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ON A CLASS OF RESOLVABLE LIE ALGEBRAS
| DAO VAN TRA

1. Introduction
Let G be a real finite dimensional Lié algebra , G the corresponding con-
nected si111p1y—c61mected Lie groﬁp and Ad : G — Aut(G) its adjoint represen-
tation in G . Then G acts on the dual space G* of G by : Ad* : G — Aut(G*)
with : '
< Ady(f)yz >=< f,Ad;-(z) > (f€ ¢,z €0,9 € G).

This is the I{-representation of the Lie group G and its orbits in G* are called

the KK-orhits [1]

DEFINITION 1. We say that the Lie algebra G satisfies the property; MD (or
MD) if the dimension of every K-orbit in G* is 0 or maximal (i.e., 0 or equal
todimgG ).

If the Lie algebra G is resolvable and satisfies the property MD (M D), then
it is said belonging to the class MD (MD) or MD’s (M D’s) Lie algebra .

This is an interesting and imporant class of Lie algebras because the C*
-algebra of their corresponding Lie groups can be studied by methods of homo-
logical K-theory [2], {3], [5], [6], [7]-

It should be noted that the class M D is a subclass of the class MD and it
has been coﬁqpletely studied in [4] by H.H. Viet. It is surprising that there are
only two non-commutative Lie algebras in this class : real affine Lie algebra
Aff(R) and complex affine Lie algebra Af F(C). On the other hand V.M. Son
and H.H. Viet have proved in [5] that if G is a Lie algebra of the class MD then
gs = (0). | B | ' : '

The aim of this papei“ is to éxplore some important properties of the Lie

algebraé'of the class MD and classify all the Lie algebras of the class MD with
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dimension not greater than 5. Preliminary results on dimension 3 and 4 have
been developed in [8]. Our method is very elementary. Roughly speaking, we

only use technics of Lie algebra and Linear algebra.

2. Some fundamental properti.es of the Lie al-gemBlﬂ'a:s of the class MD

~ Let f be an element of G* , Qf the K-orbit containing f . Let Gy be
the stable subgroup of f and G f the Lie alg,ebra. of G f It is obvious that
Qf & C' /G . Suppose th'\t By is the blhnear antlsymmetnc form deﬁned by

By(z,y) =< f,[z,y] > (2,9 € O).
ProrosiTioN 1. The Lie aIgr’bra. G coincides with Ker By .

ProoOF. Let ad* : G — ]-3'11(1'(9*) be the differential of the K-representation :
Ad* 1 G — Aut(G*) . It is easy to see that v .€ Gy &= adi(f) = 0 &=<
ad*(f),y >= 0,Vy € G =< f.[x,y] >= Bg(z,y) = 0,Vy € § <=z €
KerBy.

Thl‘} means that Gy =KerB I

COROLLARY 1. dim 2y is even.

PROOF. We obviously have
dimQy =dimG/Gy = dimG - dimGy =
=dim§G — dim§y = = dimG ~ dimKerBy = rankBy.

“Since the form By is antisymmetric, rank By is even and so is.dim§2 ¢
PROPOSITION 2. danf is pCH.ltiVe if and onIy 1f f[gl 7& 0.
PROOF.. It is easy to see that dun Qp =0+ I\erBf = g A f|(_}'1 = U

DEFINITION 2. A Lie algebra§ is called irreducible if it can niot be decomposed

into the direct sum of two non-trivial ideals.

REMARK. It should be noted that irreducible Lie .alge‘brds in this sense havé
been first defined in [8] and are later called “111decomposable by L.A. Vu in [7). "
It is clear that every commutatlve Lie algebra belongs to the class MD We

sha.ll denote the 11—(11111e11s1ona1 commutative Lie algeb;a by R"
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THEOREM 1. Let G be a Lie algebra of the class MD. Then G is decomposed
into a direct sum : G = R™ & g", where dimG > n > 0 and G is an irreducible

ideal of G .

PROOF. Suppose that § = G; & §», where G; and G, are both non-trivial and
non-commutative ideals of G. Then G, =  gl 4 Gl. Let f1 and f3 be the linear

forms of G such that

fllgll ?é Oa fZIgzl 7503
f1162 =0, f2]G1 =0.

We shall denote the restriction of the form By on G; by Bj‘; (i = 1,2). It is easy
to verify that ‘ | :
KerBy, = KerB}1 B Go,

KerBis + 5 y = Kerl_:?}1 & Kerfa’;":2 .

From the properties of f; and f; we obtain
KerB}l # G, and KerBch2 # Gq.

Hence G 2 KerBy, 2 KerBj,4p,) and dimQy, 4 5,) > dimQy, > 0. But this is
impossible since G is a MD’s Lie algebra . ‘

. Let us now consider a Lie algebra G and the Lie factor algebra G =g / G2.
Suppose 7 : G — G is the natural homomorphism and 7* : §* —» G* is the

induced homomorphism defined by
<7 (f),z>=< f,'rr(os) > (feGze g).

It is clear that 7* is a monomorphism from G* into G* and G?* can be

identified with a subspace of G*.
PROPOSITION 3. The space G* is the direct sum of #*(G*) and §2*

PROOF. The equality dimG* = dim#*(G*) + dim G** is obvious. Thus it re-
mains to prove 7r*(§~*) NG?* = (0). Assume that f is an element of 7*(G*)NG2*
and f = m*(f) for some element f of §*. It is obvious that n(Kerf).= G, and if
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z € Kerf; then < f,w(z) >=< f,& >= 0. Herfce n{Kerf) C Kerf and therefore
F=0. - |

PROPOSITION 4. Let f be an element of G* and f = w*(f) its imagein G*. If
flg, #0; then fl§ #0. -

ProoOF. This statement is obvious because ©(G') = Gt.

Let SZ denote the K-orbit in g * containing the element f and’let B be the

bilinear form corresponding to fin G.

THEOREM 2. For every element f of G* we have
“dim QY = dim Qe (f).
PROOF. Let z and y be two arbitrary elements of G. Then

B, ple,y) =< (), [z,y] >=< f,[w(2), 7 (y)] > .
Therefore, | '
KerB, . 5 = 77 (KerB )
Keré- o KerBﬁ.(f)/g? |
Now the equahty dan : = dim Qw‘ I8 obvious.

COROLLARY 2. IfG isa MD’s Lie algebra , then sois G. Morcover, the maximal
dimension of the K-orbits in G* and the maximal dimension of the K-orbits in

G* are equal to each other.

PROOFl. This corollary is obvious by Propositions 2, 4 and Theorem 2.
COROLLARY 3. Suppose that G is a MD's Lie elgebra . “Then G* = (0).
PROOF. This corollary is a trivial consequence of Theorem 2 and the formula

dim§ + dimG? = dimG.

REMARK. Tlns result has been proved by H. H Vlet in (4] (Proposition 1) in
another way. _ , )

In the sequel we . shall denote by ad.l the restrzctlon of ad, on gl for ea.ch
element Vof G . E{V,U,..}is a basis of G , then {V*,U*, } will denote its

dual basis in G* .
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3. Classification of 3-dimensional Lie algebras of the class- MD.

First notice that from Corollary 1it follows that every Lie algebra G whose
dimension i is not greater than 3 always satisfies the property MD: By Theorem
1 we can restrict our consideration o1 1rreduc1b1e Lie algebras . It is clear that
R' and A ff (R) are the unique MD’s Lie algebras with dimensions 1 and 2,
respectively, Thus 1t remains to clasmfy irreducible 3- chmensmna.l resolvable

Lie algebr as . _
THEOREM 3. Let G be an irreducible 3-dimensional Lie algebra , {X,Y,Z} a
basis of G. Then G belongs to the class MD if and only if G is isomorphic to one

of the following Lie algebras :
1) dimGY = 1,6 = gen(Z) with

Vi [X,Y] = 2,[X, 2] =0,[Y, 2] = 0

(This is the 3-dimensional Heisenberg Lie algebra usually denoted by Hs).:
2) diimG' = 2,G' = gen(X,Y) = R? with .- '

e
21) 93_2_1 : G,dl\» = " A 75 0,
| 0 1
2.2) G309 :adl, = H,
) 3.2.2 X 0 1 |

cosp  sing S -

23) 63_2_3 : ﬂ.d}\f = . , YE (0,7['). :
—sing “cose

PROOF. It is obvious that every Lie. algebra written above is resolvable and
ir reducﬂ)le Moreover, they are not isomorphic to each other.

