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3 CQNNECTEDNESS OF CUBIC ‘I\»/IETACIRCULAI_\T'_I1 GRAPHS
NGO DAC TAN

Abstract In this paper we glve hecessary ‘and sufﬁc1ent condltlons for cublc
metacwcuiant graphs to be connected. "

1. Introduction

Metacirculant graphs were introduced in [1_]-as_ an interesting class of vertex-
transitive graphs which includes many non-Cayley graphs and which might
contain some new non-hamiltonian 'connécted vertex-transitive graphs. But
these graphs need not be connected in general. So a na.tural problem is to ﬁnd
qecessa,ry ‘and sufﬁment conditions for metacirculant gra.phs to be connected.

We will denote the ring of integers modulo n by Z, and the mult1pl1ca.t1ve
group of units in Z, by Z¥. Let m and n be'two positive integers, & € Z%, u =
{m/ 2_| and Sy, Sj, ..., S, be subsets of Z; sat1sfy1ng the followmg conditions: -

(1) 0 & Sp.= — 5o, ' '

~(2) a™Sr =S for 0<r < puy

(3) If m is even, then a#§, = ~35,.

“We' define theq_neta.,(-:ircula.nt graph G = MC(m,n,a, Sy, S1,..,5,) to be
the graph with vertex-set V(G) = {vilz € Zpn;y € Z,} and edge-set E(G) =
{v;vi"""IO L<r<yx €2y h,y € Z, and (h —y) € &S, }, where superscripts
and subscripts are always reduced modulo m and modulo n , respectively. The
subset S; in the definition is ca,lled the i-th symbol of G and the set V* =
{v"'ly € 2, } is called the x-th block of vertices of G .
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The above definition is designed to allow the perfﬁﬁtaﬁons pand T deﬁn’ed
by p(vy) = vy, T(vi) = vif! to be automorphisms of G. Thus, G is vertex-
- transitive. The reader is referred to [1] for basic properties of metacirculant
-gra,phs. _ ] o _

In this paper we will restrict ourselves to consider only cubic metacirculant
graphs. We will give necessary and sufficient conditions for their connectedness.
These conditions may be useful for sblving pi‘oblems concerning connected cubic
: metacirculants In particular, we have used one of these conditions in [4] to
prove the ex1stence of a Hamilton cycle i1 every connected cubic metamrculant
graph whose number of blocks is divisible by 4. A special case of this result has

appeared in [3].

2. The-case‘rS[') 7é )

We assume that all metac1rcu1ant graphs M C(m n, o, So, 31, S ) consid-
ered in this section are cubic w1th the condltlon So # 0 Components, auto—

morpinsm groups and Hamilton cycles of these graphs have been cons1dered in
12} o e IR

LEMMA 1 [2]. A metacirculant graph MC(m,n,a, So,S1,...,5,) has So # 0
and is a cubic graph if and only if one of the following conditions is satisfied:
1) nis even, |So] =3,5; =0 forall i € {1,2,..., n}.

2) m is odd, n is even, |Sp| = 1, |S[ =1 for some 1 € {1,2,. ,,u} and §j =0
for all j # 1. . S o

3) m is even, n is even, |So|.= 1,[Si| =: 1-for some i €:{1,2,...,p - 1} and
S—S,‘uﬁforz#je{12 =1} : o |
4) m is even, n is even, |Sp| = 1,|9,| =2 andS ={ forallie{l,2,..,u—1}.
5) m is even, |So} = 2,15, =1 and S;. =0 for all i € {1,2,...,u —1}.

Let n be a 'pbsit'ive"intege_r and S subset 'of_LZ,'," Sﬁch’ that 0'—¢ 5§ = -5
Then we define the circulant graph G = C (n S) to be the gi‘aph with vertex-set
V(G) = {vyly € Z,,} and edge-set E(G) = {v,vply, h € Z,; (h —y) € S}, where
subscripts are always reduced modulo n. The subset S is called the symbol of

the circulant graph C(n, S).
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LEMMA 2. Let G = C(n, S) be a circulant graph with the symbol § = {&*s1,
+52,..., %8, }. Then G is connected if and only ifgcd(sl,.sz,'...,.sh,n) =1.

