KOSZUL HOMOLOGY AND GENERALIZED COHEN-MACAULAY MODULES

LE TUAN HOA

1. Introduction

Throughout this paper A denotes a local ring with maximal ideal m and M is a Noetherian A-module with $d = dim M \ge 1$. M is called a generalized Cohen-Macaulay module if all local cohomology modules $H^i_{\mathfrak{m}}(M)$, i < d, are of finite length. They have been developed during the last fifteen years mainly because of their relations to the theory of Buchsbaum modules (see, e.g. [5]-[8]) and also [2].

In the study of generalized Cohen-Macaulay modules we have the powerful notation of standard system of parameters. Recall that a system of parameters (abbr. s.o.d.) x_1, \ldots, x_d of M is called a *standard s.o.p.* of M if

$$(x_1,\ldots,x_d)H^i_{\mathfrak{m}}(M/(x_1,\ldots,x_j)M)=0,$$

for all non-negative integers i, j with i + j < d (see, e.g., [8]). It should be mentioned that x_1, \ldots, x_d is a standard s.o.p. of M if and only if it is a unconditioned strong d-sequence [4] and that M is a generalized Cohen-Macaulay module if and only if (one or) every s.o.p. of M contained in \mathfrak{m}^n , where n is sufficiently large, is a standard s.o.p. of M [8]. In particular, M is a Buchsbaum module if and only if every s.o.p. of M is a standard s.o.p.. In [8] there are many conditions for a s.o.p. of M to be a standard s.o.p.. One can also characterize standard s.o.p.'s by means of Koszul homology (see[4], Theorem 2.14 and Theorem 6.9). The aim of this paper is to present another similar characterization of standard s.o.p.'s.

İŧ

THEOREM 1. Assume that M is a generalized Cohen-Macaulay module. Let x_1, \ldots, x_d be a s.o.p. of M. Then the following conditions are equivalent:

(i) x_1, \ldots, x_d is a standard s.o.p. of M

(ii)
$$\ell(H_p(x_1,\ldots,x_r;M)) = \sum_{i=0}^{r-p} {r \choose i+p} . \ell(H_{\mathfrak{m}}^i(M)),$$

for all p > 0 and $1 \le r \le d$.

(iii)
$$\ell(H_1(x_1,\ldots,x_d;M)) = \sum_{i=0}^{d=1} {d \choose i+1} \ell(H_{\mathfrak{m}}^i(M)).$$

(iv)
$$\ell(H_p(x_1,\ldots,x_r;M)) = \ell(H_p(x_1^2,\ldots,x_r^2;M)),$$

for all p > 0 and $1 \le r \le d$.

$$(v) \ \ell(H_1(x_1,\ldots,x_d;M)) = \ell(H_1(x_1^2,\ldots,x_d^2;M)).$$

As consequences of this result we shall obtain new characterizations of Buchsbaum and quasi-Buchsbaum modules, resp. (see Corollary 5 and Proposition 6).

2. Proof of Theorem 1

First, let us recall some basic facts on Koszul homology from [1], Section 1. Let x_1, \ldots, x_r be elements of A(r > 0). We denote by $K_*(x_1, \ldots, x_r; M)$ the Koszul complex generated by x_1, \ldots, x_r over M. Its boundary operator will be denoted by d.

For r > 1, let $L_{\cdot} = K_{\cdot}(x_1, \dots, x_{r-1}; M)$ and e be the boundary operator of L_{\cdot} . Since

$$K_{\cdot} = K_{\cdot}(x_1, \ldots, x_r; M) \cong K_{\cdot}(x_1, \ldots, x_{r-1}; M) \otimes K_{\cdot}(x_r; A),$$

the complex K can be treated as follows:

$$K_p = L_{p-1} \otimes L_p,$$

and

$$d_p(u,v) = (e_{p-1}(u), (-1)^{p-1}x_ru + e_p(v)).$$

Let L(-1) denote the complex shifted by -1, i.e. $(L(-1)) = L_{p-1}$ and the p-th boundary operator is e_{p-1} . Then we have the exact sequence:

$$(1) 0 \longrightarrow L. \xrightarrow{i} K. \xrightarrow{j} L.(-1) \longrightarrow 0$$

where $i_p(v) = (0, v)$ for $v \in L_p$ and j(u, v) = u for $(u, v) \in K_p$. This exact sequence yields the following exact homology sequence

(2)
$$\begin{array}{cccc} 0 & \longrightarrow & H_p(\underline{x}; M)/x_r H_p(\underline{x}, M) & \longrightarrow & H_p(\underline{x}, x_r; M) \\ & & \longrightarrow & 0:_{H_{p-1}(\underline{x}; M)} x_r & \longrightarrow & 0, \end{array}$$

where $p \leq 1$ and \underline{x} denotes the sequence of elements x_1, \ldots, x_{r-1} .

