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HOPF BIFURCATION AT A DOUBLE EIGENVALUE*

- NGUYEN XUAN TAN

1. Introduction

Let R™ be the n-dimensional Euclidean space, n > 4. It is customary to
simplify a notation by dropping the superscript R! = R. We consider Hopf

bifurcation points of the following dynamic system

% — &= fa, ), (v,1) € R™, (1)

where f is a smooth mapping from R**! into R®, f(0,u) =0 for all » € R.
By A{y) we denote the derivative of f(-, u) with respect to z € R™ at zero, i.e.

A(N) = f:l?(oa 1“)' .

Let wo € R be such that the n x n-matrix A = A(yp) has a. pair of pure
imaginary eigenvalues A(po) = £¢4. Without loss of generality we may assume
£ =1. In the case when +:z are simple eigenvalues of A, there are many results
on the Hopf bifurcation of Eq. (1), (see, for example [1], [3], [4], {6], [7], and the
references therem) The purpose of this paper is to study the Hopf bifurcation
of (1) in the case when +: are double e1genva.1ues of A. In what follows we only
consider the case when 7 is a double elgenvalue of A. By Ry = ker(A —iI) we
denote the null space of the mappmg A—zI ie., Ry ={z € R"}(A—il)z = 0}.
Here, I stands for the identity mapping. Let

Ry = [vl;vzl

and
So = ker(A ~i)* = [4',4%].
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Setting

¢! = Re(e''v?) = costRe(v?) —- sintIm(v?),
¢t = Im(ev?) = cos tIm(v?) + sin tRe(v’),
7 = Re(ei*?) = costRe(y?) — sintIm(?),
Y = Im(e''y7) = costIm(y’) + sintRe(y’), j = 1,2,

we can easily see that gﬁk, 1,[)", k=1,...;4 satisfy"the equations
z = Az,
y = A%y,

respectively.

Furtlier,‘le_t X = Cyu(R, R™) (Y = Co([0,2n], R™)) denote the space of con-
tinuous 27-periodic functions from R into R® (contiﬁuoﬁs functions h : [0,27] =
R™ with h(0) = 0). The scalar product <,> and the norm ||-|| in X and Y are
given by - T '

C<oys= [ GOwOME

llzll = (< 2,2 >)1’27

!

where () denotes the scalar product in R* deﬁned by usua,l ways We want to
find (z, 1) satlsfymg (1) with z bemg a nonzero (1 +. p)27r perlodlc functlon (p
is unknown and to be determmed) Insertmg t = = (1. + p)’r 1nto (1) we obta,m

the equation _ _ L .
. dz o - Lo .
&= —==(1+p)(f(e,p), (z,u) eR™. (2)

To find (z, i) as above, it is enough to find (z, p, p) satisfying (2) with z being

a nonzero 2m-periodic function, i.e., z € X, z #0.

2. Lyapunov-Schmldt procedure for evolutxon equatlons

Using Taylor 8 expansmn we see that Eq (2) can be written as -

(L4 ) dn + (i fan O ) + SO} (8)

gfxxx(O,po):c3 + high order term (HoT)},
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where (HoT) = O(|p — po[*z, ||:c|]3) Putting A = g — po, L = fz,(0, o), the
equation (3) becomes '

r = (1 + p){A:U + ALz + §fz,z(03#0)m2 + gfzxz:(oa.MO)xs + HOT} (4) :
Further, set -
Xﬂ = [¢1; ¢2a 45:3_3.9154]3
Yo = (', 9%, 9°, 9],
-where {p!,...,o"] denotes the real subspace spanned by {?, ™} One can
easily verify that o

X=X, X,

with

X1={zeX/ <$,-Z>“—=0f01‘8.112€X0},‘
Yi={yeY / <y,v>=0forallve¥}

We define the projectors P Y - 5, Q:Y - Y] by

) ,
Py)=> <y,¥ >4, Q) =y— Py)

=1

Then Eq. (4) can be redhcéd to the following equations

QU= (14 P42 + ALz + 5 f2u0, o)o? + 3 Faaal0, po)a? + HoT}) = 0
©
P(s = (1+ p){As + ALz + 3 foul0, po)e” + & fora(0, po)o® + HoT}) = 0.