PROOF. If is clear that the vertex v is _]omed by a walk in G’ only to a vertex
vs of V(@) with f to be a multlple of e = gcd(sl,sz, vy Sk, T). Therefore if
e > 1, there exists a vertex of V(G) not Jomed t0 g by any Walk in G . Thus,
G is disconnected. '

If ng(Sl,Sg, iy Spyn) = 1, then there exist integers t1,%2, ..y th,ther such
that 15y + t232 + ..+ thsh + th+1n e 1, Therefore for any y € Z, we
have yt131 + ytosg —|— o + ytpsy = ylmod n) We construct now the walks
Wy,,z = 1 2,...,h, as followsr Let y; = 0 and y, = y;_ 1 —I—ytl 15;—1 for
7= 2,3, .. Then the mltlal vertex of W'y it = 1 2 h is vy, If £ 18 pos—
itive, then Wi = Uy UyitsUysts:- 'Uyl+yg s I t, is neg,atlve then Wy =
vy!vy'_s‘vy‘ —2a;- by;+yt s;- It is clear that we can join vg to Vy, by Wyi1,vy, to

ya DY Wy2,..., 0y, to vy by Wy Therefore, vy can be joined to vy by a walk

in G. It is easy to see now that G i is connected

THEOREM 1. Let G MC(m n, q, 50,31,... p) be a cubrc metacireulant
graph with Sy 7& d. Then G is connected if and only if one of the foﬂowmg
'condltlons is satisfied: |

(C1) m = 1,n is even, So = {s,—s, n/2} Wlth gcd(s n/2) = 1 .
(C2) m is odd, n is even, Sp = {n/2} S = {3} for some i c {1 2 <y o} with
gcd(z m) =1 and gcd(a n/2) = 1, Where a is [3(1 + o + az‘ —l— .+ a(m= D)
reduced modulo n,S; = @ for all j # 1. _
(C3) m is even, n is even, Sg = {n/Q} S = {.s} for s some i € {1 2yt 1}
with gcd(l m) =1 and gcd(a n/2) = 1, where a is [s(1+o +a2" +.. -l-a(”‘ i )]
reduced modulo n, S; -S;,—@foraﬂz;éje{12 wit—1}

(C4) m =2,n is even, S = {n/2} S1 = {s,7} with gcd(s —r,nf2)= 1

(C5) m =2, Sg = {s —.s} with gcd(s n)=1, S5 = {1}

PROOF. Let G be a cubic metacirculant graph MC(m n,a, So, SI, . Syu) with
| Sg # . We say that G belongs to Class ¢ if the parameters m, n, a, Sos Sty Sy
of G satisfy Condition ¢in Lemma 1 (¢ = 1,2,3,4,5). Thus, by Lemma 1, G
must belong to one of Classes 1-5. We will prove that-if G is a graph of Class
¢, then G is connected if and only if Condition (Ct) in Theorem 1 is satisfied.
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Let G be a graph of Class 1. If G is connected, then since S; = 0 for
all i € {1,2,3,..,u}, we have m = 1. Furthermore, since |Sp| = 3,0 & So =
~So(mod n), So = {s,—s, n/2} with s # 0(mod n). It is clear that in such
a case, G 1s a c1rculant graph with the symbol So. Therefoxe, by Lemma 2,
ged(s,n/2,n) = ged(s,n/2) = 1. Thus, Condition (C1) is proved. Conversely,
if Condition (C1) is satisfied, 1t is easy to see that G is a connected graph of
Class 1.

~Let G be a graph of Class 2. From |.S'0| = 1, 0 ¢ So = —So(mod n) it
follows that So = {n/2}. Let ) be connected and p be the automorplnsm of
G deﬁned in Section 1. We define the er aph G /p as follows. Vertices of G /e
are blocks V2, V1., V"™ 1 of G and a vertex V* is a,cl_]acent to a vmtex Vb
if and only if (b — a) = +i(mod m), where i € {1,2,. It} with S £ 0. In
other words, G/p is a circulant graph with m vert1ce‘s and the symbol {&:}.
From the connectedness of G it follows that G / pis connected By Lemma 2,
ged(i,m) = 1. | “ | o

We define now the graph GO as follows The vertex-set of G* is V0 and two
vertices vy and v are adjacent in GO if and only if (h—y) € {Za,n / 2}, where a

is [s(1+a +a? +.. .+ (™11 reduced modulo n. Thus, GP is also a circulant
graph with the symbol § = {*a, n/ 2}. It is not difficult to see that two adjacent
vertices of G can be Jomed by a path i in G and the connectedness of G implies
the connectedness of G°. Again by Lemma 2, ged{a,n /2, n) = ged(a,n/2) = 1.
Thus, Condition (C‘?) holds. Conversely, if Condition (C2) is satmﬁed then it
is easy to verify that G is a connected grdph of Class 2