Now let G be an irreducible resolvable 3- dnnensmna.l Lie algebra . Since G!-
is a nilpotent Lie algebra and dim@! < dimG = 3,6 is commutatwe Let us
consider the following cases:

1) dimG' = 1. Suppose that G' = gen(Z) and [X, Y] = oZ; [Y, Z]
BZ;|Z,X) = vZ, where a, 8,7 are not smmltaneously equal to zero.

If 3£0, we put o

" Y. o - 1 o
X=X+Y+-=-Z,Y==Y,Z=72.
g8 B
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One easily verifies that [X,¥] = [X, Z] = 0 and’ [V, Z] = Z. Therefore, § =
gen(X ) @ gen(Y Z ) and G is not 1rreduc1ble , :

_ By analogous arguments we prove tha,t 1f ¥ 75 0, then g is not 1rreduc1ble
Thus ﬁ and v must be both equal to 0, but a is not Now put X = X Y =
Y, Z = aZ Then we have (X, Y] = Z, X, Z] ¥, Z] 0. Therefore, g =
Gz.1 = Hs. : '

2) dimG* = 2. Suppose that G! = gen(Y¥,2) = R?. Then (Ld1 gl' — Ql
is an isomorphism. Without loss of generality we may assume that in the basis

{Y Z} the transformation adl ha.s one of the followmg real J ordan matnces

A - O
2.1 ,  ArA 0,
Mo ihe 7
2.2) A '1‘ A0
- O A ? 7
a b L :
2.3) , b>0."
—-b a
Putting - i
X A1
== Fega=L
X Ve Y Y, Z, "
in case 2.1) we have G = g3_2_1. In case 2. 2) we make t;l;e‘foliowing changes
. X Y -
X o= — —
3 Y =1 ,Z = Z.

It is obvious that G = G3.2.2. Finally, in chse 2.3)” \ir'e -pu'_t .

5 ., X l..
'-X=————Y Y,Z =2,
R

.. a
e:(0.
cosp = m_— sing = \/———bi(ﬁo 7"))

Then we obtaln g G3o.3-

4. Clasmﬁcatlon of 4- dlmensmnal L1e Algrbras of the class MD

In this sectxon we sha.ll prove the followmg result
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THEOREM 4. Let G be an irreducible 4-dimensional L:'e algebraand {T, X,Y, Z}
a basis of G. Then G belongs to the class MD if and only if it is 1somorpfuc to
one of the following Lie algebras: :

1/ dim Gt = 2,G' = gen(Y, Z) = R? with -

: 0 1
1.1) G424 : [T, X] = 0, ad1=‘ 1o aX_I “
(This is the complex affine Lie algebra usually denoted by Aff(C).
' 0 0 ,
1.2) Gana: [T, X] = Yadl =0, adb = ‘ )

' 0 1
13) g4_2_3 M [T, X] = Z, ad}( = 0, ’ ad1 = “ 0 0 “ f
2/ dim G = 3,G' = gen( X, Y,Z) = R® with

) 1 0 O
21)Ga3a: adp=|0 M 0], MA#0,
: 0 0 A
1 0 0
2.2)Gisz: adh=[0 A 1], Ao,
0 0 A
. 1 10
23)Gi33: adh=|{0 1 1],
‘ 00 1 |
A 0 0 N |
2.4) G434t adp=|0 cose sing|, A#0,0€(0,7)

0 —shie cosyp
3) dim gl = 3 gl _gen(X,Y, Z) = 'H3 thh

=1 0.0
31) g4_3.5 . adl = 0 . 1 ; 0 .
' c 0 0
(This is a real diamond Lie algebra).
0 1 0
32) 94_3_5 : Gdl =|-1 0 01l
o 0 00

PROOF. One immediately checks that all the dbOVe Lie algebras are irreducible

and belong to the class MD. Moreover, they are not isomorphic to each other.
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Now let G be an irreducible 4-dimensional MD’s Lie algebra Then G! is a
nilpotent Lie-algebra with dimG! < 4. . N o _
We shall distinguish the following cases according to the values of dimgG'.

Suppose that we have dimG' =1; § t =gen(Z) and

Wzl=rz  XZ=x7 WZ)= 47,
T.X]|=aZ, [X,Y]=0Z, [,T]=cZ, |

where 7, &,7, @, b, € do not simultaneously vanish.

If 7 # @, we make the_followling transformation: -

fox_Sp_ % F=1r
T T T
Y:Y-}T+:, Z=2

It is clear that this transformation is regular and we ‘have

F,2)= 2, [X,2] =7, 2] = [1,X) = [X, Y] 7,7 =0
Therefore, G = gen(T, Z)® gen(X, V) & R2 G} Aff(R) Since G is irreducible,
this case is excluded. n

In a similar manner we can prove that the case £ # 0 (or v # 0) is excluded,
too. Let us cons1der the case 7 =y = 0 and a#0. Put
T = ?X X,¥ = %%TXZ z.
Then {T, XY, Z } is a basis of g which sa.tisﬁes the following equa.litiles:

(F, X = 2,[F,¥] =T, 2] = myj[]qgimsa

This means C
G = gen(T, X,2) ® gen(Y) ~ R' + Ha.
So this case is excluded. ; '

By similar arguments one can show- that the case 7 = k=v=0andb#0
(or 7= k = 7 = 0 and ¢ # 0) is-excluded, too. Thus there does not-exist any

irreducible 4-dimensional Lie algebra § with dim§G' = 1.
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REMARK. The above transformations of basis have been used by L.A. Vu in
[7). But he wrongly claimed that these Lie algebras are 1rreduc1ble

Let us pass to the cases where dzmgl =2or3.-
1) Suppose that dzmg] = 2 and g* = gen(Y,Z) = R?. Since ad[lT'X] =
[adh, ad’] and [T,X] € g1 the transformat]ons ad} and a(l}( commute be-

tween themselves. . B S

LEMMA 1. There exists in G' a basis for which the matrices of adk. and adl have
! T R

a d
one of the following forms: a) ad}. = yady = ] ” , (B2 +d* #£0).
. _ “d e .
A ‘ .
b)adl. = || g vadl. = 9
2 H2

PROOI‘ If ol has a complex eigenvalue a—l—b\/_ 1,(b> O) or ad has a complex
exgenvalue ¢+ dyv/=1,{(d > 0), then there exists in G! a basis f_or which the
matrices of ad}. and ad), have the forms in a). _ |

If ad} and ad); only have real eigenvalues, then since adpady = adiadl.,
they are simultaneously triangulated. Therefore, there exists in G! a basis for
which the matrices of ad} and adl, have the matrices as in b). -

1.1) Assume that for the chosen basis {Y,Z} of G! we have

a b

—_ a

ad']r =

p _
C” (0% + d? £ 0).

c
,a(l}\,.z , ;.d

Without loss of generality we may assume b > 0. Since the transformation adyy

is regular, there exists two coefﬁ_ciénts_ 1.0 such that
[T,X] = aladT(Y) + agadT(Z) [T a]Y (LQZ]

Therefore, [T, X — 1Y —ay Z] = 0. Changlng X by (.X —a;Y — agZ — 47, we

may assume that
' 0
C

Here ¢ 74 0. In f'u,t if ¢ =0, then [X, g] (0) and so we have

 and [1,X] =0,

ady =

G =gen(X)® gev_z(T, Y, Z).
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.This contradicts the irreducibility of G. Let us now make the following trans-

formation
1

T = ( —,—X)X_-—XY YZ Z.

o

This transformation is obviously regular and for the basis {T A Y,Z } we have '

'\_0' 1 10 “
-1 0 01
It follows that G = Gant = Aff(c)
1.2) Suppose now that in the chosen. basis {Y, 2} of G we have

\)\1 v
0 A

[ X] 0,ady = Jady =

adl‘-;\}] "Y“
] 0 Ha o

Let f y¥* + zZ* be a linear form of G'* (by Proposition 2 it is Sufﬁuent

adlp =

to consider such forms). Let @(y,z) be the matnx of the for m B ! for the b'ms'