But any z € X can be written as z = 2j=1 ed? + z, for some ¢, e ER, z €

X,. Therefore, to solve the system (5) is equivalent to find ,o,.A € Rlie =
(€1,...,€4) € R}, 2z € X satisfying the system
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i— Az — Q(pA(ZeJqﬁ’ + z) + (1 + p){AL(ZeJ_qu + z)

-JI =1 .

+ fxz(O,#o)(Z i + 2 + fm(O #o)(): &j¢’ +2)°} + HoT) =0,

=1

P(a(zemf +2)-(1 +A){A(Ze3~¢f’+z) +AL(Zej¢f +2)

S fxx(oﬁyﬂ)(zej‘?s] + 2)2 + fa::ca:(oaﬂo (Z EJQSJ + Z)s} + HOT) =0.

i=1 =1
This is equivalent to

i— Az~ Q(pA(EeJqsf +2)+(1+ p){AL(Z e; 6 + 2)

]—1 =1

Sk f:ca:(o PO)(Z EJ‘FSJ + 2)2 + fmz(o F‘O)(Z EJ¢’J + 2)3 + HOT}) =0,
= = ®

< pA(ZemJ F2)4(4 p){AL(Zemf + z) + fu(ﬂ,uo)(zegé’ +2)"+

].—

fmz({) #u)(z ej¢? +2)°} + HoT}, 1,L-" =0 k=1,.,4. : (7)
j=1

LEMMA 1. There exist neighborhoods I of zero in R, Uy. of the origin in R*, D

of the ongm m X;, and a continuous mappmg z: V1 =1L x I1 X Ul —
Dl, #(0,0,0) = 0 such that for any (p, A, €) € Vi we have

oA €) = Az(p,Ae) - Q(pA(Eegqﬂ’ +2(p, A, ©))

+(1 +p){AL(ZeJ¢J +z(p,A e))+ fu(O uo)(Zw + 2o\, )
+ L unal, )3 58 + 5,0 ) + HoT}) = 0. e

3—1
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Moreover, for. any natural number m = 1,2;..., there exist constants Ey, Fy,
such that
D(e) = max{|[z(£a*,a®, ap)ll, {lz(£a?, 2, ap)ll, lla(2a®, Ea?, ay)||
W&aiaawﬁ<%ﬂ+wh%fwﬁ“_

for aH (a o ay) € V1 Consequently, we conclude that J—)- = o(|a|) as a — (.

PROOF. We define the mapping G R6 xX; - ¥ by

| G(p,A €7) =%~ Az~ Q(p{l(ze]w +z>+(1 +p){,\L(D,¢:_ +2)

e =1 -g=1
A fm(O,Mo)(ijcﬁ’ + 2+ £ Frnel0,10) (ZEJ?SJ +2) 4 HoT}) =0
=t S st L
It then follows that G(O 0, 0 O) =0 and G 2(0,0,0) =2 — Az wh1c11 is a one-to-

‘one mapping from X; onto ;. Usmg the 1mp]1C1t funct:on theorem we, obtain

1

the first assertion. The proof of the second assertion proceeds exactly as the

one of Lemma 2 in [8]..

3. The main results

For ¢ =1 or ¢ = —1 we define the mappings A, B7,C%, D7 : R* = R*, A=
('Al.’ .A4) B? —(B ) C (C ), Da (D‘:r ...,Dg),-.by v

'Ak(y) £ < fm(U no)(zy,qw)s ¢-’=

CBw=o< A(Z-?e?") o> ),

j=1

| (9)
| ck(y) =0< L(chﬁ’) ¢ > +Ak(y), __
Di(y)=o< (A + L)(Z yid), ¢ > +Ak(y)

_ . =1
E=1,04 Y= (y1,.009s) € R |
Further, we make the following hypotheses on these mappings
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HypoTHESIS 1. There exists a point .y = (gl',...\,'g.;) € R, § # 0 such that
Ar(7) = 0 and the 4 x 4-matrix '

(y))x;;;l,-.;.g |

is nonsingular.

HYPOTHE8182 Hypothe51sl v;rith yand A ;:éi)léceél i:)y .;rj"-a..nc-l B;’ ,. respe.c;;‘.ive-l.y.
HYPOTHESIS 3. I_-I_ypothééis 1 with 7 a:ad .-A-replaced. by 7 and C "; respectivelf.
HYPOTHESIS 4. Hyi)othesis 1 Witil 7] and A réplaceci by g" e;nci b", res-per;ti\;fely.