Let G be a graph of Class 3. By the same arguments used for gr aphs in Chss
2 we can prove the necessary and sufﬁment conchtmn (C3) for connectedness of
graphs in Class 3. ' '

Now let G be a graph of Class 4. If G is- connected then since S; = @ for
all 7 € {1,2,...,p — 1}, we must have m = 2. From |So| = 1 and 0¢ So =
—So(mod n), it follows that Sy = {n/2}. Assume that S1 = {s,r}. We define
the graph G° as follows. The vertex-set of G® is V9 and two vertices v) and v
are adjacent in G° if and only if (h—y) € {£(s—7),n/2}. Thus, G is a circulant
graph with the symbol S = {£(s —.r),n/2}. It is not difficult to see that two
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adjacent vertices of G° can be joined by a path in G aﬁd the connectedness of
G implies the connectedness of G°. By Lemma 2, ged(s — r,n/2,n) = gcd(s —
r,n/2) = 1 and Condition (C4) is proved. Conversely, if Condition (C4) is
satisfied, then it is not difficult to verify that G is a connected graph of Class
4. |

Finally, let G be a graph of Class 5. If G is connected, then we again have
m = 2 because S; = @ forall: € {1,2,...,p—1}. Let Sp = {s,—s},5 = {r}. As
shown in {2], the components of G are isomorphic to the generalized Petersen
graph GP(d, k), where k = o and d is n/ged(s,n). Since G is connected, we
must have ged(s,n) = 1 and Condition (C5)} is proved. Conversely, if Condition
(C5) holds, then G is isomorphic to GP(n, k). Since GP(n, k) is connected, the
graph G is also connected. ' '

Theorem 1 is completely proved.

3. The case Sy =10

All metacirculant graphs G = MC(m,n, a, Sy, Si,...,S,.) considered in this
section are assumed to be cubic and to have Sy = (. Because of this only the
following cases can happen:

(1) mis even, S; = 0 for all 7 € {1,2,...,u — 1} and |5,| = 3.

(2) m>2is even,rlS,-| =1 for some i € {1,2,...,p — 1} and |S,| = 1.

First we consider Case (1).

LEMMA 3. .Let G = MC(m,n,a, Sp, 51, ...,5,) be a.cubic metacirculant graph
such that m iseven, Sy =51 =...= 85,1 =0 and S, = {k,r,s} with k,r,s to
‘be pairwise distinct modulo n. Then G is connected if and only if m = 2 and
ged(r —k,s —k,n)=1. .

PROOF. By the definition of metacirculant graphs, it is trivial that such a graph
G is disconnected if m > 2 is even. So, if G is connected, we must have m = 2.
We define now the graph G°. The vertex-set of GY is VO and two vertices vg
and v} are adjacent in G° if and only if (A — y) € {&(r — k), (s — k)}. Thus,
G is a circulant graph with the symbol § = {&(r — k), (s — k)}. It is not

difficult to see that two adjacent vertices of G° can be jo_ined by a path in G
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and the connectedness of G implies the connectedness of G°. By Lemma 2,
ged(r —k,s = kyn) = 1. Conversely, if m = 2 and ged(r — k,s — k,n) =1, then
GY is connected by Lemma 2. Therefore G is connected.

' Now we consider Case (2).

LEMMA 4. Let G = MC(m,n,«, Sy, S1,...,.S,) be a cubic metacirculant graph
such that m > 2 is even, So = 0, S; = {s} for somei € {1,2,...,p— 1}, S,-_# 0
foralli #j€{1,2,...,p—1} and S, = {k} (s,k € Z,). Then

(a) If G is connected, then either i is odd and ged(i,m) =1 or i is even, p
is odd and ged(i,m) = 2. ' | _

(b) If i is odd and _'ch(-z',' m) =1, then G is j'somo.zphic to the cubic metacir-
culant graph G = MC(Tﬁ n, o 56; 1500y Sy) With a'_ = a So B, SI =
{s},8,=...=8,_, =0 and 5, = {k}. |

(c) If i is even, p is odd, ged(z,m) = 9 and i = 24 with ¢t > 1 and ¢' odd,
then G is isomorphic to the cubic metacirculant graph G" = MC(m,n,a", Sy,
SIS,y SU) with o = o, S} =S¥ = .. = Sh_, =0, Sh = {s}, s;',+, .
=85, =0,8, ={k}. ' ‘