{T,X,Y,Z}. Then we have .
| 0 LIEX) Ny (Gt da2) |

gax.y 0 oy (et P’zz)
ey, z) = : '
-y —-p:]y -0 0
| —(ry + 2a2) (—r9+ jaz) O 0

Since rank Lp(O z) < 4 anf G is a MD’s Lie algebra, umk o(y,2) < 4,V(y, z).
From this it follows that My = vpy and Ajpg = Agptr. That means ad} and
adl, must be proportional. Moreover, {7, X1, [T, G'] and [X, G ] generate gt
Hence one of adj and ady nust be different from zero. " Assume that adp # 0
and adl = tad}(t € R). Changing X by (X — T} we may assume ady = 0.
Let us now consider the following cases: '

Case 1. M £ 0,A # 0. In this- case adT is regular and there emst two'

coefficients a1, ag such that
[T X] - ﬂ.]ﬂdT(Y) +(12CldT(Z)
hence [T, X — a1Y - agz] = 0. Smce ad(x Y -as2) = 0 we have

G = gen(X - alY - a2Z) & gen(T,Y, Z).
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So G is not irreducible and the case is excluded.
Case 2. A = 0, 75 0. In this case, ad}. is diagonal. Without loss of

generality we may assume {Y,Z} to be a proper basis of ad}., and so we have

L
adp = ,ady = 0.
If [T, X] = a1Y + a2 Z, then a; # 0. Make the following transformation

U s
T = /\—2); AV—/\ZZY-_MY,_Z_Z.

It is obvious that {T, X.V,Z } is a basis of G and for this basis we have

0 0
01

[T,X]=Y,ad} = ,ad’ =0.

That means G 2G4 25.

Case 8. A1 = Ay = 0. Since ad) # 0, we may assume » = 1 and so

01

(ldzrz ,adx—o

If[T,X] = 1Y + a2 Z, then a; # 0. Now let us make the following changes
T=T,X=X-a,2V =a¥, Z=a?Z.

This is obviously a new basis of ¢ which satisfies the equalities

01
6 0

[T, X]=Z,ad. = ad* = 0.

This means G = G4 5 5.

REMARK. In [7] Vu has missed these two impor"t.'ant cases.

2) Suppose that dim G' = 3 and G' = gen(X,Y,Z) ~ R*. Then adk is a
regular transformation of g LIt is easy to show that every 4-dimensional Lie
algebra with G! & R?® is irreducible and belongs to the class MD. They can be
classified by the real normal Jordan matrices of adl..

Let us now consider the following ])OSSlbllltleS
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2.1) Assume that for the chosen basis {X,Y,Z} of G! we have.. -

| [A; 0 "0
Cadh= 10 A 0 | A A2ds #£0.
0 0 X
By putting T = EITT’ { = XY =Y,Z = Z, o= %!2, \p = f\\—‘;‘, we obtain
G =Gz - : ' : i
2.2) Suppose now that for the basis {X,Y,Z} of G' we have
: ‘)\1"0 ol
adb-=1 0" N 1A A A0
0‘ _0 )\2
BychangingT- TX—X Y—' i Z Z )\- 2 ,wegetg Gs3.0.
2.3) If for the basm {X.Y,Z} the matnx of ad}- has the form
A1 oo
a,(lrlrz 0 A 1 ,/\7/-;0,
o0 oA |

then we can use the following transformation -

. T . X - Y
T,._/\— X:X— Y = --X,Z—-_“Z'.
Now, it is obvious that .= Giza.
2.4) Finally, assune that -
SN 00
ad-=10 a bj,A#0,6>0
0 —b a ‘

for the chosen basis {X,Y,Z}. Put .

Fo_ L
¥ W/ 2-+_b2

sin t,o

o= T T - T v
Since b > 0, we have ¢ € (0,7). Therefore G = Gy.3.4-

Let us pass to the last case.
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3) dim G' = 3 and ! = gen(X, Y, Z) is not commutative. Since G! is a nilpo-
tent 3-dimensional Lie algebra, from Theorem 3 we get G' ~ H; (Heisenberg

Lie algebra). Suppose that
[X,Y]|=2Z2,[X,Z]=[Y,Z] =0.

Since G* = gen(Z) is an ideal of G, the matrix of adl. for the basis {X,Y, Z}
has the following form '
ain a2z 0
ad%w = 21 Qg .0
| Q3 32 0433
From Jacobi identities written for the triplets (T, X,Y),(T, X, Z),(T.Y, Z) we
obtain az3 = a1y + ag;. '
Suppose that f = zX* 4+ yY™* 4+ zZ* is an arbitrary linear form of G1* and

@(x,y, z) is the matrix of the form B fin the basis {T, X,Y, Z}. Then

0 (HIT, X)) (£fIT,Y]) assz
oy, 2) = (f, X, T0) | 0 z 0
' (£,[¥. 71 —2 0 0
—(332< . ) 0 0

Since rank p(z,y,0) < 4 and G is a MD’s Lie algebra, rank ez, y,2) < 4,

Y(z,y,z). Therefore ag; = 0 and

a1 U2
(’L(l] = || d21 —d11
a3 azz

Changing T by T =T — 32X + a5 Y we get

a1 12
1 _
“di‘_ 9] €y
0 0 0

On the other hand, G2 + [T, G'] = G! implies a?, + az1a12 # 0.
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Let L'= L(X,Y) be the subspace of G! generated by X and Y. Then L is
for the basis {X, Y} is .

an invariant subspace of ad} and the matrix of ady|
L

1] |4 %12
ad,I—, =
SL

aq1 . =41

This matrix has two eigenvalues

Mz = t4/ad, + arzar.

There may be two possibilities:
3.1) a3, + ajzaz; = 6% > 0. In this case, ad;—, is diagonal. Then there exists
a ba51s {X,YYof L such that ' .

[T,X] = —6X,[T, Y} =6Y.
Now put 7 |
_ %m — XY =V,2' = (%,7].

Since {L, L] = Gz, 7' does not vanish. This means that {7/, X', Y',2'} is a

basis of G and we obtain

(X', Y=2,[X',21=[Y"2=0,

~1.0 0
adli: 0 1 0
0 0 0

Therefore G = G4 3 5. o _

3.2)a%, 4+ ajjaz = —6% < 0. In this case, the cigenvalues Az = +§/=1
are purely imaginary. Then there exists a basis {X \ f’} of L such that [f', X ] =
ST [T, 7] = 6%. Put |
_ %T X'=XY =72 =[X,7].

It is clear that {T’ X' Y, Z'} is a basis of g and we have

X, ¥ = 7, (X 2] = (¥, 2] =0,
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0 10
adT- =(-1"0 0 R .
0 0 0.

Thus G = G4 3.6. The proof of Theorem 4.is. now completed.

REMARK. In [7] Vu has given explicit formulas of X and ¥,

5. Classification of 5-dimensional Lie Algebrés of the class MD

In this section we shall use the method developed in Section 4 to prove the

following theorem

THEOREM 5. Suppose that G is an irreducible 5-dlimensional Lie algebra and
{D,T,X,Y,Z} is a basis of G. Then G belongs to the class MD if and only if G
is isomorphic to one of the following Lie algebras:
1/ d&imG! = 1,6 = gen(Z) with
g5-1 : [DaT]: Z1 [‘Y!Y] = )
[D.2]=T,2] = [X,Z) =Y, 2] =0,
(7, X] = [T, Y] =[D,X]=[D,Y]=0.
- (This is the 5-dimensional Heisenberg Lie Aléebra usually denoted by Hs).
2/ dim G' =2,G' = gen(Y, Z) = R? with o
Gsz2: [D,T]=Y,[D,X]=0,[X,T] =2,
adh, = 'ad} = adﬂ(_=l 0.