THEOREM -1. Under Hypotﬁésis 1, (0, po) is a bifurcation point of périodic -
-solutions of Eq. (1). More premsely, there exists a nejghborhood Iy of zero in
R ‘and ‘continuous mappings fi, ps : Io— R, y&: I, > R, (yl - ,y4 )
such that (z+(a), p£(e), p(a)), a € I, with - -
z(a) = Y oy ()¢ +o(@) asa— 0 -
j=1
and
(a) Ko :I:Ot * pi(a)

satisfies Eq. (3), :ri(a) — 0, pxla) = po;ipi(a) =0 as a — 0, zi(a) 75 0
for @ # 0 and &(a) = x(a)( 1+p(a)) is (1 + pi(a))QTr—penodlc function.

Proor. Let I;,U;,z be as in Lemma 1 and Q a nelghborhood of the point

in R* such that 0 ¢ Q and a) C U?! for all o _E.‘Il._ _\__Mg_deﬁne the mapping

E*:I, xQ — R, E* =(Ef,..,EN), by

| (< ﬂ:A(Z,—l ay;¢? + 2(a)) + (1 £ 03){iL(E,—1 ay;¢’ + z(a))
L3 Fua(0, o) (g v + 27

+_f:r:n:1:(0:;u'0)(23-—-1 yi$! + L2 + HoT, gk >, for a # 0,

\ Aw(y), for a =0, y= (yh ,'9’4) € R4 |

Ef(a,y) =

where z(a) = z(iaa +ad, ay).
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We have E*(0,7) = 0. Observing that.

Z(a) |

,)Z,Z‘bk > =

1 1 4 .
- < _fzz(oaﬂo)(zyj¢J +

( )

—{< fu (0, o) wa V> 4+ < fal0, po)(ZJJw 2y pF >

j=1 L i=1
< 3500, #o)(z(a)) FOSY

A simple calculation shows that < fz;(O,,uo)(Zj-ﬂ y;#9)2, % > = 0 for all
k=1,..,4and |22 | - 0. Therefore
1 : ( )
= < = faal0, )OO _ys7 + =), 0" >—>0a'-301—>0f01 allk=1,..,4.
a 2 oy
One can easily show that E* is a continuous mapping and E;F exists. Moreover,

it is continuous and

IEE(0,9)

(0, aAL
(T) (

(y)) kj=1;...4
is a nonsingular mapping.

Applying the implicit function theorem we conclude that there exist neigh-
borhoods I :of zeroin R, Qy of §in R4, Iy C I, C  and a differentiable
mapping y* : Iy — Qg,yF(0) = 7, such that E¥(a, y*(«)) = 0 for all « € L.
It then follows that

< :|:a3A(Z ay;(a)¢’ + z(a)) —l— (1 + cu3){:’ccv3L(E ozy;t(.b] + z(a))

=i j 1

4
+ %fm-(O, ﬁtO)(Z?yj¢j+ )’ N (10)

| 4 fmx(O,#o)(Zay;‘:(a)qﬁj+z(a))3+HoT} P* >=0

1=1

for all @ € I. Setting z¥ (o) = Zj_l ay; #(a)¢’ + z(e) and noticing that

< ﬂ-l%_ﬂn — A(z*(a)),v* > = 0 for all k = 1,...,4, we deduce from (10) the
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equation
¥ (a ’ ' 2
< A (14 A (@) 20 L) O, o))

f:c:ca:(o “0)(3::&(0{))3 + HOT} %b > =0, k=1,. 4 '
. . S R - (11)

On the other hand, since :!:a3 :I:a y Y5 (a)) € I1 x I; x Ul, it follows from (8)

that :

Ha) — A(z(a)) - Q(xa® A(zH(0)) + (1 £ *){£L(z™ (@)
+ 5 Fea(0, o) (@) + Fers(0, o) (@) + HOT)) =0
and hence _ | _ . .
oA A (“” - (20 AGH@) £ o Leta) + fm(ﬂ o) @)+
f:rxz(o to)(z d:(a))s + HOT}) =0 E
_ . B (12)
A combination of (11)-and (12) give =~ = .7 -

,U:l:
D (1) o), )

w1th ,ui(a) = Ho :l: a3 Thus +o? ,,ui(a) xi(a) satlsﬁes Eq (2) for any acl

Furl_:he_r, it is clear _t_h@t u‘i(a) — po and z¥(a) — 0 as o — 0..
By choosing I C Iy if necessary we can easily see that z*(a) #.0 for all

a # 0. Indeed, assume that for any nelghborhood In C Io, Liyi C LN =
{0} there exists o 40 such that 2% (a,) = 0. Then

Zy (a )qﬂ’—z( ")EXoﬂXl = {0}.

