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ON THE UNIQUENESS OF GLOBAL CLASSICAL SOLUTIONS
OF THE CAUCHY PROBLEMS FOR NONLINEAR
PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER*

TRAN DuUC VAN AND NGUYEN Duy THAI SON -

Abstract. Some uniqueness theorems for global classical solutions of the Cauchy
problems for general nonlinear partial differential equations of first order are
established by the method based on the theory of multivalued mappings and
differential inclusions. 7
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1. Introduction

In this paper we consider the Cauchy problems for nonlinear partial differen-
tial equations of first order in an n-dimensional space (n > 1) and establish some
uniqu.enessl, Ithéqrem_s for global classical solutions. OQur method is based on the
theory of nmRiﬁal_ue_d functions and of differential inclusions. Indeed we extend
some of our uniqueness results for glob.al classical solutions of the Cauchy ‘prob‘-
lems for Hamilton-Jacobi equations [1] to the case of general nonlinear partial
differential equatlons of first order. | ' _ |

“As in [1], it must be noted that the theory of nonlinear partial differential
equations of first order has attracted much interest in the literature, partly
due to its applications in many fields such as classical mechanics, the theory of

waves, the theory of optimal control, the theory of differential games, and so on.
Through the work.s'of S.H. Benton, V.J.D. Cole, E.D.Conway, M.G. Crandall,
B. Doubnov, L.C. Evans, W.H. Fleming, J. Glimm, E. Hopf, S. N. Kruzkov,
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P. D. Lax, P. L. Lions, V. P. Maslov,0. Oleinhik, B.L. Rozdestvenskii, A. I.
Subbotin, M. Tsuji and others, many fundamental results on global solutions of
the Cauchy pr oblems for first- order nonlinear differential equations have been
obtained and various kinds of generahzed SOlllthIlS have been 1ntroduced

The paper is organized as follows. In Section 2 we formulate the uniqueness
theorems for global classical solutions. Section 3 is devoted to the proof of our
uniqueness results. In Section 4 the problem of continuous dependence on the

Cauchy data is investigated.

2. Uniqueness of global classical sqlut'ib:n's o

Let T be a positive number, Qr = (0,T) x R™ = {(t,x) e R"+1,0 < ¢ < T}
We consider the Cauchy problems for general partial differential equations of

first order:
_3%33) + H(t,z,u(t,z), Vou(t,z)) = 0, (2.1}
u(0,z) = up(z), - e e (2.2)

where H is a function of (¢,z, p, ) € (0 T) x R" x R! x R® and ug(m) is
a known functlon A vector ¢ = (q 4% g ) is corre:spondlng to qu =
(Bu/aml,(’)u/ Bz, ..., 0u)0z,). We are 111terested in the umqueness of global
('lassma,l solutlons for the Ca.uchy problem (2 1) (2 2) '

DEFINITION 2.1. A function u in C’I(QT)OC’([O T) X R”) is called a global cIaS-

sical solution of the Cauchy problem (2 1), (2 2) if w satlsﬁes (2 1) everywhere

11197‘ and (22) on {t-_OxER”} _ _ L _
Further let us denote by || 1 and <. - > t}ie_ norm and tl;e--s'ca,_l:ar _prochi&r

in R™, respectlvely

THEOREM 2.1. Suppose that there exist nonnegative numbers M and N .such
that for all p1,ps € RY, ¢1,¢2 € R™:

(2, 51,01) = H(5,2,02, 0| < Mlpy =2l + N4 2Dl — a5l (23)

V(t,z) € Qp.
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If ui(t,z) and uq(t,z) are global classical so]utmns of the Cauchy problem |
(2 1), (2 2), then ui(t,z) = up(t,z) in Q. |

REMARK 2.1. The condition (2.3) is fulfilled, if H, for example, is differentiable
—Hu,.VqH satisfy the

with respect to the variables p and ¢, and its derivatives. 5
. - ' P
constraints: o '
t
sup . __m_qz‘ < oo,
(t,I)EQT
pERg€R™
sup ||V H(t, z,p, )ll/(1+ []]) < oo
{t,z)eqr S L
PER! qER™

COROLLARY 2.1. (see also [1]) Suppose that the Hamiltonian H (%, z, ¢) satisfies
the condition: There exists a number N > 0 such that for all ¢;,92 € R™ and

(t,:r) & QT:
IH(t x cn) H(f x <I2)| < N(1+ IIwII)IIql ‘"QQ”'

If uy and up in CY{(Qr) N C([O T) x R™) satlsfy the equation

du
E+H(t z,Vyu)=0

‘everywhere in Q7 with u1(0,2) = up(0,2) , ¢ € R™, then u;(t,2) = uo(t, &) in
Qr.