3/ dim G' =3, gl = Jen(A Y,Z) =~ R® with

(D, T] Z, adT = 0
cos  sing 0

U531 adp = || —sing cosp 0 ,?G(O;'Tl"_): B
0 0 0 -

[D T = Z, (r,dT =0,
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A 0O
gs_.s_z : adh =10 1 0},(A#0),
0 0 0
(D,T) =Y, ad} =
0 1 0
Gs3.3: adh, =0 0 0Of,(A#0),
' 0 0 X '
(D,T) = Z,ad} =0,
Lo
Gs.3.a: adh, =10 1 0},
D, T =2,
0 0 0
g5,3_51 (ldlD =10 0 0 ,ad‘ =10 -0 1 s
0 7 Jlo 00
[D,T] = Z,ad} =0,
0 1 0 |
Gs3.6: adh, =10 0 1
4/ dim G! = 3,G! = gen( X, Y, Z) =~ H; with
0 10 1 00
Gss7: adh, ={-1 0 Of,ad-=|[0 1 0],
0 00 0 0 2

5/ dim G! =4,G = gen(T,X,Y,Z) =~ R* with
cosp sing 0 -0

—sing cos@. 0
0 "0 a B
0 0 -8 «

Gs5.4.1: ad}, = s €(0,7),8>0,



| Gs.4.2
Gs.4.3
G544
Gs.4.5
Os.4.6
g5.4l.7 :
| g5..f.1.3.:.

Gs5.4.9:

1
adp

1
adyp

|
adp

1
adyp,

oo
adp

ad ID

1
adp

ad!

COS{p

— sl

—sing

COs @

—sing

0

O HFO O O O O O BP0 00 P00 O e
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0
0

CoS

0
0

0

0
0

Al
0

0

Lo B e = T T o S S o S T U R e ST o

sing’ 1 0
cosg. 0 N :
v .|l e €07},

0 cos@  sing
0 .—sing  cose

sinp 0 0

cOs 0 (0 ) A 0

2 e b} 7 L]

0 Ao PEOTNAFE
0 0 Al

sing 0 0

cosp 0 0 € (0,7), ) £ 0
O' A 1 ’99 'JTr’ EHl
0 0 A

0 0

00 AAzA; £ 0

/\2-.0 7, 1A2A3 ’

0 A

0 0

0 AA2#0

A] 0 ). A1 A2 3

0 A

0 0

10 )\#0

1 0 7 b

0 A

0 0

OO ez,

A 1 ’(ID’ ‘1.

0 A

0 0y

1 0.

11

0 1
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PROOF. One can immediately show that the above Lie algebras are irreducible

MD’s Lie algebras and they are not isomorphic to each other.
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Now let G be an irreducible 5-dimensional Lie algebra of the class MD. Then
G! is a nilpotent Lie algebra with dim G! < 4. We will consider the following
cases of G': | |
1/ dim G' = 1. Suppose that G! = gen(Z) and
(D, 2] = 62,|T, Z) = 7Z,[X, Z] = xZ,[Y, Z) = vZ,
[D,T] = a2, [T, X) = bZ,[X, Y] — cZ,[Y,D] = dZ,
[X,D] = eZ,[Y,T] = g2,
where the cocfficients 6,7, &, ..., ¢, are not simultaneously equal to 0.

1.1)If § # 0, then without loss of genékality we may assume that 6 = 1.

Make the following regular transformation:
T=T-—1D—aZ,
X=X—-xD+eZ,D=D, :
VeY-yD4+dz,Z=2.
It is easy to verify that
Therefore [T, X] = [X,¥] = [¥',T] = 0. It follows that
G = gen(D,2) @ gen(T, X, V)~ Aff(R) & R®.

Analogously we can show that if 7 # 0or & 75 0 or v # 0, then G is not
irreducible. So these cases are excluded. ‘ -

1.2} Suppose that ¢ = T-= k = vy = 0. Then one of the coefficients
a,b,c,d, e, g is different from 0. Without loss of gel_lerality we may assume
a = 1 so that we have | o

(D, 2] = (T, 2] =X, 2] = [V, 2] = 0,[D,T] = 2,
[T, X] =bZ,(X,Y] = cZ,[¥, D] = dZ,
[X,D] = eZ,[V,T) = gZ. |

Now put

X=X+D+eT,D=D,T=T,Z2=2,Y =Y = 3D +dT.
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It is trivial to sde that this transformation is regular and
2] = [ 21=[X,2]=[Y,Z] =0,
X = [ Y] =[D,X] = [D, Y] =0,

=T
N* b

[X,Y] = éZ (for some. coefﬁczent ¢).

Ez
Lﬂ'z
l |

If ¢ =0, then i - .
G =gen(D,T,2)® gen(X,¥Y) = Hs @ R?.

So G is not irreducible and this case is excluded. In the case & 74 0, changmg X

by % =~ we can easily show that § = G; | = = Hs.
2/ Suppose that dim G' = 2 and G! = gen(Y, Z) R?. First we note that
since [D, T, [T, X], [X, D] eg‘

[adk, adl)] = [adT,ad |= [ad_,t ,adp, ] = 0
This means that ‘.the transformatmns adl,, adT, ad X are paarwme commutative.

LEMMA 2. There exists in G! a basis for which the matrices of the transforma—

tions ad},, adrlr, adl, have one of the foﬂowmg forms:

a/ adl —‘ adl, = l ° 7 ,ad! K | b b £,
P =g o’ Ty s T o 0 T
w0 & 0 9 0
b/ady = ,adlp=| : ,ad}le 1
. [45] . (52 t] 192

(0{1 - Cl’.2)2 + (61 — 62)2 + ('0.91 - '192)2 -74& 0.

a f ' 5 ) '_19 T
Gdl = . y ,l] = s d] =
c/ ac | “0 6’ ady ’ 0 v

Proor.

a/ If ad}, or ad}- or ad; has a complex eigenvalue a+8v/—1 (8 > 0)or §+v/~1
(¥ > 0) or 9 + /=1 (7 > 0), respectively, thenyti).ere exists in G? a basis for
which the matrices of ad},, ad}. and ad), have the forms in a/, respec.tively'. The
condition 4% + 42 + 72 # 0 means that 8,y and 7 are not simultaneously equal
to 0. ' : o '

b/ Suppose that each of the transformations has only real eigenvalues and one
of them has two different ones. Then we can find in § ! a basis such that the

matrices of adh, ad} and adl, have the forms in b/.
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¢/ Finally assume that every transformation in our consideration has only mul-
tiple eigenvalue. Since ad',, ady and ad! X are pa1rw1se commutative, they are
simultaneously triangulated. Therefore we can ﬁnd a ba,315 for Whlch the ma-
trices of ad},, adk and ad’, have |the forms in c/ '
Thus Lemma 2 is proved. _
Let us now consider the possibilities listed in Lemma 2.

2.1) Suppose that for the chosen basis {¥, Z} of G' we have

Jo] g T
-—T";’Lg

’ ¥
-7 6

,ad: =‘

bl

,ady =

) o
adn =

 where 8,7, T are not simultaneously equal to'0. Without loss of generality' we
may assume that # > 0. Then the transformation adl, is regular and there

exist coefficients (ll,bl,(l-2, by such that
[D,T] = al[D Y]+ (D Z]= [D alY + bIZ],
[Dxpﬂmiﬂ+@w2][pwy+mm
Changing T by (T — a1Y — b;Z ) and X by (X - agY - bg Z) we may assumeé
that [D,T] = [D X]=0. Then, since B
[D,[T, X]] =[ID; T] X1+ (T, D, X]] "0

we have [T, X] = 0. Now let 'us-make the followmg tra.nsformation

T:Tf%QD=D,

Y =Y,

X = X-1DZ=2
B

' It is easy to venfy the equahtles

o f A | I (N ; 19 0
' L ads, = ' L =
s ai ar=|y oot =[5 ol

where 5': (5 — :lﬁz)’@ =:(19 _%), and

i
adD_
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If § = 0, then ad,_lf, = 0 and we have
G = gen(T) @ gen(D, X, Y, Z)

If § # 0, then with X' = X — %’f‘ we have ady, =0 and [X',D] = [X',T] =
Therefore,
G = gen(X') @ gen(D, T, V, Z).

Thus, in both cases G is not irreducible.

2.2) Suppose that for the chosen basis {Y, Z} of G' we have
6 0 91 0
@z 82 0 9
where (ay — a3)® + (6; — 6)% + (J; — 9,2)% # 0. Since adh, adk, and adl

are equivalent, we may assume that a; # as. Let us study the following

¥ 0 -1

adl = ,adp =

,ad}:’

possibilities:
2.2.1) oz # 0. In this case, adl; is regular. By arguments similar to those

in 2.1) we may assume that
[DaT] =[T,X] = [XsD] =0.