The linear independence of {él,_...,¢4} gives y_if(a,-z) = (yli(q;l), 7..,_yf(an) =
0 € §2p. This contradicts to 0 ¢ Q. The proof of the theorem is now complete.
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THEOREM 2. Under Hypothesis 2, (0, uo) is a bifurcation point of periodic
solutions of Eq. (1). More precisely, the same conclusions of Theorem 1 continue

to hold with py, py,y,z replaced by p%; 0%, y° %, 2%, where y°(0) = 77,

po(a) = po £ o,
pi(a) = oo,

. 4 :

z7%(a) = Y ay7*(a)¢’ +ola) as & — 0.
j=1 ‘

THEOREM 3. Under Hypothesis 3, (0, o) is a bifurcation point of periodic

solutions of Eq. (1). More precisely, the same conclusion of Theorem 1 continue

to hold with py, ps,y®, 2T replaced by u:"k,pi,y"i,m”i respeétive]y, where
y7*(0) =77,

4
h(a) = Zay;-'i(a)qﬁj + o(e) as a — 0.
. =1 .

THEOREM 4. Under Hypothesis 4, (0, o) is a bifurcation point of periodic
solutions of Eq. (1). More precisely, the same conclusions of Theorem 1 continue
ok

to hold with p4, ps,y*, ¥ replaced by 4%, 0%,y %, 27% | where y?=(0) = §°,

PL‘:,I:(O{) = Ho + (70!2,
pola) = :l:cu2,

4 -
%) = Zay;i(a)cﬁj +o(a) as o — 0.
C )

The proofs of Thebrems 92-4 proceed éxactly'as the one of Theorem 1 by
replacing the mapping Ei_ by F "i,G"i,J"# = (JIE,..,J] *) respectively,
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where

FiE(a,y) = ¢

GIE(a,y) =

t

T, y) = 4

NGUYEN XUAN TAN

[ < aA(Z yjé" z(a)) (£ m’){iL(Z ay; 4’ + z(a))

J=1 =
b fee0, XS5+ S
i=1
. ,
+%fm(0,yo)(z yid’ +-z—(j‘~)-))3_ + HoT},v*, for a #0,
j=1

Bg(y) “for a =0,

:FA(Z o:yjqb’ + z(a) +(14+ az){aL ZyJ qw

Z( ))

<+2—10,-fm(0,#o)(2yj¢j z(“))f

i=1

. e
+1 foaa(0, ) vsé + f(a—“’)))3 + HoT},¢* >, for a #0,
j=t
Cily)  for - a=0,

<:FA(ZyJ¢J+ o ))-}-(I:I:az){crL stf (j))
+2afzz(0u“0 (Z y.?¢’J (le) ))2 |
J -1
+ fn::c:c 7#0)(23}]‘?53 Z(Q) )) + -H'C’Tl},’l,[)"L >, fO?‘ (a3 -—,é 0,
j=1 : R :

, Dk(y) for « =0,

REMARK 1. The above results show that there always exist at least two different

parameter families of nontrivial periodic solutions in a neighborhood of (0, fo)-

REMARK 2. If there are two different points 7%, 7% satisfying the above hy-

potheses, then we can prove that there also exist at least four different parameter

families (ALY (), z

() £ ¥ (@), 227 (a)) of nontrivial periodic solutions in

a neighborhood of (0, o).
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REMARK 3. In the case when the mapping f is c¥-mapping, we conclude that

k

z% are also c®-mappings.