THEOREM 2.2. Suppose that on Qp X R' x R*, H(¢,z, p,q) is Lipschitz con-
tmuous Wi th respect top€ ﬁl and Iocaﬂy LJpSCJutz continuous Wlth respect to

g € R*, ie. there exist numbers M > 0, N(Ix) > 0 such that
|H(t,z,p1,q1) — H(t,_ﬂ?,Pz,@)I < M|P1 = p2| + N(I)|lgr — 2], (2.4)

. V(t!w)GQT, Pl: P2 € R:;Ql:-'q2 € If)

where I is any compact set in R™. If u, and ug are gIobai quasi-classical

solutions of the Cauchy problem (2. 1) (2. 9) with

sup |]Vzu;(t :1:)|| <oco, 1=12,
{t,z)e8r



130 T. D. VAN and N. D. T. SON -

then u1(t,z) = uo(t, z) in Qr.
REMARK 2.2. If H is independent of z and p and if H = H(t,q) € Cl([O T] X
R™),then condition (2.4) is fulfilled. ' :

COROLLARY 2.2. (see also [1]). Suppose that H (t,z,p,¢) is independent of
p € R}, and on Q1 x R*, Q(¢,7,q) = H(t,z,q)/(1 + ||z||) is locally Lipschitz
continuous with respect to ¢ € R™. If u; and u, are global classical solutions of
the problem (2.1),(2.2) with

sip ||Vaui(t,z)|| <oo, i= 1,2,
(t;E)GQT . ‘

‘then u1(t, 2} = ua(t, z) in Qr.

3. Proof of Theorems 2.1 and 2.2
The proof of Theorems 2.1 and 2.2 is based on the following result.

TuEOREM 3.1. Let u be a function in CY(Q7) N C([0,T) x R?),u(0,z) = 0 on
{t = 0,z € R"} and suppose that there exist non-negative numbers M, N such '
that for any (¢,z) € Qr

WD) < N+ eI Vauts D + MIutei). (3)

Then u(t,z) =0 in Q.
PROOF. Let (t0, zo) be an arbitrary poinf in QT' We have to prove that
u(ty, zo) = 0. For this purpose we deﬁne in Or a multlvalued functmn F

Q7 — R™ in the following way:

F(t,2) ={fIf € R, ||f]| < N (1 +|l=]l), |
2452 4 < £, Vatt,) > | < Mlu(s,2)1). (3.2)

" We consider the differential inclusion

dz(t)
dt

eF(t (t)) | | | (3.3)

subject to the constraint
;L'(to‘) = Zp- (3'4)
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Now let X(%o,20) be the set of all absolutely continuous functions xz(-) :
[0,7] — R™, which satisfy the initial condition (3.4) and the differential in-
clusion (3.3) almost everywhere on [0,7]. We will show that X(tg,z,) is a
non-empty compact set in C([0, 7], R™).

To prove this we now show that the function F' defined by (3.2) satisfies all
conditions of Theorem .3, p.206 in [2]. Indeed, we have to verify the following
conditions:

(1) for any (t,z) € Qp, F(t,z) is a2 non-empty convex set in R™:
(ii) F is upper semicontinuous in Q.
First we check (7). It is obvious that F(¢,z) is a convex closed set in R™.

Further, by condition (3.1), there exists a number A = A(#, ) € [0,1] such that
AMou(t, z)/0t] < N(1 4+ [|z|| M| Vult, )], (3.5)
(1 — X)|ou(t,z)/0t] < M|u(t,z)|. (3.6)

If V,u(t,z) = 0 it follows that F(t,z) = BN(I—J-I!III) # 0, where we denote
by B, the ball B = {x € R" : ]|2|| < »}.
If V,u(t,z) # 0, we put

Adu(t,x}/ 0t
= — e V., u(t, z).
(R T
By virtue of (3.5) we have
_ AMOu(t, z)/ 0t
£l = Ve 'S,N(l + [|=])-

