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ON THE MAXIMAL MONOTONICITY OF
SUBDIFFERENTIALS

DINH THE LUC

Abstract. We prove that a lower semicontinuous function from a Banach space
to the extended real line is convex if and only if its subdifferential is monotone.
A simple proof of the maximality of monotone subdifferentials is also given.

1. Introduction

' One of the most interesting theorems of convex analysis states that a lower
semicontinuous function is convex if and only if its subdifferential (in the sense
of convex analysis) is nonvoid and monotone [§], [10]. This theorem has been
extended to the case of generalized subdifferentials (in the sense of Clarke) in
finite dimensional spaces by Poliquin [9] and in reflexive Banach spaces by Cor-
rea et al. [3]. The quadratic conjugate function approach is the main tool used
in these works. It relies heavily on the fact that a continuous linear function
attains its minimum at any closed convex bounded set, which is of course not
true in nonreflexive spaces. Hence their method fails in these spaces. The aim
of the present paper is to prove the above discussed result for the case of Banach
spaces without the reflexivity assumption. The proof is direct and based on &
modified version of Zagrodny’s approximate mean value theorem [14]. More-
over, it allows us to validate the result for any kind of subdifferentials which
are consistent with the convex analysis one. By this, we establish the equiva-
lence between the monotonicity of subdifferentials and that of directional upper
derivatives which were used to characterize convex functions in [5]. A simple
proof of Rockafellar’s result on the maximal monotonicity of the subdifferential
of a proper convex lower semicontinuous function is also given by using our

technique.
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2. Preliminaries

Throughout this paper X will denote a Banach space and f a lower semi-
continuous function from X to R U {-l—Qo_}._ We recall that the generalized
subderivative of f at z, where f(z).is finite, with ré_speét to v is defined by

t -
fi(z;v) =sup limsup  inf flyttu)—«a
€>0 (y,a) | fz;tlo vEB(v.e) t

and the generahzed subdlﬁ'erentlal of f at zis-
of(z) = {:J: €X*: {z*,v) < fi(z;v) forall v € X}

where (y,«) |y = means that y — 2z, — f(2), 2 f(y), X* is the topological
dual of X and (z*,v) is the value of the linear function z* at v. We say that
&f is monotone provided for every = y € X,z E 8f(a:) y* € 6f(y) one has
{z ,y—m)+(y 2 —y) <0.

In our work we shall make use of the followmg lemma whlch can be de-
rived from Zagrodny’s apprommate mean value theorem [14].- However, for the

convenience of the readers a direct proof with less calculation is provided.

LEMMA 2.1. Assume that f(b) > f(a). There exists a sequence {z} C X
converging to some zo € [a,b) and z} € 8f(xx) such that for everyc = a+t(b— a)
with t > 1 and for every k one has {(¢},¢— 2x) > 0.

PROOF. Assume that f (b) s ﬁnite. Following the method of [14], let us consider
the functions gk k=1,2, ... defined by

f(b) - f(a’)” —b|l+i§3[4 b]tI);

,gk(m)—'f(:c)-[— S5 —al] ko (z), _.ﬁ‘

where dj; 5)(x) derotes the distance from z to the interval [a,b]. Sometimes
dy(z) is also used to denote |jz — b||. Since f is lower semicontinuous, so are
the functions ¢x. In particular, they are bounded from below on some bounded
closed neighborhood {denoted by B) of [a, b]. By:Ekeland’s variational principle
[4], for every k there exists a point z minimizing the function gx + +d;, on
B. It is clear that limg o dg 3)(#1) = 0. Hence, one may assume that zj isin

the interior of B and consequently, the subdifferential of gi + +d,, at zx must
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contain the zero vector. Moreover, since the function di, ), ds, d5, are convex
Lipschitz, using the calculus rules for generalized subdifferentials [2], [11], one
has ' ' ‘

0¢ 8f(xk) + fgfl)b f(” )ad (:,;%)_4- kdd, 5(zk) + %dek(mk),

or in other words, there exist z} € 8f(zy),uf € 8db($k),vz € Odjg 5z ), wi €
Od;, (zr) such that '