To illustrate the above results, we give the following example:
EXAMPLE 1. We consider the equation in R*
du 4 .
E = f()‘u u‘): ' (’\!u).e R x CZTI'(Ra R )? (13)

where f(),u) = T(u) + AL(w) + H(),u) + K(),v), with

-1 -1 0 O
1 -1 0 0
T =
0 0 -1 -1
0 0 1 -1
1 00
0 1 0
L= )
001
0 0 01
1
2 1
H(Au)= A(J; u;)® o= (uq,uo,us, uq),
1
and K is a differentiable mapping, || K (A, u)|| = o(||xl|*} as |fu|| — 0 uniformly

to A from any bounded subset of R. A simple calculation shows that ¢ is an

eigenvalue of the mapping f,(1,0} = T + L with multiplicity 2. We have

1 1 0
T 1 1 —1 1 0 4o 3 -1
o= — = 3
7 227 1 227 |1 22w 0
z 0 1
) 0 1
2 2 1 1 1 1 7 0
vt =" = . = +
22n | —1 2\/_ 2r | O 2v2n | —1
1 1 0
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and hence s VI R
( cost _ . /—_sint
1 -smt ) i —cost
¢1 = Tb:}:ﬂ, : 1 ;¢2 :’(!)2_: . 1. - -' N y
2V o cos t 227 | —sint
sint } T ‘j,‘\_ cost )
( sint \ ( cost \
o | ccost ) 1 _sint
3 .3 Y R S }
¢ v 227 | —sint 9 _¢ 2427 | —cost.

\ _cost ) | \—.eilit/

One can easily see that

Dy (2) =~ + 83 (;(wl +a) + (o1 + 25)(oa + 20)7),

Dy (z) = —z2 + _( (1’2 + 334) + (22 + z4)(z1 + 23)?),

Dy (z) = —z3 + —( (501 +$3) + (x) + z3)(22 + z4)%),
3

1
Dy (z) = $4+ Py (2($2+$4) +($2+$4)(T1 +23)%).
Teking 72 = zT = 0, 1+ = 73 —:i:(z’r)ll2 we can see that D™ (z%) = 0 with
z* = (zF,z%,zF K ) a.nd |
| 30 3.0
oD 0-2 0 3
EEf)y=|_
ach v 30.200
e 0 '3 0 2/

isa nonsingtﬂa.r matrix, Theref(;)i":e,f api)lyill'éj' Theorem 4, we conclude that':("l,‘()‘)‘
is a bifurcation point of periodic solutions of Eq. (13). Analogously, if we choose
zf = iy = :I:(%”)2 and 7T = &f = 0, we can pro;ve that the assumptions of
this theorem are satisfied. Using Reiﬁerk 2 we deduce that there exist at least

8 distinct parameter families of nontrivial periodic solutions of Eq. (13).
4. The degenerate cases

In thls section ‘we consider the cases when there exist pomts y,y # 0

satisfying one of the following equatmns
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Ay =0,
B°(y) =0,
C7(y) =0,
D(y) =0,

which correspond to the singular matrices

dA By .. acy. .. OD%
@), 507, 5@ 5
Y5 j

—
By, oy; 7 )
respectively. This means that none of Hypotheses 1-4 is satisfied. VTheserca.ses

are ca.lled degenerate cases.

Now let j € R be such that A(g) =10 and the matrix A= ( 5z )ii=1,...4

is a singular 4 x 4-matrix. We put

Ry = {z € R* | Az =0},
Ri={zeR'/Az=0}

and assume that Ry = [€1,...,€7 R = [¢*,..,&}, 1 < r < 4, and R, R}
are such that Ry @ R, = R} @ R} = R'. By P,Q we denote the projectors
of R* into RS,R’I“, respectively. Further, by DIA(G) = A,. (¥) (j-times) we
denote the j-th derivative of the mapping A at the point 7, j =1,2,.... Let ¢

be the smallest number such that D°A(7) # 0 on B. We define the mapping
f : RT —RT, f = (fly-"afr): b

fk(t)——<D°.A (Zt&’f*‘>,k—1 wory t=(t1, 0 tr) € R®. (15)

J.-—
Analogously we define the mappings g°,h%,¢° : R” — R" with A replaced
by B?,C%, D, respectively (of course, the spaces Ro,Rl,RE,R* are also de-
S 8BS =a 5CY ;o 875 /-
fined by replacing A by B = (52=(7°)), ¢’ = 53—;-!;( ), D = (55(3),

respectively).

We make the following hypotheses on these mappings:
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HyprOTHESIS 5. There exists a point t* € R™, t* = (¢],...,}), and a neighbor-
hood U* of #* in R™ such that the topological degree, deg (f,U*,0) of f with

respect to U* and the origin in R" is ‘defined and different from zero.

HYPOTHESIS 6. Hypothesis § with t*,U* and f replaced by t*7,V*? and ¢°,

respectively.

