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SOME NOTES ON SEMIDIFFERENTIABILITY
AND GENERALIZED SUBDIFFERENTIALS

PHAM HONG QUANG!

Abstract, The notion of generalized semiderivative is studied. Some neces-
sary or sufficient conditions for G-semidifferentiability, for compactness of -
subdifferentials and the relationship between these notions and the others are
established.

1. Introduction

In recent years there has been an Increasing interest in nondifferentiable
optimization, both from the theory and pratical applications. Efforts to find
adequate tools for the purposes of local approximation in differential caleulus
for nonsmooth problems have resulted in the use of methods and techniques
borrowed from convex analysis in which linear functions have been replaced by
sublinear functions and single gradients vectors have been subtituted by convex
compact sets (subdifferentials)(see, e.g., (14, 10, 11, 8, 12, 13, 5]). This work is
concerned with one of these concepts proposed by F. Giannessi [4].

In Section 2 the generalized derivatives are defined in an abstract way and
some remarks are given to explain- these notions. In Section 3 some neccesary
and sufficient conditions for semi‘diﬂ'erentiability and the relationships between
it and some well-known notions are established.

The subdifferential corresponding to generalized derivatives is a, closed, con-
vex set but it might not be compact. This may restrict its applications. In
Section 4 of this note we give some neccesary and sufficient conditions for com-

pactness of the subdifferential. In particular, we show that the generalized

Received March 6, 1992: in revised form January 13, 1993
I'This work was completed during the author's stay at International Center of Theoretical
Physics, Trieste, Italy.



80 PHAM HONG QUANG

subdifferential for a Lipschitz function of class §~ coincides With'the'sﬁbdiﬁ'er-

ential in the sense of Michel - Penot in the case of regularity.
2. Definitions and preliminaries

First of all, let us present a paitial list of notations that we employ in this

paper. The inner product on R™ is defined as the bi-linear form

n
{y,2) =) vizi.
=1

We denote a norm on R™ by {|.|| and the associafed closed unit ball for this

norm by B. The indicator and support functions for a subset 4 are given by

({0 ifzeA,
¢($|A)==‘{ .

+oo  otherwise,

and o T
P*(z|A) :=sup{(z*z) : 2" € A},

respectively. Moreover, we write int A for the interior of A, ¢l A for the closure
of A. The relative interior of A, denoted ri A, is the interior of A relative to
the affine hull of A which is given by

36{1,2,---},$k€Aand Ar €ERY

aff A:= ';)\k&:k\ for k=1,2,--+ s, with iAk:]_

k=1

We denote the Dini lower and upper directional derivatives by

f(& +1t2) — £(2)
: i ’

f (m, z) = .hrﬁénf

f+(5, z) :——:‘limsup f(z+1iz) - f(:”),
: tjo . t, |
and the Dini-Hadamard lower and upper directional derivatives by
f7(@,2) = liminf f@+ tut) @)

f+(5 z} := limsup f(z +tu) — f(Z) .
e uw—z,1]0 t
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The Din: subdifferential is defined (see Ref.[10-11]) by
O7f(@) :={ueR": (u,2) < f(z,2), VzeR"}

The set A is said to be conves if the line segment connecting any two points in
A is also contained in A. The convez hull of A, denoted by co A, is the smallest
convex set which contains A, that is, co A is the intersection of all convex sets
which contain A. Let X be a closed cone of R™ with apex at £ € X and let
Z = X — Z. Let G denote the set of positively homogeneous of degree one

functions ¢(Z,.): Z — RU {400}, namelyg €gGif
9(Z,az) = ag(z,2),Yo > 0,¥z € Z. (1)

The subset C C G of all sublinear functions plays a spécial role in our develop-
ment,
Let f be a real-valued function deﬁned in a neighbourhood of 7 and G a

subset of G. For a given function ¢ € G we consider the function

19(2,2) i= F(3 + 2) ~ F(@)  g(2, 2). (2)

The sets
LGAs(z) = {g € G Jiminf f’gl(j_ %) >0}, (3)
UGAE) =g € G+ Imap L80T) <) (4

are called the sets of lower and upper G-approximations of f at I, respectively.

Now, let us recall briefly the definitions of semidifferentiabilities [4] and give

some remarks on the class of semidifferentiable functions.