Assume that M is a generalized Cohen-Macaulay module. Let x_1, \ldots, x_d be a s.o.p. of M. Then we have

$$\ell(H_p(x_1,\ldots,x_r;M)) \le \sum_{i=0}^{r-p} {r \choose p+i} . \ell(H_{\mathfrak{m}}^i(M)),$$

for all p > 0 and $1 \le r \le d$. Moreover, equality holds if x_1, \ldots, x_d is a standard s.o.p. of M (see [5], Satz 3.7 and [4], the results before 3.15). This gives the implication (i) \Rightarrow (ii) of Theorem 1. The implications (ii) \Rightarrow (iii) and (iv) \Rightarrow (v) are trivial. Hence, to complete the proof of Theorem 1 one has to show the implications (iii) \Rightarrow (v), (v) \Rightarrow (i) and (ii) \Rightarrow (iv).

We need some auxiliary results. Let \mathfrak{a} be an ideal of A. A system of elements x_1, \ldots, x_n is called an \mathfrak{a} -weak M-sequence if for all $0 \le i < n$, we have

$$(x_1,\ldots,x_i)M:x_{i+1}\subseteq(x_1,\ldots,x_i)M:\mathfrak{a},$$

where $(x_1, \ldots, x_i)M := 0$ if i = 0 (see [8]). The following lemma slightly extends [7], Proposition 2.14. One can easily prove it by using the exact sequence (2) and by induction on r.

LEMMA 2. Let $\mathfrak{a}, \mathfrak{b}$ be two \mathfrak{m} - primary ideals and let n be a positive integer such that $\mathfrak{b}^n \subseteq \mathfrak{ma}$. Let x_1, \ldots, x_r be elements in \mathfrak{b} . Assume that for any system of elements $\underline{x} = \{x_2^{n_2}, \ldots, x_r^{n_r}\}$ with $n_i \in \{1, \ldots, n\}, i = 2, \ldots, r$

$$\mathfrak{a}H_1(x_1,\underline{x};M)=0.$$

Then $x_1, x_2^{n_2}, \ldots, x_r^{n_r}$ form an \mathfrak{a} -weak M-sequence for all $n_i \in \{1, \ldots, n\}$.

COROLLARY 3. (cf. [4], Theorem 2.14) x_1, \ldots, x_d is a standard s.o.p. of M if and only if

 $(x_1,\ldots,x_d)H_p(x_1^{b^1},\ldots,x_d^{b^d};M)=0$

for all $b_i \in \{1,2\}$ and for all p > 0 (resp. for p = 1).

PROOF. We set $q = (x_1, \ldots, x_d)A$. By [4], Theorem 2.14 and Corollary 2.15, x_1, \ldots, x_d is a standard s.o.p. of M if and only if

$$\mathfrak{q}H_p(x_1,\ldots,x_d^{b_d};M)=0$$

for all $b_i > 0$ and p > 0. Hence we get the if part.

Now assume that $qH_1(x_1^{b_1},\ldots,x_d^{b_d};M)=0$ for all $b_i\in\{1,2\}$. By Lemma 2, $x_1^{b_1},\ldots,x_d^{b_d}$ is a q-weak M-sequence for all $b_i=1,2$. Therefore, by Proposition 3.2. of $[8], x_1,\ldots,x_d$ is a standard s.o.p. of M.

LEMMA 4. Assume that M is a generalized Cohen-Macaulay module. Let x_1, \ldots, x_d be a s.o.p. of M. Then for p > 0, $1 \le r \le d$ and for all positive integers $n_1 \le m_1$, $\ldots, n_r \le m_r$,

$$\ell(H_p(x_1^{n_1},\ldots,x_r^{n_r};M)) \leq \ell(H_p(x_1^{m_1},\ldots,x_r^{m_r};M)).$$

Moreover, if equality holds then

$$[o:x_r^{n_r}]_{H_{p-1}(\underline{x};M)}=[0:x_r^{m_r}]_{H_{p-1}(\underline{x};M)}.$$

and

$$x_r^{n_r} H_p(\underline{x}; M) = x_r^{m_r} H_p(\underline{x}; M),$$

where \underline{x} denotes the sequence $x_1^{n_1}, \ldots, x_{r-1}^{n_{r-1}}$.

