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KOSZUL HOMOLOGY AND
GENERALIZED COHEN-MACAULAY MODULES

LE TUAN HOA

1. Introduction

Throughout this paper A denotes a local ring with maximal ideal m and
M is a Noetherian A-module with d = dimM > 1. M is called a generalized
Cohen-Macaulay module if all local cohomology modules H LM, 1 < d, are
of finite length. They have been developed during the last fifteen years mainly
because of their relations to the theory of Buchsbaum modules (see, e.g. [5]-[§])
and also [2]. 7

In the study of generalized Cohen-Macaulay modules we have the powerful
notation of standard system of parameters. Recall that a system of parameters
(abbr. s.0.d.) z3,...,24 of M is called a standard s.0.p. of M if -

(ml,,md)H{n(M/(xl,,wj)M) = 0,

for all non-negative integers 7,7 with i + j < d (see, e.g., [8]). It should be
mentioned that z;,...,z4 is a standard s.o/p. of M if and only if it is a un-
conditioned strong d—éequencé [4] and that M is a generalized Cohen-Macaulay
module if and only if (one or) every s.o.p. of M contai_ned.in m", where n is
sufficiently large, is a standard s.o.p. of M [8]. In particular, M is a Buchs-
baum module if and only if every s.0.p. of M is a standard s.o.p.. In |8] there
are many conditions for a s.o.p. of M to be a standard 5.0.p.. One can also
chaiacte;ize standard 5.0.p.’s by means of Koszul homology (see[4], Theorem
2.14 and Theorem 6.9). The aim of this paper is to present another similar

characterization of standard s.o.p.’s.
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THEOREM 1. Assume that M is a generalized Cohen-Macaulay module. Let
z1,...,&4 be a s.o.p. of M. Then the following conditions are equivalent:

(i) zi,...,%d 15 8 standard s.o.p. of M

() KHy(ar,e oo M) = ) AHROD)
forallp>0and1 <r <d.
(iii) £(H1(z1, .- 2a; M) = dg:: (2 )L Hn (M),
(iv) f(Hp(z15 - - Tri M) = e(Hp(aT,- - , @25 M)),
fora11p>0and1§r§d.
(v) {(Hi(z1,- - Lz, M)) = (Hy(aF,. - , T4 M)).

As consequences'of this result we shall obtain new characterizations of
Buchsbaum and quasi-Buchsbaum modules, resp. (see Corollary 5 and Propo-

sition 6).

2. Proof of Theorem 1

First, let us recall some basic facts on Koszul homology from (1], Section
1. Let zi,...,7, be elements of A(r > 0). We denote by K.(z1,..-,%r;
M) the Koszul complex generated by zi,. ..,y OVer M Its boundary operator
will be denoted by d.

For r > 1,let L, = K.(x1,..-,%r-1; M) and e be the boundary operator of
L.. Since ‘ |

K. = K.(z1,.-, o M) = K (21,--. zpo1; MY ® K.(zr5 4),
the complex I{, can be treated as _follows: |
K, =Ly—1® Ly,

and .
4y, ) = (g (), (<1 s+ ep(0)).
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Let L.(—1) denote the complex shifted by —1, i.e. (L(-1)) = L,_1 and the p-

th boundary operator is e,;. Then we have the exact sequence:

(1) 0 —— L —— K —1 5 L(-1) — ¢

where i,(v) = (0,v) for v € L, and j(u,v) = u for (u,v) € K,. This exact

sequence yields the following exact homology sequence

@ 0 —%.Hp(E;M)/erP(gg,M) ——  Hy(z, 2. M)

» 0 "Hy_1(z;M) Tr » 0,

where p < 1 and 2 denotes the sequence of elements z,,...,.r,_;.
Assume that M is a generalized Cohen-Macaulay module. Let z4,..., 24 be

a s.o.p. of M. Then we have

T—p

By, oo M) S 3( 0 )L Hin(M)

1—

forall p > 0 and 1 < r < d. Moreover, equality holds if z,,...,z4 is a standard
8.0.p. of M (see [5], Satz 3.7 and [4], the results before 3.13). This gives the
implication (i) = (i) of Theorem 1. The implications (ii)=(iii) and (iv) =(v)
are trivial. Hence, to complete the proof of Theorem 1 one has to show the
implications (iii}= (v), (v) = (i) and (ii) = (iv).

