p goes to 00, E7 f,(.,u(.)) converges a.s. to EY f(.,u(.)) by the dominated

convergence theorem for conditional expectation. Therefore (5.1.3) yields

n—0d

n—1
limsup »  f(T7(w),u(w)) < E7[f(,u()D)(w) as. (5.1.4)
i=0
Analogously we have |
n—1 .
liminf Y AT@),u@) 2 BFCu()w) as  (5.15)
i=0

Hence by (5.1.4} and (5.1.5) we get

Im 2 3 AT uw) = B u()E)

a.s. as stated.

By using Lemma 5.1, we obtain the following result.

PROPOSITION 5.2. If f is a Carathéodory integrand defined on @ X E and u is
a (J,B(E))-measurable mapping from § to E such that f(.,u(.)) is integrable,
then '

i 1 Arw)ue) = B UE) as (G21)

PROOF. Since f is a Caratheodory integrand, by Scorza-Dragoni’s theorem, see
([5], Theorem 3.1) and ([6]), for every € > 0, there is a compact set K, in Q
with P(Q\K ¢) < e and fix, xE is continuous, so that Proposition 5.2. is an easy

consequence of Lemma 5.1,
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The main result of this section is the*following theorem.

THEOREM 5.3. Let f:Qx E — [0,4+00] be a J ® B(E)-mesurable integrand
such that for any'w in Q, f(w,.) is lower semi-continuous on E:'Aésume that
there is a (F, B(E))-mesurable mapping T from O to E such that f(,%(.)) is
integrable. Let u be a (J, B(E))-mesurable mapping from - to E. Then there
is a negligible N such that

. kzlép_-llnnlloréf 3jnf [;; f(T (w),y)—}-k‘d(u(w),y)] | -
Ej[f(,u( Mw) . (33.1)
for aﬂwé]\.f.

ProOF. For (k,n) in N* x N * and (w,z) in Q x E, put N

falw,2) = £ 3 T, 2)

fhw,z) = inf [falw,y) + Rd(z,p)]
fHw,z) = inf [flw,y) + kd(z,y)]

Then we have

L ez Y A (5.32)
Jj=0 -

for all (w,z) in 2 x E. Without loss of generality we can suppose that d < 1.

Since we have
0 fF (w z) <L (w, a(w)) + kd(z, T(w)).
< flw, u(w))-l—k SR
for all (w,z) in & x E, G u( )) is integrable. Since each integrand f" '

Caratheodory mappmg, we can apply Proposmon 5.2 to each f*. k. Hence there
1s a negligible set Nk s_uch that

fim = Z f‘k(zv(w) u(w) -E~’f’[f (Dl

k= mn
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for w ¢ Ni. By combining (5.3.2) and (5.3.3) we gét

limninf mf[ Z f(T’(w) y) + kd(u{w),y)

n—co y

> Ej[fk(-,u(-))](W) (5.34)

forw ¢ N. Let N = kct;Jol Nj. Then N is negligible and (5.3.4) is valid forw ¢ N,
Since f*(.,u(.)) T f(’l_t.()), then by (5.3.4) and by the monotone convergence

theorem for conditional expectation, we obtain

sup limint inf [ E FTIw),y) + kd(u(w), v)| 2 B[, u())(w)

keN - R0 ‘y

forwéN.

The following lemma gives a half epi-convergence result for additive random

sequence,

LEMMA 5.4. Let f : 2 x E —» R be a Carathéodory integrand such that the
function w — sup |f(w,z)| is integrable. Then there is a negligible set N such
‘ zEE

that

sup limsup 1nf { Z f(T-’ w) y) + kd(z, y)]

EEN* n—oo =0

< E7[f(, o)) (340
for (w,z) € (Q\N) x E. |

PROOF. By our assumption, we can identify f with an element of
LE.(E)([O,I],)\) so that the conditional expectation ¢ := EY f of f belongs
to LIC(E)(J) For any integer k£ > 1, put

PHw,a) = inf [p(w,y)+ kd(,y)l, (,2) € QX E.
¥ _

Then ¢*(., z) is J-measurable for any z in E. 7
Let D be a countable dense subset of E. Then for £ > 1, z in D, there is a
J-measurable mapping vy ; from  to E such that

kd(z, vk,s (@) + @@, vr,z (@) = ¢*(w,2)
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for w in by an easy applica,tioﬂ of measurable selection .theoi"em ' See eg.
Castaing-Valadier ([11], Theorem III- 9) Then by Propos1t10n 5. 2 there is a
negligible set Ng ; such that

n—1-

hm - E f(TJ(w) Uk ::(W)) —Ej[f( 5vk I( )](w)