HypoTHESIS 7. Hypothesis 5 with ¢*,U and f replaced by ¢*7, V*" and A°,

respectively.

HYPOTHESIS 8. Hypothe&us 5 W1th t* U* a,nd f replaced by t*7,V*? and q .

respectlvely

THEOREM 5. Let A, f ect. be as above. Under Hypothesw 5, (O,pg) is a
bifurcation pomt of periodic solutions of Eq (1). ‘More precisely, to gwen d with
dc < 2, there exists a neighborhood Iy of zero in R such that for cach e € Ig, @ 76
0, one can find t*(a) = (tit,(rcv), ,tf(cv)) € U* for which 2% (o), px{a), px(a))

with
: 4

30) = Y a(m+ Y la_r't% af)qs* + ouan s la] = 0

k=1 - i=1
and '
pa(a) =pox o, pla) =+a®
satlsﬁes Eq (3) :t::,:(a) - 0, ,ui(a) -0, pi(a) —0asa — 0, :ci(af) 75 0 for
a # 0, Fa)(t) = z(a)( 1+pi(a)) is (1 + pi(a))21r -permdm ﬁuzctmn

PRroOOF. Let I;,U,; and z be as in Lemma 1. W:thout loss of genera.hty we may

assume that § ¢ Up. The proof of this theorem proceeds exactly as the one of
Theorem 1 in [9] wﬂ;h A 1ep1aced by A and C replaced by N’ = (N 1ﬂ: s e MY,
where : S A
o (< iA(z . aw + z(a)) +(1 00" ) {£L(Z], ay,qs
+2(@) + g e Ol Tis w7 + 2
NE(y,a) =4 +5 fm(O,#o)(E, L i+ ﬂgl))3

+HOT},1,bk —.A"(y) for a #0,
(0 for a=0.°
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CoOROLLARY 6. Let A, §, f be as above. In addition, assume that ¢ is an odd
number and f(¢) # 0 for all t € R7, |t| = 1. Then the conclusions of Theorem
5 continue to hold for Y* = {£ € R” [ |{| < 1}.

PROOF. Since ¢ is an odd number, it follows that the mapping f is an odd
mapping. The condition of the corollary implies f(#) # 0 for all ¢t € 8U*. So,
by the Borsuk Theorem (see, for example, {2, Theorem 4.1}}, the topological
degree deg (f,U*,0) of f with respect to U* and the origin in R” 1s defined
and different from zero. Consequently, Hypothesis 5 is satisfied. Therefore, the

conclusion follows from Theorem 5.

COROLLARY 7. Let A,4, f be as above. In addition, assume that r = 1 and

¢ is an odd number. Then the conclusions of Theoremn 5 continue to hold for

U* =(-1,1).

PROOF. Since r = 1, we conclude that f(t) = < D°A(F)(tE1), £ >= t° <
DeA(G)E), €1 >+ 0 for all £ € R, |t| = 1. Therefore, the corollary immedi-
ately follows fromn Corollary 6.

THEOREM 8. Let B7,37,¢° be as above. Under Hypothesis 6, (0,p0) 1s a
bifurcation point of periodic solutions of Eq. (1). More precisely, the same
conclusions of Theorem 5 continue to hold with t* replaced by t°% and 1+

o?)2m replaced by (1 + ca®)2x.

PROOF. The proof of this theorem proceeds exactly as the one of Theorem 1
in [9] with A replaced by B and C replaced by M7% = (M7% . M%), where

4 4 . zlov 4 .
< oA ;¢ + 2) 4 (1 £ 00?)(EL(Y oy + 2(e))"
j=1 j=1
2(a)

(44

4
M) = 9 o J:I . z(a)
+éf:l’:.1:z:([}, ]_Lg)(z yjﬁbJ + T))3
j=1

+HoT},¢* > ~Bi(y), for a #0,
0 for a=0. |
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The proofs of the following corollarles proceed exactly as the ones of Corol-

lar1es 6 7

COROLLARY 9. Let B®,§°,9° be as above In adchtlon assume that ¢ is an
odd number and ¢°(t) # 0 for all t € R", [t| = 1. Then the conclusions of
Theorem 8 continue to hold for U*? = {£ € R / |¢| < 1}.

COROLLARY 10. =Let B,5%,¢° be as above. In addition, assume that.r =1

and c is an odd number. Then the conclusions of Theorem & continue to hold
for U = (~-1,1).