‘Suppose that f = yY* + zZ* is an arbitrary linear form of G'* and o(y, 2) is
the matrix of the form By for the basis {D,T,X,Y, Z}. Then we have
' \

0 0 0 a1y gz
0 0 0 - b1y yz
oy, z) = 0 0 0 thy I,z

—oqy —b6y -ty O 0

—agy‘ —by —thy O 0
Since rank ¢(y,0) < 2 and G belongs to the class MD, rank @(y, z) £ 2,Y(z,y).

From this it immediately follows

o _ B _ 9
a; B2 Uy
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Tlierefore, there exist two coéfficients ¢ and z such that adk. = tad), ,al_ld_adl =

zadh. Now by putting - L

X=X-zDV=Y.2=2
we have [D,T] = [T X ] = [X' ,D] =0, ad,ll-, = ad}{ = 0, and consequently,
G = gen(T,X) ® gen(D, ¥, Z). Thus G is not irreducible and the case i) is
excluded. ‘ - '

2.241) a3 = 0,2 # 0 (the case a1 # 0,20 = 0 15 the same). Changing T by
(T — %D) and X by (X — %";D) we may assume that

0 0

o= 5o

00
If 51 # 0 (or'd; 3 0), we consider the following basis

o Lo o
aa'_T._ yady = .

00

Qg

D=D+T (o D+X),F=T,X=X,Y=Y,Z = 2.

We have ,
65 O

)a a.d1'r :.
O Ct'2

1
ad— BT

, (or ad}-J =

& O .
ol

o ol
0 0

Thus, we return to case i) whlch is excluded because G is not irreducible.
Suppose now that §; = J; = 0. Cha,ngmg D by ~ (if necessary) we ma,y
assumne that |

adl, =

”0- 0

yady = ady =0.
Suppose that : .
- [D,T]=aY + 52
(T,X] = ayY + 0oZ,
D, X] = asY + b7,
f=yY*+22% ¢ Gt*.



RESOLVABLE LIE ALGEBRAS 41

Let ¢(y, z) be the matrix of the form By for the basis {D, T,X,Y,Z}. Then we

have
0 (t1y+bz) (azy+b3z) 0 =z
~(my+tz) 0 (agy +b2) 0 O
ey, Z) = || —(asy + b32) —(a2y + baz) 0 0 of
0 0 0 0 0
-z 0 0 0 0

Since rank ¢(y,0) < 2 and G belongs to the class MD, it follows that
rank o(y,z) < 2,Y(y, z). Using this condition, we can show that ay = by = 0,
so that [T, X] = 0. Put |

T=T-b62,D=D,Z =z,
X=X-b2,Y=Y.
Obviously, tlhe system {D, T X Y., Z } is a new basis for which we have
1|0 0
ad% = || ~
b H 0

If a; = 0, then

sady = ady = 0,1, X] = 0,(D,T) = ¥, [D, X] = as V"

G= gen(T) @ gen(D, X7, 2).
If a 7& 0, then with X'=X- %‘ff, we get |
| | G = gen(X") ® gen(D,T,Y, 2).
Thus G is not irreducible anc.lrthis case is excluded.

2.3) Suppose that for the basis {Y, Z} of gi we have
p 1_W7

42 =
. T .
all’ é

ml~“a
D™l

‘191'
0 9

,adp =

Let us consider the following possibilities:
2.3.1) & # 0 (the case § # 0 or ¥ # 0 is similar). Then ad}, is regular and

by arguments analogous to those in 2.1) we may assume that -

[D,T] = [T, X] = [X, D] = 0.
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Putting

T:T—gD,ﬁzD,X=X—-gD,?=1’,Z=Z,
we obtaln | ' _
1 Ol ‘B 1 0 :r 1 _
a‘dﬁ=(0 a“,ad'f:”(’ 0 1a‘d)2_ (7 7__')67 _T"'"_ﬁ)

If 4 =0, then G = gen(T) @ gen(D XY, 2).
If ¥ # 0, then with X' = X - ;, we have
: 7 =Y

G = gen(X") & gen(D, 7.7, X).

This means that G is not irreducible and the case is excluded.
2.34l)) o = 6 =9 =0. This case may be divided into the following subcases
2.3.i.1) B # 0 (the case v # 0.or 7 # 0 is similar). Changing T by (T —= D)

X by (X - —D) and D by ﬂD we may assume
S Jjo 1
|

0 0

[D T] —a1Y+bl7 [T X] "'G.gY-szZ [D T]—a;;Y-E-ng

,ady = ad}( =

Let f = yY* + 2Z* be an arbitrary linear form of G'* and @(J,z) the matrxx_
of the form B s for the basis {D, T, X,Y, Z}. Then we have

0.  (ay+biz) (asy+bsz) 0 y
—(emy+bhz) 0 (amy+bz) 00
0y, 2) = | —(asy +bsz) —(azy+bzy -0 0 Of.
__ —y 0 0 . 0 of
" Since rank (0, 'z) <2and G is MD’S .Lie algera, rank Lp(y,z) < 2,¥(y, z).

From this cond1t1on it follows that ag = b2 =0 and T, X ] = 0. Now put

T T—alzD D,Z= ZX X—(I;;ZY Y
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Then {D,T,X,Y,Z} is a basis of G for which we have
d = adl, = 0, adt = ||° x If):f"—bz"' D)E’I.—b'Z.TX'—O
03,1-:.—(1.)-{— 1ab_ 0 0 ,[1]_1.:[.1 ]"'3;[7 ]_
N s s . = . b
Ifby # 0, then G = gen(T)®gen(D, X,¥ . Z). If by # 0, then with X' = X—b—ST

. 1
we have [X', D] = 0. Hence

G = gen(X') @ gen(D,T,Y, Z).
This means that G is not irreducible. The case is excluded.
2._3.ii.2) B=+v=r71=0. Then ad}, = ad}. = ad}, = 0. Because the vectors
[D,T], [T, X] and [X, D] generate the space G!, there exist among them two
linearly independent vectors, say [D,T] and [T, X]. Then [X D] = o[D, T]

b[T, X|] for some @ and b. Cons1(ler the transformation

D=D+T,X =X +aT,T=7Y =[D,T),Z = [X, T).

One checks that this transformation is regular so that { ﬁ T Y, Z } is a basis
of G. Moréover, gl = gen(}:’,Z),adb = ady, = ady, =0, [D X]) =0, [D,T] =
Y,[X,T) = Z. Thus G is isomorphic to Gs 1.

3/ Suppose that dimG' = 3 and G' = gen(X,Y,Z) = R®,

Note that the t1ﬁ115for1nation_ ad}, and adlp ‘are cominutative.

LEMMA 3. There exists in G' a basis for which the pair of matrices (adl,, ad})

have one of the following forms up to a permutation:

a A 0 b v 0
/|- o 0j|(B>0)]—y & 0
0 0 A 0 0 g
A0 0 g1 0 0
10 X Of(Ai#Ani#E) 0 pe O
0 0 X 0 0 s
Ar 0 0 pooo 0
/0 A 0 |[(Ar# X[ 0 w2 O (p2=p or up = pz).
0 0 X 0 0 ps
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A 000 p1oa 0
iv/lIlo A O[(A#EM)L)|0 mm O
0 0 A 0 0
A0 1 g « 8
v/10O A OfL,}0 p ~
0 0 A 0 0 pu
A1 0 g o B
vi/ |0 A 1{,{|0 p «a
0 0 Al {0 0 g

PROOF. If one of the transformations ad} and adi} has a complex eigenvalue
a+ Bv/—1,8 > 0, then it must have a real proper value A and we can choos? a
basis of G! for which the pair of matrices (adb,‘adflp)l have the form in i/ up to
a permutation. ' ' ' | |

Suppose that ad}, and ad}. have only real eigenvalues. If one of these ma-
trices has three real pairwise different eigenvalues, then we can find.a basis of
G! such that the pair (ad}, ady) have the form in ii/ up to a permutation. If
none of them has fhree real pairwise different eigenvalues, but one of them has a
simple one, then we can get the forms in iii/ of iv/ according to the real normal
Jordan form of this transformation. ' ‘

Finally, if every transformation ad}, and ad} has only multiple eigenvalue,
we come to the forms in v/ or vi/, according to the real normal Jordan matrix.
. Let us now consider in details every subcase of Lemma 3. Since. D and T
are equivalent, we may always assume that adl, is the ﬁrst\ma,trix and adk. is
the second in every pair. ' |

3.1) Suppose that in the chosen basis {X,Y, Z} of Gl we have’

a f 0 6 v 0
adb =||-f a 0|,>0,adr=|l—v 6 0
0 0 A ' 0 0 pn

Changing T by (T — %D) we may assune 7y = 0 and
a B0 § 0 0
ads, =||-8 a 0|,8>0,ad-={0 6 0
0 0 X 0 0 u
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According to the value of A we have two following possibilities.