. : 1—0 o
for w in \Q\N;C z- Put N =Jps; - UzED Ni o _ ‘
Then P(N) =0 and for z in D, kin N*, w in Q\N, we'have .
~ limsup inf [ Z F(T(w),y) + kd(m, y)]

n—Qoo J—O

< hmsup—- i: f(T’(w) 'uk,;(w)) + kd(z, vk z(w))
> T =0

= kd(z, vi 2 () + BT (v o())](w) = (0, 2)

Hence we get
n—oco

| - lim sup mf[ i F(T(w),y) +_kd(:c,y)] < oFw,z) - (5.4.2)

for (w,z) in Q\N x D. ‘Since both sides in (5.4.2) is k-hpsch1tzean (5.4.2) is
valid for (w, x) in Q\N x E and & > 1 By taking the supremum over k in
(5.4. 2), we obtain ' '

sup limsup mf[ Z: f(T’(w) y)+kd(:c y)]
'QkEN" m—oo  ¥E b0

oL Ej[f(,a:)](w) A o (5.40)
for (W, :c) in (Q\N) x F, sin_c'e- Sﬁp _qp.k' : E'Jf o S ‘ e
- _ keEN = _

The following proposition is concerned with the ﬁrbduct of a superaddit
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PROPOSITION 5.5. Let f be a positive continuous function definéd on §} x E.
Let (gn)n>1 be a positive superadditive random sequence. Assume that for w

in Q,supL B9 g,(w) < oo. Then there is a negligible set N such that’
n>1 - . '

-1

sup limsup’ ne1f [( gn(w X % E f(T’(U)ay))-!-kd(m y)]

hEN = mmeo j=0

< i\;}; — Ejgn(w) X Ej[f( a-'":)](“’)

for all (w,z) in (Q\N) X E.—

PROOF. Let ¢ := (sup E‘T n’) x E7 f. For any integer k> 1, put
nz1

¢@,2) = jaf [p(0,2) + bd(a,9)l, (0,2) €A X B,

Then sup ¢ = ¢. Let D be a countable dense subset of E. Let £ > 1 and
k>l

z in D. By the proof of Lemma 5.4, there is a (J H(E)))-measurable mapping
Ui,z such that - ) :
P 0,2) + K, v, ) + (0 v,;,,..(w))

for all w in Q. ij 'equ;.él.it'y (5.1.1)'0f Lemma 5.1; f;h'ere isra'negliig:ible set Ny o
“such that ' -

A' n—1

lim * > f(T’(w) vkx(w»—E-”f( ()

for all w in Q\Ng ., and by Kingma;n’s theofem. there is -a..-iieg]igﬂéle set Ny
such that
lim — ga(w) = sup lE"’ gn(w)

n—oo 7}
Hor all w in Q\N;. Let N = U Nk,, UN1.
k>t

zED
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Then P(N) = 0. Note that for a.ny w in Q\N;

n—l

. .-li:__néup ( gn(w) X — Z F(T (@), v, r(“’)))

n—oo J"‘U
‘1=

= llm —gn(w) X lxmsup— z f(TJ(w) vkz(w))

3=0
since lim Lon(w) = sup%EJg_n(t;q) < oo and
n—Co . n21 .

1 -1

;Zymwwmm<m (B <
Hence | | ;
n=—1
uﬁw(%wx—zﬂmmem
o0 J-'O

= (igli ~E gn(w)) X Ejf( ‘Uk :c( ))(w)

¥

for all w in Q\N. Consequently, it follows that for z in D,k 2> 1,w in-Q\N,

.
lim sup mf [( gn(w - E f('-'L'”J w) y) )+kd($ y)]
.=

—+00

'smMmengww—Zﬂmwmwm

< kd(z, v z(w))+(sup E‘fg (w)) ><E‘7f( m())(w)
;ww@ o ‘

Finally we have

n—1

~-limsup mf [(;1;9?‘(_“’) X i— Zf(TJ(w

' n—+oo y¥E j=0
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for all (w,z) in (2\N) x E, because both sides of the preceding inequality are
k-lipschizean, By'taking the supremum over k in this inequality, we get.

eup Timsup. nf [(Lga(e) x - Z HT@),3) + k(e )]

k>1 n—soo yeE
< ¢(,9) i= (sup T E7 gu(w)) x B[, 2)](0)

for all (w,z) in (Q\N) x E since sup (,0'7c = |
k>1

REMARK. The crucial fact in the proof of Lemma 5.1 is the equality
! : ,
Tim 237 f(T9(w), u(w)) = B £, u())w) (511
j=0 '

a.s. for any (7, B(E))-measurable map'ping u from §2 to E when f is continuous
on the compact metric space Q x E, or more generally f is a Caratheodory
integrand, see Proposition 5.2. 7

EXERCISE 1. Let (Q,F,P) bea p‘robabi]ity space, E a Suslin metrizable space,
f a Carathéodory integrand, u a (7, B(E))-measurable mapping from § to E
such that f(.,u(.) is integrable. Prove or disp'r.ove the equality '

i 23 A1), ) = BT A ()w) s

So the validity of Lemma 5.1 in this general case is an open problem. This fact

has been kindly communicated to us by G. Michaille.
EXERCISE 2. Let (.F, P) be a probability space, E a Suslin metrizable space,

(fr)n>1 a positive lower semi-continuous superadditive random sequence, u a
(7, B(E))-measurable mapping from § to E.