We need some auxiliary results. Let a be an ideal of 4. A system of elements

Ti,...,&, 18 called an a-weak M-sequence if for all 0 < i < n, we have
(Z1,..,2;)M 1234, C (z1,...,2)M : a,

where (z1,...,2;)M := 0if i = 0 (see [8]). The following lemma slightly extends
[7], Proposition 2.14 . One can easily prove it by using the exact sequence (2)

and by induction on r.

LEMMA 2. Let a,b be two m- primary ideals and let n be a positive integer
such that b C ma. Let z,,...,z, be elements in b. Assume that for any

system of elements z = {z32,... 2"} withn; € {1,...,n},i =2,...,r

aH(zy,z; M)} = 0.
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Then T1,T52,-..,Zy" form an a-weak M-sequence for all n; € {1,...,n}.

CORCLLARY 3. (cf. 4], Theorem 2.14) 1,...,%d4 IS & standard s.o.p. of M if
and only if

(ila md)HP(xl K 2:d aM) =0
for all b; € {1,2} and for all p > 0 (resp. for p=1).
PRrOOF. We set q = (21,...,za)A. By [4], heorem 2.14 and Corollary 2.15,
T1,...,2q is a standard s.o.p. of M if and only if ' '

qu(:r:l, md,M)-O

for all b; > 0 and p > 0. Hence we get the if part.

Now assume that qH; (23, iy M) =0forall b € {1,2}. By Lemma 2,
mfi‘, . ,xi’i" is a g-weak M-sequence for all b; = 1,2. Therefore, by Proposition
3.2. of [8], z1,..., T4 15 standard s.0.p. of M.

LEMMA 4. Assume that M is a generalized Cohen- Macaulay module. Let
.,xq4 be a s.op. of M. ,Then forp>0,1<r < d and for all posi-

" tive integers ny < myy ..., Ny S My
QH (a2 2% M) S LH (T30 M)).
Moreover, if equality holds then

ez H, (mM) = [0: 3?']H,_1(£;_MJ=

and -
al Hy(z; M) = =7 Hy(z; M),
where z denotes the sequence 7%, . .. ot

sbp—1 *
PROOF. The caser =11s trivial because

Hl(a: MY=190 Ma:"’CU M:cm’.—-Hl(:c : M)
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Let r > 2. Since Koszul homology does not debeﬁd on the order of z,... Ty,
by induction one may assume that n; = M1y...3Nr1 = Mye_; and m, > n,.

Consider the following exact sequences:
0 —— Hp(z; M)/a:“"H (z; M) —— H »(z, 2P ,M)
—— [0 5T, ) —— 0,
and
0 —— H (3: M)/:r:m*Hp(:n M) —— Hy(z,z; M)
— [0: 2]y, @my — 0.
Since m, > n,, we have
o Hp(z; M) C 277 Hp(z; M),
and o | 7
: | [o: xﬁ']Hp;l(;;M) g [0: x?']Hp_l(g;M)'
Hence £(H, (g, 37"; M) < UHy (2,27 M) |
EHp(z1",. .. 277 M) = ((Hy (a7, ... :mTﬁM))a
_ then we must have

U Hp(z, 7 M) = U(Hy(z, 275 M)).

Since M is a generalized Cohen-Macaulay module, all Koszul homology modules
Hy(z; M) are of finite length (p > 0). Hence-the above equality implies

[O :.:L' ]Hp 1(£,M) [0 fL' ] p—l(..z.".;M) E

S a™ H oz M) = 2™ Hy(z; M).