PROOF. (a) Let .p' be the aﬁtdmoxpﬁism of ‘the graph G déﬁnéd in 'Section 1
ie., plvy) = vy_H for all vj € V(G) We define 110W the graph G/p as follows
Vertices of G/p are blocks Ve, Vl, LV 1'of G. A vertex Ve is ad_]acent to
a vertex V* if and only if (b~ a) € {£z, ,LL}, where S; = {3} is a nonempty
symbol of G with i € {1,2,...,p — 1}. Thus, G/pis a mrcula.nt graph of order
m and with the symbol S = {ﬂ:i, o} Since G is connected, the graph G/p is
also connected. By Lemma, 2, ged(s, 4, m) = ged(i, p) = 1. Therefore, either i s
odd ‘and ged(i,m) =1 or i is even, u is odd and ged(i,m) = 2. Assertion (a) is
proved. ' _
(b) Let i be odd and ged(é,m) = 1. Then 0, 4, 2, 3, , (m—1):i are all distinct

integers modulo m. Morcover, since 1 is odd, we have
[ ,u(mod 'm) o (3 1)

Let ¢ : V(G) — V(G') : vI' — vi. It is not dlfﬁcult to venfy that ¢
is a bijection from V(G) on V (G'). Let vjv 47 be an edge of G and z
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az'i(fnod m). By definition, we have either r =7 and (k — y) = a®s(mod n) or
r = p and (hK y) = a®k(mod n).

If r =i and (h — y) = a®s(mod n), then tp('uy)cp(v””’) = ¢(vy )cp(v” Ty
= vy wE "+1 We have (h—y)=0o"s = o'is = (a')* s(mod n). Thus,

(v z)(p('u"""") is an edge of G'. Let now r = g and (h — y) = a®k(mod n). By
(8.1) we have r = p = pi(mod m). Therefore, p(v; Yo(vp ™) = (,o(v;'i)
o(vy udy vy-’v‘.’; te From (b —vy) = o® 'k = (o) k(mnod n), it follows that
go(vj)cp(v;""") is an edge of G’.

Conversely, let v';v,f'*'r be an edge of G'. Then we have either » = 1 and
(h~y)=(a)*sorr=pand (h—y)=(a*)®k Ifr =1 and (h — y) = (a*)®s,
then @™ (vZ)p M (vit) = viv (I—H)l = v¥F " From (b —y) = (a')®s =
(a'®)s , it follows that tp"](v”)go'l(v"’"'l) is an edge of G. Let now r = p
and (h — y) = (a')®k. by (3.1) we have r = p = pi(mod m). Therefore
(07 )y Yoty = v;iv£z+”)i = v;iv,fi+". Since (h —y) = (a')*k = (a*)k,
o (vi)e~ L(vit#) is again an edge of G. Thus, (p is an isomorphism from G
on G’ and the assertion (b) is proved.

(c) Let i be even, p be odd and ged(i,m) = 2. Then 0,1,2:,37,..., (z — 1)1
are all distinct even integers modulo m. Let : = 2!' with ¢ > 1 and ¢ odd.
Then ui' = Ju(m.r;d, m). Let ¥ : V(G) — V(G') : v]' — U;Z: and o7 —

;2 +#. Asin (b) we can now verify that 1 is a bljectlon from V{(G) onto V(G')
which preserves adjacency. The detailed verifications are left to the reader.

The proof of Lemma 4 is now complete.

Let us now recall and ‘give some definitions needed for the proofs of further
results, | :
Let W1 = vyv3v3...00_9vr_ v, be a walk of a ‘graph ' = (V, E). Then the
inverse walk of W, denoted by Wl_l is W']_1 = UpVU;_1¥p_2...U30201. Let Wy =
VpUry1..-Uh—1Vp be another walk of I' such that the initial vertex v, of W,
coincides with the terminal vertex of W;. Then the concatenation of Wy and W
denoted by Wi W) is defined to be the walk Wi W, = vyvevu3...0p 00, 100,43
o Up_1Uh.

Let G = MC(m,n,a, Sy, 51, ..., S,.) be a metacirculant graph. Then an edge
e of G is called an S;-edge if it is v” 2+ with (h—y) € a*S; or vEvE ' with
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(y — h) € «*—i8;. If all edges of a walk W are S;-edges, then W is called an
S;-walk. . ' o _