._ _f) -1l f(a)

1 .
— — kv¥ — —wk. 1
Tr = zllb_a” Uj W ( )

k

As noticed above, img—.oo d[a,b](wk) = 0. Furthermore, since [a,}] is compact
and gx(b) > gr(a), we may assume that limg_,co zx = 7o € {a, ], z0 # b. There

exists then a number k; such that
|[mk—a:0|[<-2—I|3:0-b|],'fork>k1. (2)

The aim now is to estimate {z},c — zx). Denote by by € [c,zx] a point min-
imizing dy over [e,zi|. It is clear that limg_.o, by = b. By this and (2), one
may assume that z; # b and one can obtain the relation ||b — bi|| < dq 5 ().

Consequently,
dia,)(bx) < dlg,5p(zk)-

We express ¢ — zx = $(by — z¢) for some 8 > 1 depending on k and calculate

(u e — zk) = B({uk, bk — O) + (uk, b —zx)). (4)
Remembering that uf € 0dy(zy), we see that (u},b— z¢) = —{|zx — b]|. More-
over, since limg_.oo by = b and lmp_. o ||zx — bl] = [lzo — || # 0, there exists

an integer ko > k; such that
1.
[{uf, by — b)| < Z”mk —b|], for k > ko.
Hence (4) can be evaluated as

(uk,c — k) S—Tﬁﬂxk—-bn, for k > ko. (5)
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Furthermore, using (3) one has that
(ke = o) = (”kw b — zi) < Blde, ,,](bk) - dia (1)) <o. (6)

Notice that jwl| < 1, there can be found k3'> ks such that

x B f(b) — f(a) )
(whe—2t) < gl L oy, — b, for k> ks.

x| =

Combine the latter inequality with (1) (5), and (6) to obtain the estimation

(ehe ) > BIO=S@

& e

for every k > k3 The sequence {z} with & > k3 will be such as requlred in

the lemma.

- The case f(b) = co can be manipula.ted as_ follows. Set

f@) iz #b
fe) = { f(a)+1 " otherwise.

Then by the above proof, the lemma is true for f Since limg oo Tk = To # b,
we may assume that zr # b for all k. At these points 0f and 8f coincide:

Hence the lemma is also true for f. -

LEMMA 2.2. Let a,b, ¢ € X be three distinct points with b= Aa + (1 — A)c for
some A € (0,1), and f(b) > Af(a) + (1 — )\)f(c) Then one can find a linear
function z* € X* such that

| _(f'+ w*)(b)§(f + 2*)(a) > (f +2")(e). |

PROOF. Let us denote
(S -r@ - -Nfe) i f(8) s fimite,
‘T { 1 cherwi_se._ .
Construct a linear function #* on the one-dimensional space L = {t(a — c):t€

R} as follows: z*(t(a —¢)) = (e + f(c) = f(a))t for every t € R. In view of the

Hahn-Banach theorem one can extend z* to a continuous linear function on the
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whole space X which we denote by the same z*. Let us calculate the values of

f + ™ at the considered points:

(F +2")a) = a) 4 2°(0) +2%(a - ) = £0) +4°(0) +
(F+a@ = f@ 4",
(f+2")(b) = f(b) + z*(c) + Az*(a — c)

= fle) +2%(c) + f(b) = Af(a) = (1 = N)f(e) + A
{ fley+z*(c) + (1 + Na if f(b) is finite,

00 otherwise.

Since « is positive, the above equalities imply the required relations.

3. Maximal monotone subdifferential
We are now able to formulate and prove the main result of the paper.

‘THEOREM 3.1. The function f is convex if and only if its subdifferential is

monotone.