DEFINITION 1. The function f is said to be lower (resp. upper) G-semidiffe-
rentiable at Z if the set of lower (resp. upper) G-approximations of f at 7 is

nonempty:

LGA f(:%:j # w', N | (5)

( resp.UGAf(Z) £ B), (6)
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and LGAf(T) possesses a maximum element

._QGf(i,Z) GLGA 2 )g(m ,2) Vze Z, ' (7)

(resp UGA f(a:) possesses a minimum element -

Dof(®,2) = eur%f?,( 5 9(z,7) Vze 2). | .8

DG f (:r:, ) and Dgf(%;.) are called the lower and upper, G- semldenvatwe of f

a.t z, respectwely

REMARK 1. Conditions (5) a.nd (6) should be called the existence condltlons
for G-appromma.tlons -and (7) and (8) the uniqueness conditions (existence
of the ”best” approx1mat10ns) When G =C condltlon (6) a,lways holds and the
set UCA f(a:) is a subset of the set of Pschenlchnyl s upper sublmear approxima-
tions deﬁned as the set of all sublinear functions which ma,_]orxze the upper Dini
derivative (see Ref.[11}). The followmg exa.mple, however shows that these two

notions do not always coincide.

EXAMPLE 1. Let X =R2,G =G, and
0 if z € I := {(0, a),a>0},
f(=) =={

.
T
otherw1se
l ﬁ _(O’I)E

It is easy to see that ¢(Z,.) = 0 is a Pshenichnyi’s upper sublinear approximation

of f at 0 and the point-wise maximum of the following set

UGAH0) = {ga(): <0},

0 ifzel,
gol2) = o

[+ 4EE A . R
otherwise.
=0l

However, ¢(Z,.) does not belong to this set. So the function f is not uﬁp’er
G —semidifferentiable. ' o

where

REMARK 2. The following relations are trivial (see e.g. [4])
Dof(#,2) < £ (7,2) Vz€ 2,

Def(3,2) >f*(#,7) Ve€Z.
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Assume that f(.) is a given lower (resp. upper) K-semidifferentiable function

(K C €} with its lower (resp. upper) K-semiderivative g(f, .}. The set
Ok f(Z) :={€ €R™ : g(7,2) > (¢;2) Vze Z} | (9)

is called the lower (resp. upper) generalized subdifferential for f(.) at z.

It is easy to see that if f is lower (res. upper) G—semidifferentiable with

er(Z,.) = €50, 7(Z,.)  (res. ) =€ p,f(Z,.))

satisfying )
a2 (10)

then f is upper (res. lower) G—semidifferentiable. So we consider the following

notion.
DEFINITION 2. ([4]) In case (10) the function f is said to be G-differentiable

and the lower (or upper) G-semiderivative is called G-derivative.

REMARK 3. From Remark 2 we see that if f is G-differentiable, then f is

directional differentiable, (i.e. there exists the directional derivative

F(5,2) = b LEH ) =@

t10 t

and f'(Z,z) coincides with the G-derivative of f at Z. The converse assertion

1s not always true, even in case G = G.

EXAMPLE 2. Let us consider the function f defined in Example 1. It is easy
to see that its directional derivative is f'(Z,.) = 0, which is neither lower nor

upper §— semidifferentiable, as the uniqueness conditions (7) and (8) are not
-~ satisfied for LGAf(0), UTA(0).

In Theorem 2.1 of [13] there is an assertion that the continuity (resp. semi-
continuity) of the considered function follows from its G-differentiability (resp.
G-semidifferentiability). From Remark 3 it is easy to see that this assertion
failed, because a function, which is directional differentiable, is not necessarily

continuous (resp. semicontinuous)
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EXAMPLE 3. Let X =R%,G =, and

0o, © o ifz el ={(a,0),a >0},
f(z) =4 0, L fzeli={(0,a),a >0},
(Eﬁ—(l O)E _(0 l)l) OtherWISe

B o
It is easy to see that f'(Z,.) = f(z) is the directional derwatwe of fat = 0

and its g-derwatlve at the same point, but f is not continuous at 0.

Now let us recall the definition of class &~ from [4].