PROOF. The case r = 1 is trivial because

$$H_1(x_r^{n_r}; M) = 0 :_M x_r^{n_r} \subseteq 0 :_M x_r^{m_r} = H_1(x_r^{m_r}; M).$$

Let $r \geq 2$. Since Koszul homology does not depend on the order of x_1, \ldots, x_r , by induction one may assume that $n_1 = m_1, \ldots, n_{r-1} = m_{r-1}$ and $m_r \geq n_r$. Consider the following exact sequences:

$$0 \longrightarrow H_p(\underline{x}; M)/x_r^{n_r} H_p(\underline{x}; M) \longrightarrow H_p(\underline{x}, x_r^{n_r}; M)$$
$$\longrightarrow [0: x_r^{n_r}]_{H_{p-1}(\underline{x}; M)} \longrightarrow 0,$$

and

$$0 \longrightarrow H_p(\underline{x}; M)/x_r^{m_r} H_p(\underline{x}; M) \longrightarrow H_p(\underline{x}, x_r^{m_r}; M)$$
$$\longrightarrow [0: x_r^{m_r}]_{H_{p-1}(\underline{x}; M)} \longrightarrow 0.$$

Since $m_r \geq n_r$, we have

$$x_r^{m_r}H_p(\underline{x};M)\subseteq x_r^{n_r}H_p(\underline{x};M),$$

and

$$[o:x_r^{n_r}]_{H_{p-1}(\underline{x};M)} \subseteq [0:x_r^{m_r}]_{H_{p-1}(\underline{x};M)}.$$

Hence $\ell(H_p(\underline{x}, x_r^{n_r}; M)) \leq \ell(H_p(\underline{x}, x_r^{m_r}; M)).$

Tf

$$\ell(H_p(x_1^{n_1},\ldots,x_r^{n_r};M)) = \ell(H_p(x_1^{m_1},\ldots,x_r^{m_r};M)),$$

then we must have

$$\ell(H_p(\underline{x},x_r^{n_r};M))=\ell(H_p(\underline{x},x_r^{m_r};M)).$$

Since M is a generalized Cohen-Macaulay module, all Koszul homology modules $H_p(\underline{x}; M)$ are of finite length (p > 0). Hence the above equality implies

$$[o:x_r^{n_r}]_{H_{p-1}(\underline{x};M)} = [0:x_r^{m_r}]_{H_{p-1}(\underline{x};M)}$$

and

$$x_r^{n_r}H_p(\underline{x};M)=x_r^{m_r}H_p(\underline{x};M).$$

Now we can conclude the proof of Theorem 1 as follows: (iii) \Rightarrow (v): By Lemma 4 and Remark 1 we have

$$\sum_{i=0}^{d-1} {d \choose i+1} \cdot \ell(H^i_{\mathfrak{m}}(M)) = \ell(H_1(x_1, \dots, x_d; M)) \le \ell H_1(x_1^2, \dots, x_d^2; M))$$

$$\leq \sum_{i=0}^{d-1} {d \choose i+1} \ell(H^i_{\mathfrak{m}}(M)),$$

which implies (v). Similarly we also get (ii) \(\infty\)(iv).

(v) \Rightarrow (i): We denote by \underline{x} the sequences $x_1^{n_1}, \ldots, x_{d-1}^{n_{d-1}}$. By Lemma 4 we have for all $n_1, \ldots, n_{d-1} \in \{1, 2\}$:

$$\ell(H_1(x_1,\ldots,x_d;M)) \le \ell(H_1(\underline{x},x_d;M)) \le \ell(H_1(\underline{x},x_d^2;M))$$

$$\le \ell(H_1(x_1^2,\ldots,x_d^2;M)).$$

Hence

$$\ell(H_1(\underline{x}, x_d; M)) = \ell(H_1(\underline{x}, x_d^2; M)).$$

We set $\overline{M} = M/(\underline{x})M$. Using the equality of Lemma 4 and Nakayama's lemma we get

(3)
$$0: \overline{M} x_d = 0: \overline{M} x_d^2 \text{ and } x_d H_1(\underline{x}; M) = 0.$$

From the exact sequence (1) we obtain the following commutative diagram:

$$0 \longrightarrow K_{\cdot}(\underline{x}; M) \xrightarrow{i} K_{\cdot}(\underline{x}, x_{d}; M) \xrightarrow{j} K_{\cdot}(\underline{x}; M)(-1) \longrightarrow 0$$

$$\uparrow^{id} \qquad \uparrow^{f} \qquad \uparrow^{.x_{d}}$$

$$0 \longrightarrow K_{\cdot}(\underline{x}; M) \longrightarrow K_{\cdot}(\underline{x}, x_{d}^{2}; M) \longrightarrow K_{\cdot}(\underline{x}; M)(-1) \longrightarrow 0.$$

By the exact sequence (2) for p = 1 and by (3), this gives the commutative diagram:

$$0 \longrightarrow H_1(\underline{x}; M) \xrightarrow{i_*} H_1(\underline{x}, x_d; M) \xrightarrow{j_*} 0 :_{\overline{M}} x_d \longrightarrow 0$$

$$\uparrow^{id} \qquad \uparrow^{f_*} \qquad \uparrow^{.x_d}$$

$$0 \longrightarrow H_1(\underline{x}; M) \longrightarrow H_1(\underline{x}, x_d^2; M) \longrightarrow 0 :_{\overline{M}} x_d^2 \longrightarrow 0.$$