3.1.1) A # 0. Then ad}, is regular. By arguments analogous to those in 2.1)
we can assume that [D, T]'= 0. Let f = 2 D*+yY*+22* be an arbitrary linear
form of G'* and ¢(z,y, z) the matrix of the form By in the basis {D, T, X, Y, Z}.

Then we have

0 0 (az—fy) (Br+ay) Az

0 0 bz : bz 1%

elz,y,2) = || (By—az) -z 0 0 0
—(Bzx + ay) by 0 0 0

Az ;;LZ 0 0 0

- Since rank ¢(0,0,z) < 2 and G belongs to the class MD, rank o(x,y,z) <
2,¥(x,y,z). It is easy to obtain ép = 0 and so that ad}y = 0. Combining this

with [D,T] = 0 we get the decomposition
G=gen(T)® gen(D, X, Y, Z).

Thus this case is excluded.
'3.1.2) A = 0. This means

a [0 5 0 0
adh, =l -8 « 0 ,ﬂ>0,ad§n: 0 6 0
0 0 0 0 0 u

Assume that [D,T] = aX +0Y +cZ, f =z X* +yY*+22Z* € G'* and ¢(z,y, 2)
is the matrix of the form By in the basis {D,T,X,Y, Z}. Then we have

0 (azx +by +cz) (az—PBy) (Bz+ay} O

—(az + by + cz) 0 _ S by {1tz

ez, y,2) = (By — ax) —bz 0 0 0
~(Bz + ay) - by 0 0 0

0 R TF 0 0 0

It is easy to see that rank o(z,y,z) < 2,V¥(z,y,z). From this it follows that

§=p=0and ad}. = 0.
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On the other hand, since [D, X] and [D,Y] are linearly independent in
the subspace I = L(2,y), there exist coefficients d, and by such that [D,T] =
a;[D, X)+0,[D,Y]+cZ. Therefore [D,T—a, X=bY]) = cZ. Because [D,T]and

adp(G') generate G, ¢ must be nonzero. Let us now make the transformation

D=

D

cZ

X=X I =

T = T—a1 X — blya

Y =Y, cos ,___. ————,_/j__ ( é(O 7))
— (p— '_I_Bz, LP . ] .

It is obvious that the system {D, T,X,1, Z} is independent and
Gl = gen(X, Y, Z). Moreover, we sce that [b, T] =Z.

cosp  — Sintp 0 |
a.c'l}j = || —sing  cos LP. | 0 ;(t(lif =0. _
0 0 A '
This means G = G5.3.1.
3.2) Suppose that
A 0O
(I(IID = 0 /\2 0 ,A,‘#)\j,i%j,
0 0 X
o U_ 0
adl- =10 pu2 0
0 0 1

I{D,T] = aX ++bY +cZ,f =aX* +yY* + 22" € g‘*, and o(r,y,z
the matrix of the form By in the basis {D, T, X,Y, Z s then 'we have

0 - (ar + by +cz) Ay Aoy Azz
—(ax + by + cz) 0 T pay 3z
wfx, y,z) = =AMz —z 0 0 0
—Apx — gL 0 0 .0
—Azx

—jit3x 0 0 0
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Since rank ¢(0,0,2) < 2 and G is a MD’s Lie algebra, rank (z,y,2) < 2,
Y(z,y,z). From this it is easy to see tliat
fh_ P2 _H3
Al A Ag
That means adr = tadp, for some t € R and ad' (T —tD) = 0.
According to the values Ay, Az, A3 we shall consider the following possibilities:
3.2.1) AyA2Az # 0. Then adj, is a regular transformation. By similar argu-
ments as used in 3.1.1) we can show that G is not irreducible. So this case is
excluded. _ '
3.2.2) M Az # 0,25 = 0. In this case, since [D, T] and [D, G'| generate G, ¢

must be different from zero. Let us make the transformation

~ a b
T=T—-tD—- —X - —_Y
S v vt
N .~ cZ M
D=-—DX=XY=Y7=-—"—")=— , 1.

It is easy to verify that {D, T, X, ¥, Z} is a basis of G with ¢! = gen(X, Y, 2).

Besides, in this basis we have
A 00 .
[D,T1=Z,ady =10 1 0f,(A # 0;1),adk = 0.
0 0 T :

This means G = (5 3 2(A # 1).

3.3) Suppose that we are in case ii1) of Lemma 3. That means

Ar 00 ‘ Moo 0
adp =0 A 0 |,A # )\Q,Gd'lr =10 pu O
G 0 A 0 0 3

Let [D,T] = aX +bY +¢Z be a decomposition of [D, T|, f = aX* +yY* +22*

an a,rl.)itrary linear form of G'*, and ¢(x, y, =) the matrix of the form By in the
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basis {D,T,X,Y,Z}. Then we have

-0 (az +'by+cz)"/\1m' My Apz

—(az +by+ez) > -0 mz (ax+p2y)  paz

ple,y,2) = —Aiz —thy 0 0 0
SR WY S '—(G$+}£2y) 0. 0 0.

—Apz iz 0 0 0

‘It is obvious that rank ©(0,0,2) £ <2 , from which it follows that mnk f.p(.r

y,z) < 2, for all (:c y,z). By a simple a1g,u1nent one can show that o = 0 [t =

p2 and /\— . Therefore ady = tadl for some ¢ € R.
2 #2 i : :
Cha,nglng T by (T — tD) 1f necessaxy we may a,ssume ad‘ = O Thus we
have '
No0oo| L
adb=1| 0 Ay 0|, A # Ay, adk = 0.
0 0 /\2 ’

According to the values of Ay , A2 we shall consider the f()ilowillg subcases,
'3.3.1) ArAz # 0. Then adly is regular. By the method used in 3.1.1) we
prove that G is not irreducible and this case is excluded. R
3.3.2) A\; = 0,3 #£ 0. Then [D,T] and adp(G') can not genera.te the space
G'. Thus, this case is excluded, too.

3.3.3) Ay # 0,A2 = 0. Since [D,T] and ad! (G ) genmate g’ ¢ #0. Let us

make the regular transformation

1
= —D
D D
)L’:_X,
T=T—ix—ix?=KZ=iz

: 1 0 -0
It is easy to see that'[D,T] = 2,ad§~, =0 and ad}) =10°1 0]. Theréfore
0 0 O

G =2 G532 (according to A =1) .
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3.4) Suppose fhat with the chosen basis {X,Y, Z } of G* we have

/\] 1 - 0 H1 [0 0
ads =10 M 0|, Ai#Xadr=[0 p 0
0 0 )\2 : 0 0 Ha

By similar arguments as in 3.3) we can show that ad} = tad}, for some t € R.
Then changing T by (I — D) we may assume ad} = 0.’

Let us study the following possibilities. \

3.4.1) A\;A; # 0. This means ad}, is regular. By the method used in 3.1.1)
one can show that G is not irreducible. So this case is excluded.

3.4.2) Ay = 0, 2 # 0 and [D, T] = aX 4 bY + ¢Z. Since [D, T) and adp(Gh)

generate G, b must be nonzero. By the transformation
D=D X=X,

T=T—a¥ - ﬁz,?:w,z" =z,

we obtain [f),ff’] =V,G! = gen():’,l}, 2) and

- Jo 1 oo
adp =100 0 j,X #0,adk = 0.