Therefore, from (3.6) we obtain the estimate
1But, 2)/0t+ < f.V,ult,z) > | =

Adu(t,z) /Ot

1Vou(t, )|

= |Qu(t,z}/Ot — ADu(t,z)/0t] =

= (1 = A)|u(t, z)/8t| < Mu(t, )],

= |Ou(t, z)/Ot — < Vu(t,z), Vou(t,z) > [ =

le. f € F(tzx). Hence F(t,z) # 0 and F(¢,z) is a compact set in R™.
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" To verify condition (i1) we observe that the function F' is bounded in a
neighborhood of any (¢, ) € Qr; i.e. there exist numbers £ > 0 and r > 0 such
that - R T
~ sup{|Ifll If € F(r,y),(r,y) € By (t) x B (z) C Qr} < o0
Tn addition, it is easily seen tha.t the function F is closed because for any se-

quence r(tk, zi) € Qr(k =1,2,...), (te, 1) — (L, ) € Q7 and for any sequence

fo € Ftezi) (k=1,2,...), fc — f in R we have f € F(t,z). The function

F is closed and ldcally bounded. Therefore, it is upper semicontinuous in Q7.

Thus, we have shown that the function F defined by (3.2) satisfies all con-
ditions of Theorem M.3 in [2]. By virtue of this theorem the set X (¢, o) of
‘solutions of (3.3), (3.4) is a non-émpty compact set in C([O T] R™).

~ Let 2(.) € X(t0,%0). We consider the function ¢(t) = u(t,z(t)). Since

u € C'Y{8r) and z(.) is absolutely continuous on (0,7 ,.the function ¢(.) is
‘absolutely continuous on [0, T, the funétion ¢(.) is absolutely on [¢, T — €] for

any € € (0,7/2). On the other hand, we have

dt,coigt) _ au(téz:(t))_]_ < da:l(t) V. (t 'v(t))
almost everywhere on (0,T). From the f_ac,t;that dz(t)/dt € F(t,x(t)) we im-

mediately get

o

almost everywhere on (0,T)..

Since ¢(.) € C([0, T)) the lmst 111equal1ty shows that

/ de(t)

| dt
Thus ¢(.) is absolutely continuous on [0,T — €] and ¢(0) = »(0,z(0)) = 0.

‘d‘f”(t)’ < M|u(t r(t))l = Mlp)l. (3.7)

’dt<oo Ve>0

Now we are going to show that (p(t) 0on [0,T — e] For this we put
ot} = |pp(t)]. It is obvious that tpg( )is absolutely continuous on [0,T — €] and
dpo(t)/dt = sign p(t), dp(t)/dt almost everywhere on [0, T — €].

From (3.7) we get |

__.‘f?(gt“"gM.w(t)-. | BT
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The function ,(2) = po(t)eM* is absolutely continuous on [0, T — €], and
by virtue of (38) we have

d‘toﬂ(t) ]\Jt MeMt (t)

dps(t) _ _dt
dt e?Mt
C deolt) .
0l0) _ piot
= Mt <0

almost everywhere on [0, — ¢]. Thus, @1(t) < ¢1(0) and @o(t) < pe(0)eM
Hence, |¢(2)] < ]cp(O)|eM‘ =0, Vte[0,T —¢. 7

- Since € is an arbitrary p051t1ve number we obtam that {p(t) =0 f_orra,ll
t e [O,T). In particular, o(t) = u(to,m_(to)) = u(tg,mg) = 0. The proof of
Theorem 3.1 is complete. ‘ |
PROOF OF THEOREM 2.1. We consider the function v = u; —u,. Then u(0, :c) =

0,z € R™. Besides that, from condition (2.3} we have

|6“(t )| o (H (2, un(t 2), Vo (8, 2)) — HE, o, ua(t, 2), Vaua(t, 2))]
< M-Iul\t,:n) — ug(t, )| + N(1 +||z]) ||V pu1 (2, 2) = Veua(t, z)|] =

= Mlu(t,z)| + N(1 + [l Vault, )]

Now it follows f10111 Theorem 3 1 that u(t w) = 0 in QT Th]s proves Theo-

rem 2.1.