PRrROOF. The “only if” part of the theorem is well known. . For the “Gp part,
suppose to the contrary that the function is not convex, 1.e. there exist three
distinct points a,b,¢ € X with b= Aa + (1 — A)e for some A € (0,1) such that
f(b) > Af(a) + (1 — M)f(c). This in particular implies that f(a) and f(c) are
finite. Our aim is to find two points £, € X and z* € §f(z),y* € 0f(7) such
that (z*, 7 — &) +(y*,Z — §) > 0 which show that 9f is not monotone. We may
assumme without loss of generality that f possesses the following properties:

() F(5) > fla) > f(e),

(ii) £(y) > f(c) for every y € [a b]

(ii1) f(b) is finite.

o fact, the first property follows from Lemma 2.2 and the calculus rule for
generalized subdifferentials: 9(f + 1)(z) = 8f(z) + I, whenever [ is a linear
continuous function on X. As to the second property, observe that the set
{y € [a,b] : f(y) < f(a)} is compact and does not contain b. Let a’ be the
point of tl;is set which is the closest to b. Then &' # b and f(y) > f(a) > f(c)
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for every y € (a',b]. It remains to take @' in the role of a to have the wanted
situation (in the case f(a’) < f(¢); another application of Lemma 2.2 is needed).
For the last property, if f(b) = oo, one deﬁnes a new functmn f by the rule

fz if o # b,
f(:c)={ @ aAh
fla)+1 | 0therw1se |

Then at any point 79 b, (the pomts z and 7 to be found are such ones) df(z)
and 8f(z) coincide. Moreover, f satisfies (i)-(iii) if f satisfies (i) and (it). With
these properties of f let us apply Lemma 2. 1 first to [a, b): There can be found
{zx} € X with limg—co Tk = Zo € [@,b) and 2} € Of(xx) such that '

(x*,;;c—:ek) > 0. | (7)

By (ii), f(z) > f(c) whenever k is large enough. Fxx such a point z and apply
Lemma 2.1 to [¢, zx]. There exists then {yn} € X withlimp—oo¥n = Yo € [e,zx)
and y}, € 8f(yn) such that (yn,azk — ya) > 0. It follows from (7) that for n
sufficiently large, {z}, Yn — :rk) > 0. The two latter inequalities show tha.t d f is |

not monotone and the proof is complete.

Let us now apply Lemma 2.1 to establish the maximal monotonicity of 8 f
when f is convex. To our knowledge there exist at least four different proofs
of this fact [1] [10] [12], [13] The proof g1ven below seems to be the snnplest

one.

THEOREM 3.2.__Le_t f be proper co_m}ex; Then 8f is meximal In‘qnetlone..

'PROOF "The monotonmlty is clear. For the max1ma.hty, we have to show thaif
if z* ¢ df(z) for some z € X, there exists y € X and y* € af(y) sich that
(y* — z*,z —y) > 0. As in [12], one observes’ ‘that z does not minimize f = z*,
hence there is a point z € X with (f —z*)(z) > (f —z*}(2). In view of Lemsia
2.1, there can be found a point y in a neighborhood of the interval [z,z] and a
vector y * € (f — z*)(y) such.that (y'*,z—y)>0. A vector y* € 9f(y) with

y'* = y* —* will fulfil our requirement..
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4. A final remark

We recall that the directional upper derivative of [ at z, where f(z) is finite,

in the direction v is the map f'(z;v): X - RU {:boo} defined as follows:

F(z;v) = limsup flz +tv) — (3)
t10 : t

We say that f'(z;v) is monotone if for every z,y € X, f'(z ,y — :r:) + flly;z —
y) < 0, whenever the sum has meaning. In [5] it was shown that a lower
semicontinuous function from a real topological vector space X to RU {+cc}
is convex if and only if its directional upper derivative is monotone. This fact
and Theorem 3.1 show that in Banach spaces the monotonicity of 8f(z) and

that of f'(z;v) are equivalent.

It is also interesting to note that Lemma 2.1 is valid for any subdifferential
O which possesses the following properties: (I) it coincides with the convex
analysis subdifferential if the function is convex; (II) the subdifferential at a

local minimum of a function must contain zero; (III) if ¢ is convex LlpSChltZ

then 8(f + ¢) C 9f + dg.

Consequently, we may state that Theorem 3.1 is true for any subdifferential
with the three above listed properties. Mordukhovich’s subdifferential, Michel
and Penot’s subdifferential [7] for instance are examples of such subdifferentials

which are different from the Clarke one.
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