Now let G = MC(m,n,a, 50,51, S,) be a cubic metacirculant graph such
that m > 2 is even, Sp = S1 = ... = Si—1 = 8,5; = {s},Si+1 = ... = Sp1 =
8,5, = {k}, and let vjvy be an edge of G. Then the subscript h'is completely
determined by z,y,u. From now on we will write the edge vyv} » simply as vyv®
whenever h is clearly determined by z,y,u. Let W = vyv“(l)v_”(z) Ly be
a walk in G that starts and terminates at vertices of the same block V*. Then
the difference (h — y) reduced modulo n is-called the change (in subscripts) of
W and denoted by ch(W). If W has the form W = Wy * Q * Q! x W, then
it is clear that ch(W) and ch(W'), where W' = W, x W5, are the same. From
now on we will not distinguish these walks and will write simply W =W'. If a
walk W is an S;-walk and has the form W = v”v’:""' 42 g ”'H‘i , then we say
that it has a positive orientation. Similarly, if W = = vyv*T "v”'z‘ vz"“i, then
we say that it has a negative orientation. From a vertex vy we can go along
an S;-edge to v=+ or v%7%. When we go from vy to vZ+i; we say that we go in
the positive direction. When we go from vy to vE"t we say that we go in the

negative direction.

LEMMA 5. Let G = MC(m,n, a, So, St - ) be a cubic metacirculant graph '
sudzthatm>21seven,50—@.5'1—{s} Sg—. = Sy —QS = {k},
If a walk W of G joins two vertices of vV, then ch(W) is a mu]txple in Zn of
[k—s(l+a+a?+..+a* ") reduced modulo n. '

Proor. We will prove this lemma by induction on the number of S ”;édges
contalned in a walk W joining 'u to vd

Assume first that W contalns no S,-edges. Denote P(vy,vh)
_vgv]v2v3 p2A—2y2u=1y0 . By excha,nglng the role of a and d and by deletmg

subwalks of the type @ * Q™1 if necessary, we > may assume that .

W = P(vp,vhy) * P(v34), ”g(zj) * .. *AP(vb(j),vd). 0 (3.2)
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For the path P(v],v}) we have

h=y+st+as+..+ a?t 35 4 a2 a1l =

y— (14 a*)k—s(1 +a+a®+ ot a* Nj(mod n). (3.3)

Let p be {k - s(1 4+ a+ oa® + ... + a*~1)] reduced modulo n. Then from (3.3)
we see that ch(P(v],v})) is a multlple of p. From (3.2) it follows that ch(W)
is also a multiple of p.

Assume now that W contains an § u-edge. By deleting subwalks of the type
Q@ + @1 if necessary, we may assume that W = W; « Wy « W3, where W; and
W3 are walks joining vl to v] and v? to v respectively and have no S,-edges,
W3 has one of the following forms:

1) Wo = vivlo?. pfpdteydtetl =10

2) Wy = vfulv?. wipitrpite—lyite=2 51,0

3) Wy = vfule=1y26=2  pipdtigitu=lyite—2 4150

4) Wy = vdu2r=1y20=2  gipitagititlyitat? ,2u—1,0
and only v? and v? are vertices of V° contained in W.

If the subwalk of W, from v{ to v’ has length [ < p, then in these cases we

respectively have ‘
Dez=bt+stas+..+ad s+ alk+alths4 ..+ a?r!
sb+(al —1—o®)k—s(1+a+a®+...+ a*1)](mod n).
De=bt+stas+..+tad s +adk—alte s —aftr—25_ 5
=b+ ok —s(1 tata? + ...+ a”_l)](.mod n).
3)e= b a?t~lg— a2 o~ olstalk—oftrlg _gitr2s_ | _as—s
=b+(1+a” — o)k —s(l+a+a?+..+a* N(mod n).
4) ¢ =h_alg_ a2 _qig +adk + altes 4o odtetls 4 od et
a2 el
=b—a'ttk ~-s(l4+a+ a2+ .. Fa* )(mod n).

In all cases, ch(W;) = (¢ — b)(mod n) is a multiple of p. The same result
can be obtained if 4 < I < m. On the other hand, ch(W;) and ch(W3) have
been proved to be multiples of p. Therefore, ch(W) = (ch(W1) + ch(W2) +
ch(W3))(mod n) is also a multiple of p. Thus, the assertion of Lemma 5 is true

when the number of 5,-edges contained in W is 0 and 1.
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Assume that the assertion of Lemma 5 is true when the number of S,-edges
contained in W is r. We shall prove that it is also true when the number of
Sy-edges contamed in Wis (r+1). We represent W as the concatenation of
two subwalks Wy and Wz of W, 1e. W= W+ Wa, such that W; contains r
S ,-edges and Wy contains only one S, -edge. Let W1 terminate at some vy and
let Q = viv™HlpTE w2100 Then W = Wy * Wp.= (W7 * Q) * (Q~' * Wa),
the subwalk W; * Q joins two vertices of V® and contains only r S u-edges,
the subwalk Q7! * T/Vg joins two vertices of V? and contains only one Sy-edge.
By the induction hypothe51s, ch(Wy * Q) and ch(Q~ 1 % W,) are multiples of
p. Therefore, ch(W) is also a multiple of p because ch(TfV) = (ch(W) * Q) +
ch(Q~! * Wi))(rnod n). Thus, t the assertion of Lemuma 5 is true for every walk

in G joining two vertices of ve.