Prove or disprove the inequality
1 ' 1 |
limsup ~ fo(w, u(w)) < sup —~E7 f,(,u())(w) a.s.
n—oo It nz]_ T

Now let us focus our attention to the case when (2, F, P) is an arbitrary com-

plete probability space and E is a separable Banach space and T is ergodic.

There is an analogous result to Lemma 5.3.
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LEMMA 5.6. Assume that.E is a separable Banach space. Let f : @ X E —
[0,400] bea F ® B(E)»—meas‘urzibie integrand such that for any w in-Q; f(w,")
is lower semi-contifuous on E. Assume that there is an (7, B(E))-measurable
and mtegrabIe mappmg i from Q to E such that f( u(.)) is mtegra,ble Assume
further that T is ergochc Then there is a neghg:ble set N such that

n—1'
kzt;p_lhgmf inf [ }j AT (W), )+ Hlle =l > [ f(w P(d)
for all (w,z)in (Q\N) x E.
PROOF. For (k, n) 1nN * x N*and (w :1:) mQxE put
fn(w m) = Z f(TJ(w),a:)

_7—-0

0,8) = o lfa(w9) + Hll o]
Pw,a)= ;gyﬁw,y) + e =yl

Thex; we have - -

| ) LLE .‘ {ﬁ—l :if :  ,:”l;‘
R HCRE ;Z‘f-"(T’(w),w) S
=0
for all (W, :c) in £ x E. Since we have -

05 fD) < FoTw) +Hi - T@I
< fw, (W) + Hlo Tl

for all (w,z) in Q% E F*(,z) is ‘integrable for any « in: E. Therefore we can

apply Birkhoff-Kingman's - ergodlc theorem to the additive random sequence
(g%(. ,:1:)),,>1, where gF(w,z) = E fk(TJ(w) :v) for (w :r:) in Q X E Hence for

any z in E, there is a neghglble set N ¥ such that

S : f-n—l
1113_131 l gn(w z:) = hm — 2 fk(TJ(w) :n) (5.6.1)
: . s ' . j=0" B

%/f( |
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for all w in Q\N¥ since T is ergodic by our assumption. Recall that

5w, 2) = fH(w,9)| £ Ellz —y]|

for all (w,2,y) in @ x Ex E, and supf* = f. Let D bé a countable dense subset

E>1
of E. By (5.6.1) there is a negligible set N* = |J NF such that
. zeD
1 n—1 ) -
limn - Z fH (T (w),z) = / F¥(w, ) P(dw) (5.6.2)
=0

for (w,z) in (Q\N*) x D, so that (5.6.2) is valid for (w,z) in (Q\N*) x E
because z — [ f*{w,z)P(dw) and lim —gn(w, .) are k-lipschitzean. Hence we
get | '

n—1
liminf f¥w,z)> lim 12 FHT (w), z) (5.6.3)
n—00 n—o0 11 j:[)

= [ FHw,)P(a)

for all (w,z) in (Q\N*) x E. By the monotone convergence theorem we have
sup [ f¥(w,z)P(dw) = [ f(w,z)P(dw) forall € E. Let N= |J N*. Then
k>1 k=1

P(N) = 0.

By taking the supremum over k in (5.6.3) we get

sup liminf fHw,z) > sup /f (w, :c)P(dw)—-ff(w z)P(dw)

kEMN * n—co
for all (w,z) in (Q\N) x E
REMARKS.
1} The lemma is valid if we replace E by a Suslin metrizable space (S, d)

with d < 1. '

-2) Positive value assumption for f can be relaxed. Namely, the preceding
lemma is still valid if we suppose that f is a F @ B(E)-measurable integrand
such that for any w in Q, f(w,.) is lower semi-continuous on E and there is an

integrable function & : & — E and a positive integrable random variable m
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such that f(.,u(.)) is integrable and f(w,z)+m(w) > 0 for all (w,z) in Ax E.
The details are left to the reader.