Since $x_d(0: \overline{M} x_d^2) = x_d(0: \overline{M} x_d) = 0$, we have a uniquely determined homomorphism

$$g: \quad H_1(\underline{x}, x_d^2; M) o H_1(\underline{x}; M)$$

with $i_*g = f_*$. Thus, the second row of the last diagram splits, i.e.

$$H_1(\underline{x}, x_d^2; M) \cong H_1(\underline{x}; M) \oplus [0 :_{\overline{M}} x_d^2].$$

By (3) this implies

$$x_d H_1(\underline{x}, x_d^2; M) = 0.$$

Of course,

$$x_d H_1(\underline{x}, x_d; M) = 0$$
 ([1], Proposition 1.5).

Since we can change the order of x_1, \ldots, x_d , from the above equalities we get that

$$(x_1,\ldots,x_d)H_1(x_1^{n_1},\ldots,x_d^{n_d};M)=0,$$

for all $n_1, \ldots, n_d \in \{1, 2\}$. Hence by Corollary 3, x_1, \ldots, x_d form a standard s.o.p. of M as required.

Using Theorem 1 and Proposition 3.2 of [8] we obtain a new characterization of Buchsbaum modules. Recall that a finite generating set S of a primary ideal $\mathfrak a$ is called an M-basis of $\mathfrak a$ if every d element subset of S forms a s.o.p. of M (see [6], Proposition 1.9 for the existence of M-bases of $\mathfrak a$).

COROLLARY 5. M is a Buchsbaum module if and only if $\ell(H_1(x_1,\ldots,x_d;M)) < \infty$ and (one of) the equivalent conditions of Theorem 1 hold for all d elements x_1,\ldots,x_d of an M-basis of the maximal ideal m.

Finally we want to give a characterization of quasi-Buchsbaum modules by means of Koszul homology. Recall that M is called a quasi-Buchsbaum module if $\mathfrak{m}H^i_{\mathfrak{m}}(M)=0$ for all i< d (see [3]).

PROPOSITION 6. Let a be an m-primary ideal. The following conditions are equivalent:

- (i) $\mathfrak{a}H^i_{\mathfrak{m}}(M) = 0$ for all i < d.
- (ii) There is a s.o.p. x_1, \ldots, x_d of M contained in \mathfrak{a}^2 such that

$$\mathfrak{a}H_1(x_1,\ldots,x_d;M)=0.$$

(iii) $\mathfrak{a}H_p(x_1,\ldots x_r;M)=0$ for all sub-s.o.p. x_1,\ldots,x_r of M contained in \mathfrak{a}^2 and for all p>0.

PROOF. To prove (i) \Rightarrow (iii) let x_1, \ldots, x_d be a s.o.p. of M contained in \mathfrak{a}^2 . From the implication (iii) \Rightarrow (ii) of [6], Proposition 3.1 it follows that x_1, \ldots, x_d

is a d-sequence. Hence, by [4], Theorem 1.14 $\mathfrak{a}H_p(x_1,\ldots,x_r;M)=0$ for all p>0. The implication (iii) \Rightarrow (ii) is trivial. If x_1,\ldots,x_d satisfies the condition (ii), then by Lemma 2 ($\mathfrak{b}=\mathfrak{a}^2$), x_1,\ldots,x_d form an \mathfrak{a} -weak M-sequence. Hence (i) follows from the implication (i) \Rightarrow (iii) of the above mentioned Proposition 13 of [6].

REFERENCES

- [1] M. Auslander and D.A. Buchsbaum, Codimension and multiplicity, Ann. of Math. 68 (1958), 625-657.
- [2] M. Cipu, J. Herzog and D. Popescu, Indecomposable generalized Cohen-Macaulay modules, Trans. Amer. Math. Soc. (to appear).
- [3] S.Goto, A note on quasi-Buchsbaum rings, Proc. Amer. Math. Soc. 90 (1984), 511-516.
- [4] S. Goto and K. Yamagishi, The theory of unconditioned strong d-sequences and modules of finite local cohomology, Preprint, Version of May 1985.
- [5] P. Schenzel, N.V. Trung and N.T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln., Math. Nachr. 85 (1978), 57-73.
- [6] J. Stückrad and W. Vogel, Buchsbaum rings and applications, Berlin-Heidelberg-New york, Springer-Verlag, 1986.
- [7] N. Suzuki, On quasi-Buchsbaum modules, In: Commutative Algebra and Combinatorics, Advances studies in Pure Mathematics 11, 1987.
- [8] N.V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J. 102 (1986), 1-49.

INSTITUTE OF MATHEMATICS
P. O. BOX 631, BOHO, HANOI, VIETNAM.