LEMMA 6. Let G = MC(m,n,q, Soy 8140, 5,) be a cubic metacirculant graph
such that m > 2 is even, So = 0,51 = {5}, 52 = ... = Sp1=0,8,= {k}. Then
G is connected if and only Jchd(p, )'- 1, wherep is [k—s(1+a+a? +.dat ™)

reduced modulo n.

PROOF. Let- ged(p, n) > 1. By Lemma 5, among the ver’uces of Vo, , 03 is Jomed
by a walk in G only to a vertex vf with f to be a multiple of p. Since ged(p,n) >
1, there exists a vertex in Ve Wh1c11 is not _]omed to vd by any walk i in G So G
is dm(:onnected

Co11ve1sely, let gcd(p, n) = 1. Denote R(vy,vh) = v, v"v” ph=2

v2ulol. It is easy to see that the change of R(vy, vh) is exactly p. So, we can
join v§ to v3 by R{vg,v v),vh to v3, by R(vp,vgp) vzp to v3p by R(vgp,vgp),
Therefore, every vertex of VU can be JOlIled to Uo by a walk in G because

ged(p,n) = 1. Now we can easﬂy see that G is connected.

LEMMA 7. Let G = MC(m,n,a, Sy, Sty Su).be a cubic metacircu]ant graph
such that-m > 2 is even, = m/2 is'odd, Sg-= Sy = ... = Sae_qy = @ with
t> 1,85 ={s}, Sprp1 = 0. = Sp1 =0, 5 = {k‘} If a walk W of G joins two
vertices of V°, then ch(W) is a multiple in Z, of [k(1 +a+a® +...+ a2 1) —
s(1 + o+ o? + ... + «*71)] reduced modulo n.
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PROOF. Let @ be such a cubic metacirculant graph and let W be a walk in G
joining a vertex v to a vertex.v3. We will prove this lemma by induction on
the number of S,-edges contained in a walk W joining v? to v§.

We note that the number of §,-edges in W must be even because only S,-
edgés Join vertices ‘of blocks with even superscripts to vertices of blocks with
odd superscripts. We divide the proof into several steps.

(a) Denote P(v) vg) = 'ug'uzt 22°93.2° p(e=12"40 Then
=(y+ s+a¥s + o s +‘... ,+‘ld("'"1)2'5)(mod n). (3.4)

From ged(2',m) = 2 it follows that 0,2%2.2%,3.2%, ..., (g — 1)2¢ are all even

integers- modulo m. Therefore,
| js + a.zl.s + oc?'zt.s +.... + oP-12 5 =
s+a’st+atsd.. + az"‘_2s = -
Cs(l+ataf. :'+ VY1 - a+a? — ...+ o D) (mod n).  (35)

By the definition of metacirculant graphs we have a*k = —k(mod n) « (a* +
1)k = 0(mod n). Therefore, we have

1

0=H(a* + 1)1 +a)(1 +a?)..(1 +& 27l N
=k(l+a +a? + + a2 fl)(l @+« —‘. .t q,(:_“_l))(r.nod n}.
h o (3.6)

From (3 4) (3 5), (3 6) it. follows that b = y — k(l +a+a?+. +cn:2 MNl-a+
a2—...-_.—f—a(“-"l_))—]—s(l-+_a+a +otaf V) (1—ato? —.. 4ot = y—k(1—a+t
o — .+t N1+ at+a? 4. +a? ) —s(l+atad ¥ +a#=)(mod n).

‘Let g be [k{(1+a+a? +...+e* 1) =s(1+a+a?+... +a# D)) reduced
modulo n. From the above calculations we see that ch(P(vy,v})) is a multiple
of q.