LEMMA 5.7. Assume thé,t E is a separable reflexive Banach space. Let f :
QX E - ] — 00, +0] be a F-@ B(E)- measurable integrand such that for any
w in Q, f(w,.) is convex lower semi-continueus on E and there is an integrable -
function @ : @ — E and a positive integrable random variable m such that
f.,u(.)) is mtegrab]e and f(w,z) + m(w) > 0 for all (w,z) in & x E. Assume
that T is ergodic. Then there is a neg11g1ble set N such that

. 1 _ B
sup limsup mf [n. Z f( Tj(w) y)—l—k||:c—yH]
o P g T s

= /f(w,a:)P(dw)
for all (w,z) € (Q\N) x-E. |

PROOF. We imitate some arguments given by Hess [20]. Put o(z)

J f(w,z)P(dw) for ¢ € E. Then p is convex lower semi-continuous on E.
For any integer &k > 1, put ' .-

¢*(z) = inf [p(y) + k= - yll] = € E.
yEE

| Thensupt,o = . _ . o _ -

Let D be a countable dense subset of E. Then for k > 1 z in D, thereis

Ui,z 1n E such that E ' '

k|| - vkx||+90(vkz)— k(x)

since E is reflexive and the function y — k][m — y][ -+ (,o(y) (y € E) is inf -
o(E,E") compact Smce T is ergodic by Birkhoff-Kingman’s ergodm theorem
~ thereis a negl1g1b1e set N k,z such that

Jm < E F(TH (), k) = f F(w,00,0)P(
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for all win QO\Ng ;. Put N= U EJ Ni,z. Then P(N) = 0 and for z in D,k

k>1 z€D
El .
in N * win Q\N, we have

lim sup mf [ Zf(T’(w,y)—i—ka—yH]

‘ n—1
< hmsup— > F(T (@) vi2) + Mz = vi )
. j=0

= kllﬂ: - 'Uk,g;” + W(Uk,::) =@ (""’1 35)

Hence we get

limsup inf [n Zf(TJ (w), y)—[—k”:r:—y”] < of(z) (5.7.2)

n—oo yEE

for (w,z) in Q\N x D. Since both sides in (5.7.2) are k-lipschitzean, (5.7.2)
1s valid for (w,z) in Q\N x F and k > 1. By taking the supremum over k in
(5.7.2), we have

n—I1

1 | _
= 3 (7 e — vl < .
Sup  limsup inf [n 2 F(T7(w),y) + ke yll] < w(z) (5-?3)

for (w,z) in (A\N) x E, since sup ¢f = .
kEN *
Then (5.7.1) follows from Lemma 5.6 and (5.7.3).
By combining Lemma 5.6 and Lemma 5.7 we obtain the following epicon-

vergence result.

THEOREM 5.8. Assume that the hypotheses of Lemma 5.7 are satisfied. Then

there is a negligible set N such that

epzlzm - Zf (T (w),z) = /f(w,m)P(dw) |

"=+

for all (w,z) € (QA\N) x E.

COMMENTS. Parametrized lipschitzean approximation for lower semi-
continuous random integrands has been implicitely used in many places. Cas-
taing ([17]) used it to prove the existence of Caratheodory selection for mul-

tifunctions with nonempty convex closed values in a separable Banach spaces
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which are globally measurable and sepa.rately lower semi-continuous via Scorza-
Dragoni’s theorem, in the same vein Larhrissi ([24]) used 1t to prove the exis-
tence of sepa,rately BP(E)-measurable (i.e. measurable with to the o-algebra
of the sets with Ba.1re property) and sepa,ra,tely continuous for such kind of
multifunctions. Other uses of parametrized hpschltzean approximations can
be found in Castaing-Clauzure ([13]) concerning the lower semi-continuity of
integral functionéis, in Castaing ([10]) and Valadier ([38]) concerning the com-
pactness of Young mea.sﬁres, and also in Moreau - Valadier ([25]) concerning the
derivation of vector measures. The reader is referred to Buttazo ({4]), Clauzure
“([13]), Castaing ([9]), Dynkin-Estignev ([16]), Thibault ([33], {34]) for the use
of the parametrized lipschitzean-approkimgtiqns concerning the integral repre-
senta.t;ions and the conditional exi)ectations for lsc integrands. Receiitly Gavioli
([18]) and Moussaoui ([27]) used it to state the lipschizean approximation for
upper sti—conti{il;ous_multifunctions with convex closed bounded vé,lues in a
reflexive Banach space which allows to give many interesting applications to the
study of the sweeping process (or Moreau process) and the existence theorems
in differential inclusions. Choukairi ([12]) used it to obtain epi convergence for
Isc integrand martingales and amarts. Recently Hess ([20]) used it in the study
of epiconvergence for normal lsc integrands and particularly for normal ls¢ in-
dependent integrands. To-our knowledge,_iipschitzean approximation for lsc
functions defined on a metric.sp:qce is .Very_cl‘a_.ssic,a‘l. See e.g. Bott - MacShane
([3]) and Natanson ([29]). More recently, Jalby ([23]) obtains a lipschitzean
. approximation result for random lsc vector functions and also by thls way, the ‘

condition expectatlon for this class of ls¢ vector functions.
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