DEFINITION 3. A function f : X — R is said to be of class § at 7 iff there
exist a neighborhood N of & and a C-differentiable function oy : X — R whose
epigraph is minimal in the sense of inclusion and whose C-derivative is closed
such that ' o A '

f(z) > os(z), VreXNN and f(Z)=op(2).
ofis called the lower support of f at Z. " The notion of genera,hzed subdifferential
of a function of class S~ is the one of the lower support. -

It turns out that the class S is exactly the class of C- d1fferet1able functmns
ProrosITION 4. The functlon fis of class ST iffit is C d1ﬁ‘erenhab]e

ProOF. Necessity. Assume that f is of class S~ and oy is its lower support.
We will show that f(z) =os(z) Vz € XNN. Ab absurdo, suppose that there
exists 2 € X N N\ {z} such that f(#) > o(#). Then the function .

[ osla) iz #E
FIOERN e
f(z)  ifz=1,
is a C-differentiable function which is a lower support _fbr: f and epi &y is stricly
contained in epi o5. This contradicts the aSSu’mption that oy i's"the'l'owea;

support of f. So f(z)=0o¢(z) Vz E X NN and f is C-differentiableé.’
Sujﬁczency Stra.lghtforward

3. G- semldlﬂ'erentlablhty

In this section the necessary and sufficient conditions for G-semidifferentiabi-
lity are established. From these conditions we can see that the G-semiderivatives

are the Dini derivatives for functions whose Dini-Hadamard derivatives are the
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lower limit of Dini derivatives. The class of functions satisfying this property is

larger then the class of Lipschit_‘.z_ functions.

THEOREM 5. If f is lower G—semidifferentiable, then

Dgf(z,2) = £~ (2,2), (11)
liminf f7(3,9) = f7(3,2) = limiof f£(5,9). (12)

Moreover, we have analogous equalities for the upper version of §—semideriva-
tives. '
PRrROOF. From the definitions we have
f(& +tz) - £(2)
t
Dof(z,t2) + e5,p_5(Z,tz

e Z,tz
= Dy f(,2) + limin &ft(——)

7 (z,2)= htrﬂréf

From the uniqueness condition (7) it follows that

€r,D_f(Z,1z)
p::liPiglf—f:-‘L{}—-—--) =0

as, in the other case (u > 0), by taking

D} f(z,7) = Dy f(z,2) + 1l

we can get a contradiction to (7). So (11) follows. Now let {z,} be a sequence
converging to z # 0 such that there exists a sequence {f,} converging to 0

satisfying

Then

f7(%,2) — liminf f~(8,y) = f7 (3, 2) - liminf Dg £ (%, )
y—z : y—z .
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f(& +toza) — f( )

> lim i lnnsungf(a: zn)
e JE ) f(:) Dy (@ tasn)
tnzn |
= liminf iq(—z——i—)| ) 2 0.
n—0o0 I a? nl
f2(5,2) 2 limint f~(31). (13)
y—z :

Now we will show that the Dini-Hadamard lower directional derivative is lower

semicontinuous. Indeed, let {z,} be a sequence converging-to z such that
,}11;%0 f;(ja Zn) = h?}j}_}f f';('f? y)-

If there exists a subsequence {z,, } such that fr(%,zn,) > —00 Vng then there

exist sequences {yn, € R"} and {t,, € (0, :-)} such that

| 1
|y — Zmi | <—;

ng
z np¥ng ) — z — e - 1
TR e

Obviously, the sequence {y,, } converges to z, 50 we have

liminf f7(2,9) = lim_f7(%,2n)
f(Z 4 tnyyni) = f(iﬂ)

' > hmsup
N —C0 tn
> lim fE+ty) - £(3)
Y=z, tlﬂ o t
= fT (3’ z)
Hence
7 ligrininff;(i,y) > fr(z,z). o (14)

Combining (13) with the last inequality and the following obvious inequality

li;ninf f7(#,y) > liminf f7(Z,y)
—z y—z
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we get (12) .
REMARK 4, Theorem 5 can be considered as the necessary conditions for lower

G— semidifferentiability. By combining Theorem 5 with Remark 1 we get that

f is lower G-semidifferentiable if and only if
f=(z,.) € LGA4(z). (15)
The following sufficient condition gives us another relationship between the
notion of G-semidifferentiability and the Dini directional derivatives.