0 0 X
This means G = Gs.3.3. |
3.4.3) Suppose that A1 # 0,A2 = 0. Without loss of generality we may
assume that Ay = 1. If [D,T] = aX + Y + cZ,then ¢ # 0 because [D, T] and

adp(G!) generate G!. By the transformation
D=DX= X,
T=T—-(a=b)X -, Y =Y,2 =cZ,

we get
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From this it follows G = G534

3.5) Suppose now that with the chosen basis {X,Y, Z} of G! we have

A0 1 p oo B
ady, =110 A 0 cadp =10 p ¥
0 0 A 0 0 p

Assume that [D, T} = aX +bY tyeZ, fAaX +yY +2Z2" € G'* and o(x,y,2)
is the matrix of the form By in the basis {D, T, X,Y,Z}.

Then
0 (ax +by +cz) - AT AY x4 Az
—(az + by + cz) 0 pr (ax +py) Brtyyt+pz
o(z,y,2) = — A —py 0 0 0.
Ay (axApy) O 0O 0
—(x + Az) —(Br+yy+pz) O 0 0

Since rank ¢(0,0,z) £ 2 and G is a MD’s Lie a.lgebra,. rank (T, y,2) <
2.Y(z,y,z). From this it is easy to sce that a =0, Ay =0 and AS = p.

Now we shall consider the following possibilities.

3.5.1) A #£ 0. Then v = 0 and ady = Bady. Changing T by (T — BD) if
necessary, we can assune ady. = 0. Moreover, since A # 0, adl, is regular. By
the method used in 3.1.1) we can show that G is not irreducible. Thus, this
case 1s excluded.

3.5.2) A=0. Then = 0. Changing T by (T — D) we can assume
0 0 0
all=10 0 =~
' 0 0 0

Since [D, T}, adp(G 1) and adp(G') generate the space G', one has ¥ # 0 and
c # 0. Put

D=D+-X,Z=

b Cph= T —a2).¥ =Y.
i v ~

21~
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It is easy to verify that

g : 0 0 1 0 0 0
G' =gen(X,Y,2),  [D,T]=Z,ads =|0 0 0 yady=10 0 1
o 000 0 0 0

Therefore G = G5 3 5.
3.6') Suppose that with the basis {X,Y, Z} of G! we have -

| X100 | poa B
' ad} z 0 )\"1 ad']_‘——- 0 ,ura
oo Al e o t

Let [D T] =aX +bY+cZ be the decompomtlon of [D T), f = aX*+yY™* +z2Z*
an arbitrary linear form of G1* and ¢(z,y, z) the matrix of the form Bj in the
basis {D,T,X,Y,Z}. Then

0 (ax +Ddy+cz) Ax (z+Ay) (z+ Az2)

| lazbyes) 0 e (aetpy) (B +ay )
o(z,y,z) = —Az —jr 0 0 0
—(z + Ay) —(ax+py) 00 " 0
—(y + Az) (ﬁr+at;+,u:.) (ORI 0

It is obvious that rank (0,0,z) < <2 Therefore rank ¢(z,y,2) < 2,
Y(x,y,2). From this it is easy to see that B =0, =pu.

By changing T by (T — aD) we may assume ady = 0. One has the fdlib\ﬁng
Cases: » ' ' ' o o EE

3.6.1) A # 0 Then ad is regular By snmlar arguments as in 3.1.1) we can
sl.low that G is not 1119(111('11)1(3, and this case is excluded.

3.6.2) A = 0. It is clear that if [D ,_‘T] =aX + Y +cZ, theﬁ c#0: Now put

D=D,X=cX,7=cZ,

T:T—aY;bZ,I}ch
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One easily shows that
_ - . o 010
| G! = gen(i’,}h’,z_), [D,T] = Z,adf‘—r =0, and a_d}-) =10 0 .1
. 0 0 0

Therefore G = G5 3.6.

4/ Now suppose that dimG' = 3 and G' is not commut'xtlve Smre G'is a
nilpotent Lie algebra, G! must be the 3-dimensional Heisenberg Lie algebra. So
we may assume that G' = gen(X,Y, Z) with [X,Y]=Z and [X,Z] = [V, Z]] =
0. Let G be the factor Lie algel)x'a G/ G?andnw :‘g — @ the natural epimorphism
from G to G. By Theorem 2, the Lie al@;bb_ra G 1s aé—dimensional MD’s Lie

algebra.
LEmMA 4. Under the present conditions G is irreducible.

PROOF. Suppose G is not irreducible. Then C; = G, @& G, where Gy 1s a 1-

dimensional ideal and Gy is a 3-dimensional ideal in G. It is obvious that 7(Gl) =
¢l = Gl. Thus, we may assume that the basis {D, T, XY, 2 } of G satisfies the
conditions ‘ S
| G' = gen(X,Y, 2);|X, Y] = Z;[X, 2] = [¥, Z] =0,
Gi = gen(n(D), R "
Gy = gen(m(T), 7(X),w(Y)),

Now suppose that |
[D T = (ZIZ [D,X] =dyZ;[D, Y] =dyZ;[D, Z] =dsZ; [T, Z] = tZ.

Let us consider the \fectc)r D' l D - d3X —|— d, Y. It is clear that [D' Z]
and since [X, Y] = Z, [D’,X] [D’ "] = 0.

Assume that [D',T] = X + bY + cZ, f = .’.cX’* +1 JY + z7* € g’* and
w(z,y, z) is the matrix of the form B 7 in the basis {D',T,X,Y, Z}. Then we
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have
0 (az + by + cz) 0 0 dsiz
—(az + by + c2) 0 (LI X)) (fITY]) te
o(z,y,2) = ' 0 (f, [ X, T]) 0 | z 0
o (AmT) -
—dyz =tz 0

It is evident that theﬁl*e are no 4—&1imensi0nal K-.orbits in G*. Hence, there are
no 4-dimensional K-orbits in G*. This means rank cp(a:,ly,z) < 2,¥(z,y, 2),
from which we immediately obtain ¢ = b = ¢ = d; = = 0. Therefore,
G = gen(D') ® gen(T,X,Y,Z). This contradicts the 1rreduc1b111ty of G. We
have just proved Lemma 4. o

From Lemma 4 we see that G can be isomorphic only to one of the following

Lie algebras: :
i/ Giaa.

i/ Gioa.
i) Gaza = AFF(O).
LEMMA 5. The cases i/ and ii/ are impossible.

PROOF. Suppose that G 22 Gy 55. We can choose & basis {D,T.X,Y,Z} of G

such that the following conditions are satisfied:
G' = gen(X,Y, 2);[X, Y] = Z;[X,Z) = [V, Z] = 0,

G = gen(m(D), w(T), 7(X), n(Y)), [n(D), n(T)] = (X)
0 0

ad“(D) adﬂ(T) ={.

One can easily verify the equalities [T, Z}=0,|D,Z] = Z. But then
[D, [T, Y]]+[T [YD]] [Y [D,T))=~Z #0.

Thus, case 1/ is 1mpos<.:1b1e By the same arguments one shows that case ii/ is

impossible, too.
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Let us now consider the last case § & Aff(C). It is a,llwa.ys posmble to find

a basis {D T,X,Y,Z} of G such that

Gl = gen(X,Y,Z); [X, Y]

=‘Za [Xa Z]

= [%,2]=0,

G = gen(n(D), #(T), x(X), #(¥)), (D), =(T)] =

) 0 1 0 0
| ax(D) = ol =0 =g 1|

Suppose that ' g

(D, T] = a2, (D, Z} = dZ

[D,X]=-Y +b2, [I,X]=X+e2,
. [D,)Y)=X+¢Z, [T,Y]|=Y + fZ,
[T.2) =92, (a,b,... f,g € R).

From the Jacobi identities we obtain d_=_0, g=2,e=—g f = b. Therefore
[D,T] = aZ, D, Z]=0, [X,¥] =
D,X]=-Y +bZ, [T,X]=X-cZ, [T,2]=22
[D,Y|=X+cZ, = [T,Y]=Y+1bZ, [¥,Z)=0."

' [X.! Z]=
Let 1s make the transformation o o
D=D+ -;-z,X':_X +eZ,V =Y -b2T=1,2=2

It is clear that the vectors ﬁ, T, X , f', Z are also linearly independent and

—['Dﬁj:‘]:ga' [D, N]'ZMO»“ [X’i}] Z
D, X) = T,X]=X, [I,Z]=2Z,
0.7 I,¥]=¥, [X,2)=1F.2]=

That means g = Gy.3.7.