(b) Assume that a walk W joining a vertex v{ to a vertex v} of V° contains
no S,-edges. Then by eXchanging the role of a and d and by deleting subwalks
of the type Q x Q! 1f necessary, we may assume that W has the form W =
P(v?, ”gu))‘* P(vg(l), vg(z-)) * ...k P(vg(j);vg). Therefore from (a) it follows that
" ch(W) is a multiple of g.
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{(c) By the same arguments used above we can also prove that if a walk Z

joining a vertex vy to 2 vertex v¥ of V¥ contains no 'S p-edges, then ch(Z) is a
mulﬁiple of g. | _
- (d)-Assume now that a walk W joining 0 to v] contains only two S,-edges.
Let W, be the subwalk of W such that it contains both S,-edges of W and
only the endvertices v) and w0 are vertices from V°. Let W) and W3 be the
subwalks of W joining respectively v to v and v? to v3. Then it is clear that
W = W, * W, *+ Ws. Since W, and W3 contain no $,-edges, by (b) ch(W1) and
ch(W3) are multiples of g. Therefore, ch(W) is a muitiple of ¢ if and only if
ch(W2) is a multiple of ¢. | : , o

(e) We construct the subwalks Z;, Z2, Z3 and Z, of W> as.follows. The sub-

t
walk Z, starts at v} and terminates with the first 5,-edge vﬂtv;? TH# contained

¥
::2'+p,

ty . ‘ )
in Wa. Start Z; at v%2 F# and go along W until reaching a vertex v;

which is the last vertei of Wy with superscript 22" 4+ p. This vertex PP A g
the terminal \;ertex of Z,. The walk Z; starts at ‘v:’z‘*‘” zmd terminates with
the second S ,l—edgé v:‘02l+“b';?t contaiﬁed in Ws. Fiﬂaliy, start Z4 at 'v:‘ﬁ‘ and
‘terminate it at v2. ' S |

Thus, by the construction Wy = 21 % Zo % Z3 * Z4.'M’ofeover, Zs is'a walk
joining two vertices of the same block ye2te and having no Sy-edges., Ch(Z)
is a multiple of ¢ by (¢). So ch{W,) is a multiple of .q if and only if [;:h(Z]) +
ch(Z3) + ch(Z4)) reduced modulo n is a multiﬁle of q. o k

(f) By the construction, Z is an Sp-walk. All edges but the last one of
- Z, and of Z3 are also nglédges. ‘The orientations of Sgt—portioﬁs-of Z, and Z3
and the orientation of Z4 may be positive or negative. But we can irerify that
in all cases [ch(Z1) + ch(Zs) + ch(Z4)] reduced modulo 11 is always a multiple
of q. Here we will demonstrate the calculations only for the case'when the Sae-
portions of Z; and Z3 and Z, have a positive orientation. The verifications of

all remaining cases are left to the reader.

Let

' t t t gt »
Zy = vdv? o2 ? 032 ,;..v;?v:, il

t t U 3 t
Z3 — U;:2 +u,v(z+1)_2 +nv(x+2)2 +,u.",vu.2 -I-p,u::’? ,

t t t t
Zy = v;‘,? P12 (A D)2, (k—1)2 vg.
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Theﬁ
[ch(Z1) + ch(Z3) + ch(Zy)] =

(s+ a? s+ a5+ .+ a("’_l)zts_+ a“’zlk)+
(az2‘+u3 + aFHN2 e 4o+ PRCES RIS TN + au2'+.uk)+
(a“zts R P TR a(”_l)zts) =
(s+as+a> s+ ..+ oW gy
(az2‘k + ax2‘+.us + u(:n+l)2-‘+,u.‘3 +ot CM(m—l)2‘+us + au2‘+.uk, ‘
—ale2g a(“_g?zts — . = aﬂ's)(mod n)

By the calculations in (a), the first sum (s + a% s + a22's + ... + _a("“l)y.s) is

4 muli_ple of q. Consider the second sum. We have
(aﬂ‘ k + ax2‘+gs + d(x+-1)2‘+u3 4o 4 e D2 ag T Qe _ ofu-D2
| —olemD g aﬂts)
= a’:zt(l - a){1+ a? +a?? 4 + a(“_x—l)zt)
| [B(14+a+a?+..+a> 1) =s(1 + a+a* + ...+ a7 (mod n).

i.e., the second sum is also a multiple of q. Thus, [ch(Z;) + ch{Z3) + ch(Z4)]
reduced modulo n is a multiple of ¢ in this case.

(g) From (d)-(f) it follows that if a walk W joining two vertices v¢ and v}
of V? contains only two § p-edges, then ch(W) is a multiple of q.