Now we can conclude the proof of Theorem 1 as follows (iii) = (v): By Lemma
4 and Remark 1 we have

d—1 .
> 1)e(Hm(M>)-e(H1(x1, 124 M) S LR (a3, .., 5 M))
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Sl S S
<X 4 RO,

which implies (v). Similarly we also get (ii)=(iv):
(v) =(i): We denote by z the sequences z',... ;237" By Lemma 4 we

have for all ny,...,ng_; € {1,2}:
HHa(a,. .. 2 M) € (@, 0 M) < (2, 2% M)
< (Hy(22,. .., 35 M), B

Hence

¢ Hy(z, xa; M) = {(Hy(z, o5 M)).

We'set M = M/(z)M. Using the equality of Lemma 4 and Nakayama’s lemma
we get '
(8) 0:7z4=0:3725 and z4H(z; M) = 0.

From the exact sequence (1) we obtain the following commutative diagram:

0 —— K. (&;M) —— K.(zg,24; M) —— K,(z; M)(~1) —— 0
Tid c Tf ] ‘ o . ‘T-xdk
0 —— K(z; M) —— K(z,25 M) —— K.(z; M)(-1) —— 0.’

By the exact sequence (2) for p = 1 and by (3), this gives the commutative

diagram:

0 —— H(g; M).—— Hilz,24;M) ——.0 57 54 —— 0

Tld ‘ : Tft . ) ) ]\-Id
0 —5 Hy(z; M) ——s ‘Hl_(g,zﬁ;M) — 0 :ﬁxﬁ —_s 0.
Since z4(0 37 25) = z4(0 157 z4) = 0, we have a_uniquely determined homo-
morphism B T
g: Hi(z,eM)— Hi(z; M)
with Z,g = fx. Thus, the second row of the last diagrém-slbliﬁ-s, ie.

Hy(z,2% M) = Hy(z; M) & [0 57 23].
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By (3} this implies
' caHi(z, 23 M) =0.

Of cburse,' | _ o

z4Hi(z,245; M) =0 ({1], Proposition 1.5).
Since we can change the order of Ty, ..., %4, from the above equalities we get
that

(ml,...,xd)Hl(x?l, ,.’Ed ,M)——O

for all ny,....,n,y € {1,2}. Hence by Corollary 3, Z1,...,24 form a standard
s.0.p. of M as required, |
Using Theorcm 1 and Proposition 3 2 of (8] we obtain a new charactenzat:on
of Buchshaum modules Recall that a finite generating set Sof a primary ideal
a is called an M-basis of a if every d element subset of S forms a s.o. p- of M

(see [6], Proposition 1.9 for the existence of M- bases of a).

COROLLARY 5. M is a Buchsbaum module if and only if ((Hy(zy,..., 24, M)) <
oo and (one of ) the equivalent conditions of Theorem 1 hold for all d elements

T1s---,%4 of an M-basis of the maximal ideal m.

Finally we want to give a characterization of quasi-Buchsbaum modules by

ﬁleans of Koszul homology. Recall that M is called a quasi-Buchsbaum module
if mAL(M)=0foralli <d (sce [3]).

'PROPOSITION 6. Let a be an m-primary ideal. The following conditions are

equivalent:
(i) aH{ (M) =0 for all i < d.
(ii) There is a s.o.p. z, - s2q of M contained in a2 such that

aHl(:cl,....xd;M') = 0.

(iii) aH (zy,.. i M) = 0 for all sub-s.o.p. T1,...,%, of M contained in
a? and for all p > 0. '

PROOF. To prove (i) = (iii) let T1,...,24 be a s.0.p. of M contained in a2.
From the implication (ii1) = (ii) of [6], Proposition 3.1 it follows that z, ... , ITg
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is a d-sequence. ‘Hence, by [4], Theorem 1.14 aHp(:ﬁl;...,:c,.;M) = 0 for all
p > 0. The implication (iji)= (ii) is-trivial . If z4,..., 24 satisfies the condition .
" (ii), then by Lemma 2 (b = a?),z,,..., 24 form an a-weak M-sequence. Hence
(i) follows from the 1mp11cat10n (1) =>(111) of the above mentloned Proposxtxon

13 of [6].
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