THEOREM 6. If for every z € Z,

fj_‘.(fa_z) > limsup f_(fa y)s (16)

y—=

then f is lower G -semidifferentiable.

PROOF. We will show that D f(Z,2) = f~(, z). From the definition we have

liming L8 B2) o  JE+2) @) = f7(@,2)

N P R
Let z, — 0 be a sequence such that |

li L) =D =7 @0) g 0= (527)

N ’zﬂl- z=—0 f."slzl

By taking a subsequence if necessary we may assume that the sequence {I—z—“—l}

converges to u # 0. Then

lim f(i + zn) - f(i') - f_(;i:’ zn)

e “eal
> liminf f(z + 2n) _ f(2) — limsup f~(Z, z_n)
n—oo ”Zn” n—eoo ”zn“
7+ ty) — F(3
> liminf fatty) - f(3) imsup f~(Z,y).
t10,y—u 2 y—u

From (16) it follows that the latter difference is positive. So we get f(z,.) €
- LGA¢(#) and from Remark 4 we get the lower G—semidifferentiability of f.
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REMARK 5. It is easily seen that for locally Lipshitz functions the condition
(16) is fulfilled, and, as a consequence of Theorem 4, it follows that Lipshitz

functions are lower G —semidifferentiable (see e.g. [4]).
4. C-subdifferentials

In this section we will consider the generalized semisubdifferential (9) of a
K(C C)-semidifferentiable function. _ N

Obviously, the lower sefﬁisubclifferen!:ial is'a clbsed, convex set. B'uﬁ.,;"from
the definition, for the case Z # R", the generalized subdifferential might be
noncompact when the semiderivatives are bounded. It is-well-known that the
compactness of subdifferential plays an important role in applications. The

following natural consequence of the definition of lower subdifferential
If(&)+2* Coxf(@) (17

give us a necessary and sufficient condition for the compactness of the K-

subdifferential. - |

PROPOSITION 7. The K-subdifferential is bounded if and only if Z = R™.

~ PrOOF. It follows from (17).

From now on we only consider the case Z = R*.

PROPOSITION 8. If the function f is lower K -semidifferentiable with nonempty
K-generalized semisubdifferential, then the Dini subdifferential is nonempty and

oxc (z) C 07 f(2). | |
PROOF. Let u € Ok f(Z). From Remark 1 we get

(u, 2y < Dicf(&,2) < f(7,2), V2.
Hénce L
(u,z) < fr(z,z)Vz € R™,
and the conclusmn follows |

From Prop031t10n 8 it follows that the Dini subdlﬁ'erentmb:hty is necessary
for the nonemptiness of C -semisubdifferential. It turns out that for Lipschitz

functions these two hotions are equivalent,
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THEOREM 9. ‘Assume that f is a Lipschitz function. If the Dini subdifferential
is nonempty then the function f is C-lower semidifferentiable. In this case, the

lower C-semiderivative is the support function for the Dini-subdifferential
Def(z,2) = (107 @), (18)
and hence O¢ f(z) = 3~ f(z).

ProOOF. As f is Lipschitz, we get

f(& + 2} — f(Z) — supy,eoa- 5(z){%, 2)

lim inf
2 NE
s ipige FEE DI =I5 5

1t follows that the support function of Dini-subdifferential is in the set LCA ;(Z).
Since C-semiderivative should be smaller than the lower Dini derivative, so the

support function is the maximum element in this set.

CONCLUDING REMARKS. From Remark 3 we can see that if f is C—differenti-
able then f possesses a convex directional derivative which coincides with its C-
derivative. So the function f is quasidifferentiable in the Pshenichnyi’s definition
(see [12}). Recall that f is said to be quasidifferentiable at z if there exists a

" closed convex set K in R™ such that
fi(z,.) = sup(u,.).
uc K

Another useful notion is that of 8-regularity. Assume that & is a given kind
of subdifferential. A function f is said to be d-regular if the usual directional
derivative f'(Z,z) exists and equals ¥*(2||0f(Z)) for all z € Z. We can see
that the generalized subdifferential for a function of class S~ is always regular.
Moreover, it is easy to see from Proposition 5 of [2] that for Lipschitz func-
tions the C-differentiability is equivalent to the regularity of the Michel-Penot
.subdifferential and, by Theorems 8 and 9, to the Dini subdifferentiability.
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