(h) Suppose now that the-induction hypothesis is true when the number
of S,-edges contained in a walk joining two vertices of V° is 2r. Let W be a
walk joining two vertices v? and v} of V? and having 2(r + 1) S,-edges. We
represent W as the eoncatenation W; * Wy, of two walks Wy and W, such that
W) contains 2r S,-edges and W, contains only two Sj,-edges. Let vy be the.
terminal vertex of W;. Then « must be even. Let @ be any walk joirling vy toany
vertex of V0 such that ¢ contains no S,u-edges. Such a walk @ can be always
found, for example, Q@ = v;v"'"zt.vz'*'?'zt...v(”“l)fvg. Then W = W, + W, =
(W1 * Q) * (Q71 x Wy), the walk (W) * Q) joins two vertices of V° and has
2r  Sy-edges, and the walk (@~ * W) also joints two vertices of V? and has
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only two S,-edges. By the induction hypothesis ch(W) * Q) and ch(Q~! + Wa)
are multiples of ¢. Since ch(W) = [ch(W1 Q) + ch(Q~1 « Wh)](mod n), eh(W)
is also a multiple of ¢. Thus, the induction hypothesis is true for a walk joining

two vertices of V° and having 2(r + 1) Sp-edges.

LEMMA 8. Let G = MC(m,n,a, So, 51, ..., S,) be a cubic metacirculant graph
such that m > 2 is even , [t = m/2 is odd, Sp = 51 = ... = Syt = B with
t> 1,8y = {s}, Sat41=-. = Sy—1=0,5, = {k}. Then G is connected if and
only if ged(g,n) =1, where g is [k(1+a+a2+...+a2t”_1)—.9(1+a-{—_a2+...+a”‘1)]
reduced modulo n. - '

PROOF. Let ged(q, n) > L. By Lemma 7. among the vertices of VO, vd is joined

by a walk in G only to a vertex ir?c with f to be a multiple of ¢ in Z,. Since
ged(g,n) > 1, there exists a vertex in V° which is not joined to vg by any walk
in G. So G is disconnected.

Conversely, let ged(g,n) = 1. First we construct the walk R(vd) as follows.
Start R(v)) with the S -edge vgvh and proceed it in the negative direction
until reaching the first vertex v§ with the superseript j in {0,1, a2t =1} We
note that since j is odd, j must be odd. Therefore, ged(j,2t) = 1. Proceed
now with the S,-edge vgvj'“‘ and then turn in the negative direction until
reaching the following vertex vy with u in {0,1,...,2" — 1}. It is easy to see
that u = 2j(mod 2'). Similarly, proceed now with the S -edge v¥o¥T# and
then turn in the negative direction until reaching the following vertex vl with
rin {0,1,...,2" — 1}. As before, it is not difficult to see that r = 3j(mod 2F).
Continue this procedure until reaching first a vertex ) of VO, This vertex v is ”
then the terminal vertex of R(vg).

Now from R(v]) we construct for every e € Zn the walk R(v?) by replacing
every vertex vy of R{v]) by v} .. From ged(7,24) =1, 1t follows that 7,24,37, ..
reduced modulo 2! run through all numbers 0,1,2,...,2" = 1. Therefore, it is not
difficult to see that ch(R(v?)) is exactly q. We can join vy to vy by R(vd)vy
to v3, by R(v]), v3, to vy, by R(v3,),... From ged(g,n) = 1 it follows that
0,q,2q,3q,....,(n — 1)g are all integers modulo n. Thus, we can join v) to every

vertex of V? by a walk in G. Now it is not difficult to see that G is connected.

From Lemmas 3, 4, 6, 8 we immediately obtain the following.
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THEOREM 2. Let G = MC(m,n,a, S, 51, ...,5,) be a cubic metacirculant
graph with Sy = 0. Then G is connected if and only if one of the following
conditions is met :

(D1) m = 2,5, = {k,r,s} with k,r,s to be pairwise distinct modulo n and
ged(r —k,s —k,n) = 1.

(D2)m > 2 iseven, §; = ... = S;_; = @ with i odd and ged(i,m) = 1,
Si = {s}, Siy1 = ... = Sy = 0,85, = {k} and ged(p,n) = 1. where p is
[k —s(1+ o' +a? +... 4+ o#"1%)] reduced modulo n.

(D3)m >2iseven, p=m/2isodd, S = ... = S;_; = § with i even and
ged(i,m) = 2,8; = {s}, Siy1 = ... = S,y = 0, S, = {k} and ged(g,n) = 1,
where ¢ = 24" witht > 1 and i’ odd and q is [k(1 + & +o® + ... + a2 -D¥') _
s(l4+a” +a? +.. 4 a#=1)] reduced modulo n.
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