PRroor OF THEOREM 2.2. Consider the function u = %y — ug. Then u{0,z) =
0,z € R". Let '
k= nulmx{ sup [|Vzui(t,z)||}-

W (t2)EQy

Since H satisfies (2.4), theré exist munbers M 2 0, N > 0 such that
|H(t, 2, p1,01) = H(t, 2,02, 0)] < Mlpy — p2| + Nl — @2,

v (t’m) € QT: _pI:PZ € RI, q1, 92 € Bk.
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Hence

Ju(t, z)

| = |H (t, 2, u1(t,2), Vour (t,2)) — H(t, z, ug(t, x), vzug(t, :r))|

< Mu(t, 2)| + N|[Voult,2)ll, V (t,2) € Qr.

Applying Therem 3.1 to the function u we obtain that w(¢,z) = 0 in Qr,

which proves Theorem 2.2.

4..The continuous dependence of solutions on initial conditions

THEOREM 4.1. Suppose that H satisfies the condition ( 2.3) in Theorem 2.1. If
u; € Cl (QT) N C([0, T) x R")(z = 1,2) satisfy everywhere in QT the equamon
(2.1) and the Cauchy data

ui(oa IB) = (Pi(x)a LT E Rn? pi € C(Rn)a 1= 1721

then

ui(t, z) = usz(t, z)| < M sup le1(y) — w2 ()]
S o IR /1R S R0 & ¥ 1Ed ) T

The proof of Theorem 4.1 follows directly from the following: lemma which

is similar to Theorem 3.1.

LEMMA 4.1." Let u be a functlon in CY{Qryn C([O T) x R"). Suppose that
there exist numbers M >0,N>0 such that for any (t z) € Qr,

2O < NQ + DIVt + Mt ()
Then I : . _
lu(t,z)| < M sup "~ |u(0,y)}. (4.2)

I i< Az Nt
PROOF OF LEMMA 4.1. _Re1)eatt111g the proof of Theorem 3.1, we get. that the
function ¢ is absolutely continuous on [0,T — ¢, and almest everywhere on
[0,T — € we have

do(t) |
e < Mip(d).

Thus, |p(2)] < eM*|p(0)].
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Further,

[e(to, o )| = [u(to, z(t0))| = |(to)| <
< eMPep(0)] = eM'e|u(0, z(0))|.

If we can show that _
[2(0)]] < (1 + {lwol)e™ — 1,

135

(4.3)

(4.4)

then the estimate (4.2) will be proved by virtue of (4.3). In turn, the estimate

(4.4) follows from the following

LEMMA 4.2. Let z(.) : [0,T] — R" be absolutely continuous on [0, T, z(to) =

zo, and almost everywhere on [0, T}

d_';g‘f_)H < N1+ [lz®I),

Then

2 < (1 + [l [)eM ol — 1, (4.5)
Proor of LEMMA 4.2. For every € > 0, put | |
Cme(t) = (1 + ||zo| + e)eNltl 1,
The f1;1ictio11 m(.) is absolutely continuous, positive on [0, T] and
dmd(t) N1+ m(), t>to,
Cdt { CN(1+ mdt)), < to.
To prove (4.5) we have only to show that
ls(®ll < md#), Vte0T], Ve>o. (4.6)
Since m(tg) > ||zo|} = |[2(20)]| there exists a number § > -0 such that for all

t € [0,T] 0 (to — 6,t0 + 6),
me(t) > [lz(2)]l.

Assume that (4.6) is false. Then there exists ¢' € [0,T] such that m.(t') <

llz(")l-
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i) If # > 1o, putting ¢y = inf{t € (to, T];m(t) £ ||z(t}]|]}, we have
o)l = met)y @) > o)l Ve € onte),

and almost everywhere on (tg,ltl)

dm(t)

) - N+ m®) > N+ o))

> 1202 Loy,

(Since [|z(.)|| is absolutely continuous on [0,7] it follows thiat dt” z(t)| <

| MH) On - the other hand,

“dmt) (Y dlla(t)]
—dt et I
/t-_dt | .</t_'dt__"

o ]

if and only if m.(¢;) — me(to) = ||z(t1)]| — mf(to) < =) = =)l Hence

we get a contradiction.

) I < 4, puttmg, tz = sup{t € [0 to); me(t) < ||z(#)]|} and proceeding

analogously as in i) we also come to a contradiction. ‘This proves Lemma 4.2,

The ﬁniqueness of global quasi-classical solutions of the Cauchy problems

for nonlinear partial equations of first order will be studied in a forthcoming

paper by the method used here.
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