THEOREM 11. Let C?, 47, h° be as above. Under Hypothesis 7, (0, p0) is a
bifurcation point of periodic soliitions of Eq. (1). More precisely, the same
conclusions of Theorem 5 continu_e to hold with tT replaced by t"i;ui,'(l =+
a®)27 replaced by ,uj:, (1 + &*)27, where

%) = po + 00”

PROOF The proof of this theorem proceeds exactly as the one of Theorem 1
lﬂ [9] Wlth A replaced by C and C replaced by R"i = (R"ﬁ’ ’R"i), where

[ <EAT- 1ay;¢f+z(a))+(1:ta2){aL(z:] 1Y ,¢J+ ey
i Faol0, o) (Timn w387 + ZE))

REW @) = § +1 Fers(0, )iy 4597 +.i31))

| 1HOTY, > —Cl(y), for a #0;

L 0 for .a = 0.

" The proofs of the following corollaries pfoceed exactly as the ones of Corol-

laries 6,7, respectively.

COROLLARY 12. Let C%,5%,h% be as above, In addition;, assume that c is an
odd pumber and h?(t) # 0 for all t € R, |t| = 1. Then the conclusions of
Theorem 11 continue to hold for U** = {{£ € R / |¢{| < 1}. |

COROLLARY 13. Let C%,§°,h% be as above. In addition, assume that r =1
and ¢ is an odd number Then the conclusmns of Theorem 11 contmue to hold
for U*? = (-1, '
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THEOREM 14. Let D°,57,h° be as above. Under Hypothesis 8, (0, o) is a
bifurcation point of periodic solutions of Eq. (1). More precisely, the same
conclusions of Theorem 5 continue to hold with t* replaced by t°% and pa, (1
o?®)2r replaced by ,ui, (1 + a?)27, where

p5(a) = o + o,

ProoF. The proof of this theorem proceeds exactly as the one of Theorem 1
in [9] with A replaced by D and C replaced by P?* = (P ooy PIE), where

[ < iA(Ej:: ay; ¢! +2(2)) + (1 £ az){aL(Zj=1 ay; ¢ + z(a))
o Fe(0, )Ty w87 + ) |
PEW,a) = ¢+ feee(0,10)(They i + Z2))0
+HoT}, % > —DI(y), for a £ 0,
L 0 for Vo:'= 0. |

The proofs of the following corollaries proceed exactly as the ones of Corol-

laries 6,7, respectively.

COROLLARY 15. Let D?,47,¢7 be as above. In addition, assume that ¢ is an
odd number and ¢°(t) # 0 for allt € R", |t| = 1. Then the conclusions of

Theorem 14 continue to hold.

.COROLLARY 16. Let D?,4%,4° be as above. In addition, assume that r = 1

and c is an odd number. Then the conclusions of Theorem 14 continue to hold.

To conclude the paper we give the following example to illustrate the results

concerning the degenerate cases.

ExXAMPLE 2. Let T,L, K, ¢/ = 97, j = 1,..,4, X = 1 be the same as in
Example 1 and H()\,u) = (u,u). We have

Dk(z) = —a < L(}, Z:quﬁj) + H(}, Z:c]quJ) $F >

=1 j=1

= —ozk + —(a:I + 23 + 22 + 2y
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Choosing o = 1, #* = (fjﬁ ,m4) with ZT = :I:\/-, ;E = 5? =_:E4i = 0, we
can see that ‘ - L .
' _ _2 0_ 0 0
oDy ... lo o0 o]
D=(S@y=|
dz; 0 0 0 0
0000

and hence
RO—RO—{m€R4/D3:—O}-[§1 §2 ]
. 0 ‘

with ¢! = , &2

It

0
. i lelows that
0

S o = o

= O O

s L s
q;]‘.(i') = é < Dzzz(i)(ztj61)$£k > = ;_2tk(3ti + Zti)

i=1 S ek

‘A simple caleulation shows that ¢'(t) # 0 for all ¢ € R3, || = 1." Applying
Corollary 15 we conclude that (0,1) is a bifurcation point of periodic solutions

of the equation

-i—? = f(/\,u), ()\,u) < R XCZTI’(R‘.‘ R4) ' .

with

FOwu) = ~(Tu+ ALu + Aw,u)u + KA ).
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