REMARK. In this case the non trivial K-orbits in G* are 4-dimensional. -More-

over, Gs 3.7 has no centre.
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Let us now pass to the last case:

5/ dihg 1 = 4. First we shall prove the following lemma
LEMMA 6. G! is a 4-dimensional MD’s Lie algebra.

PROOF. Let f be a linear form of G* and B ¢ the bilinear form corresponding to
the form fin G. Let f; = f |G? be the restriction of f on ¢! and B the bilinear

form corresponding to f; on G!. It is obvious that rankB § 2 rankB} . Since

dimG = § and dimG! = 4, we sece that if f satisfies the conditions f]gl #0

and f[92 = 0, then rankB; = 2. Therefore, every K-orbit in §!* must be
0-dimensional or 2-dimensional. Thus Lemma 6 is proved.
By Theorems 3 and 4, there are only three nilpotent 4-dimensional MD’s

Lie algebras: G443, R! @ Hs, R

LEMMA 7. There are no d-dimensional MD’s Lie aIgebras' whose commutant is

isomorphic to G4 5.3 or R' & H,.

Procr, Suppbse G = gen(D,T,X,Y,Z) is a 5-dimensional MD’s Lie algebra,

and its commutant G! = gen(T, X, Y, Z }is isomdrphic to G4.2.3. We may assume

that the basis vectors D, T, X, ¥, Z satisfy the equalities [T, X] = Z;[T, Z] =
Yi[T,Y] = [X,Y]=[X,Z] =V, 2] = 0. Suppose that the matrix ad}, in the
basis. {T,X,Y,Z} has the form _

dir diz diz duy

d21. daz daz day||.

dy1 dsz dss dagl

dyy dyp day dyg

adp =

It is obvious that adp(G') +G2 = G1. Let f = tT* + 2 X* + yY* + 2Z* be an
arbitrary linear form of G* and @(t,z,y,z) the matrix of the form By in the
basis {D, T, X,Y, Z}. Then we have |

0 (LD T (£(D, X)) (£,[D,Y]) (f,ID,2])
{(£,[T.D)). 0 z -0 y
e(z,y,2,t) = ([ {f,[X, D]) -z 0 0 0
(;lY;D) = 0 0 0 0
(£,12, D)) -y, 0 0 0
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Si.ﬁce rank ¢(t,z,0,0) < 2, rank o(t,z,y,2) < 2,¥(t,z,y,%). From this we
get y(f,[D, Y] =0, z(f,ID, 2]) — y{f, 1D, X]) = 0,V(t,2,y; 2), and therefore
diz3 = dog = d3z = dg3 =0,
dig = dag = dys =0, 7
di2 = dog = d32 = 0,dsz = das.
On the other hand, from the J acobi identity written-for the triplet (D, T, X )
we have d;; = 0. So, ad}) -has the form’ ' '

00

0 0

P LR
o -d31 0 0 (l34
dyy diz 0 0

This means ad,(G') C gen(X, Y, Z). Besides, since G = gen(X,Y), adl,(G1)+
G?> ¢ G'. This is a contradiction. We have just proved the first part of our
Lemma. , - - _ o
Now suppose . that G = gen(D T X,Y,Z)is a5 dimensional MD’s Lie alge-
bra, such that G = gen(T X,Y,Z) = R'"®H; and the basis vectors D, T, X,Y,Z

satisfy the equalities:
[anamm=mﬂ=mm=mm=mm=a

Let f = tT* + aX* + yY™* + 2Z* be an arbitrary linear form of G1* and
©(t, %, y, z) the matrix of the form By in the~cho=sen basis {D,T, X,Y,Z}. Then

we have

0 (AIDT) (AIDXD (FIDY) (£ID2)

N K AYCas 2 - o 00
ooy, 5ty = || (FIXD)Y 0 0 z 0
;o) 0 -z 0 0
(f,[Z,D]) AR § 0 0 0

It is obvious that rank o(t, z,y,2) < 2,¥(t, z,y, 2). Therefore we have

z{f; [Da Z]) = U,Z(f, [D’ T]) = 0,V(t, 2,7y, 2).
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From these equalities it follows [D, Z] = [D, T] = d, hence rank adl, < 2.

Oun the other hand, we see that G2 = gen(Z). This means adh(G') + G2 Z

G'. Thus, we obtain a contradiction. Lemma 7 is completely proved.

From Lemma 7 we obtain that if G is a 5-dimensional MD’s Lie algebra with

dimG! =4, then G! must be isomorphic to R*.

Suppose that {D, T, X, Y, Z} is a basis of G and {T,X,Y,Z} is a basis in G!

such that the

¢3] ﬁl
il e
Yo o
0 0
a B
-../ - a
171 -
0 0
0 0
M0
¢ Ao
Mo o
0 0
A1
i/ 0 M
vt
0 0
0
A1 0
Colfooa 1
wzf
0 0 A
0 0 0

matrix of ady, is one of the following real normal Jordan matrices:

0 0 a«a 8 0
0 0 ' -8 « 1
. 5 (1, B2 > 0), i1/ 0 o g (B> 0),
—B2 0 -8 «
0 a [ 0 0
0 0 | (B >0, v/ B a 0 0 (B>0A£0)
M0 Az #0), 0 A1
0 A 0 0 A
M 1 0 0
J(A1Asdg Ay #0), vi/ A0 L (MAzAs # 0),
Ay 0 0 0 X 0
0 A 0 0 0 A
0 0 A 10 0
N HE IR L NI
A 0 0 X 1
0 A 0 0 0 )
0
0
0 #0.
A
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Now, changing D by .

D ., .
—=— in case if,
/ot + By S

. D

in cases v/ ,v1/ vii/,vili/,

in cases ii/,iii /-,iv/ .

)\1
= in the last case
and making some simple transformations of the basis {T,X,Y,Z}, we can show

that G is isomorphic to one of the following Lie algebtas:

Gs.a.15C5.4.2;05.4.3; G5.4.4; 5.4.5, U5.4.63 Gs.a.7;05.4.8;05.4.9-

The proof of Theoi‘em 5 is now complete.

REMARK.
1. Among the Lie algebras listed in Theorern 5 there are only two for which the
non trivial I{-orbits are 4-dimensional. They are Gs.1 = = Hy and Gs.3.7. '
2. The structure of the Lie algebras Gs.1,0s.2 and Gs.3.5 may be descnbed by

the following schemes

Gs.1 = Hs:
,-',D ‘.\\ ,”X *\
~ ’ LY
\ i
1 PR 1
VT i i Y !
» 1 / /
\\\l ,
Vs
~ 14
""‘-.__‘v,__’_ _‘/l
Gi Go
GG 2H
Hs = G1 + G2

z(Hs) = gen(Z) (centre of Hs)
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Gs.2:

,f’_—.-"'-\ f,’—-.\\
PRI )’\ X \
I / \
| \\' )/ !
' ) T |
A S /\ \ I
\ { 7

\"‘-....Y__-.—//‘\\ z__//

G Go
gl ggzg'}'f:;
95.2=91+gg‘

G55 = gen(Y, Z) is the centre of G5,
Gs5.3.5:
- . ™ T TN
// D \V/ fT ~

7 7N AY

! \,: ,\/ \

I ‘ .

| ) \2 ¥ |

i

‘\ /\ \/\ /

\ N y,
. X //\\ Y //
N - _“...__d

G Gs

- gl—§g2§H3

[D,T] = Z, U535 =061+G2

gen(X,Y) is the centre of G5 3 5

3. The Lie algebras G5 3.7,Gs.4.1, Gs5.4.2, G5.4.9 have no centre.

The Lie algebras Gs.;1,Gs.3.1,Us.3.2,Gs.3.4, Gs.3.6 have one-dimensional

centres.
The Lie algebras G5 5 and Gs 3.5 have 2-dimensional centres.
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4. By the method of this paper one can principally classify the MD’s Lie
Algebras of higher dimensions. Recently the 6-dimensional Lie Algebras of the
class MD have been completely classified in [9].
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