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PARALLEL DIRECT COLLOCAT!ON-BASED
IMPLICIT RUNGE-KUTTA-NYSTROM METHODS
WITH HIGH STABILITY

NGUYEN HUU CONG!

Abstract. In this paper, we study parallel iteration of predictor-corrector meth-
. ods (parallel PC methods} with direct collocation-based implicit Runge-Kutta-
. Slystrom {IRKN} correctors in solving stiff initial-value problems for special
second-order ordinary differential equations (ODEs) on parallel computers, The
parallel methods were constructed in order to achieve high stability. We will
show that they are rather efficient for solving stiff initial-value problems. .

1. Introduction

The subject of the paper is the numerical integration of the stiff initial-

value problem for systems of special second-order, ordinary differential equa-

tions (ODEs) of dimension d:

y (1) = f(L.y(t)).u(to) =yo,¥ (to) = vh,y : R = RO, F: R 5 R 19 <t < tena.

(1.1)

One of the most efficient numerical methods for integrating problem (1.1) is

inplicit Runge-Kutta-Nystrom method of the form:

L
Ynt+1 _= Yn + h‘y'n + bOh?.f(tn-syn) + h‘2 Z bif(tn + Cih: K)»
: ' i=1 '
-k
B y:-1+1 = !f" + d(lh.f(tnvyn) + h Zdif(tn: +ciha }’t)s

i=1

’ k

Yi=wutcily, + el f(tayn) + 1) aiif(tateih,¥y), i=1,..

j=1
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or using the Butcher array notation (cf.[4]),

0 R
c a A
R |
do dF - (1.3)

where b = (b;),¢ = (c;) and d = (d;) are k-dimensional vectors, and 4 = (aij)
is a k-by-k matrix. We always assume that the matrix A is nonsingular. If the
vector @ does not vanish, then (1.2) presents a (s = k + 1)-stage RKN method
requiring k tmplicit stages and one explicit stage. If @ =0, then (1.2) reduces to
the general (s = k)-stage RKN method with s impl_iéit stages. The collocation
methods (1.2) have excellént A-stability but they are very expensive in solving
stage-vector equations (1.2¢). These methods belong to two collocation types:
direct collocation and #ndirect collocation. For a full discussion of the IRKN
methods, their order of accuracy p and stage order r, we refer to [3], [8].

In this paper, we shall concentrate on the parallel iteration of the sin-
gle A-stable direct collocation-based IRKN correctors which are denoted by
Dr(3/4,1), Dr(—1/5,9/10,1), Dr(—1/5,9/10,19/20,1) and Dr(—1/4,0,9/10,
19/20,1). Here (3/4,1)T,(-1/5,9/10,1)T,(—1/5,9/10,19/20,1)7 and (—1/4,
0,9/10,19/20,1)7 are the vectors of collocation points (more details about this
direct collocations based methods can be found in [8]). The use of non A-stable
RKN correctors will be investigated in another paper in order to exploit the
performance in high step point order.

We consider the parallel integration methods based on parallel .itera,ti.on of
fully implicit Runge-Kutta-Nystrém (RKN) methods of direct coilocé,ti_on type
in preditor-corrector mode. Such parallel RKN methods were considered in [11].
The parallel methods constructed in [9] and [11] require much more number of
iterations per step to become A-stable than convergence criterion requires. In
this paper we construct parallel methods which are A-stable for the smallest
number of iterations per step. The investigation in this paper is considered as

an addition to the results obtained in [9] and [11]. The numerical experiments



IMPLICIT RUNGE-KUTTA-NYSTROM METHODS 151

and comparisons clearly show the efficiency of the parallel methods proposed in

this paper.

2. Parallel RKN 'methodsl

We shall construct itegration methods by diagonal-implicit PC iteration of
fully implicit RKN methods. Thus assuming that in (1.2) the matrix A = (a;j)
is a full matrix, we have to find the solution of the stage-vector equation and the
stage vector ¥ = (¥;). Our aim is to construct solution methods that run fast
on pavallel computers. In the case where all eigenvalues of the Jacobian matrix
are close to the origin, the stage vector equation (1.2c) can be solved by fixed
point iteration which is well-suited for implementation on parallel computers.
For first-order ODEs this has been discussed in [13], [10], and [5]. If there
are also largely negative eigenvalues, then fixed point iteration would dictate
rather small stepsizes in order to get convergence. We will consider a more
powerful class of parallel iteration processes which lead to the same degree of
implicitness as in SDIRKN methods. These processes are similar to the s#iff
iteration method applied in [7] and parallel PC iteration applied in [9] and [11].

Thus, let Yz-(“) denote the p-th iterate to Y;, and define

X; =Y - :a:,-,Xi(”) = Yi(”) — a;, where z; := yn + cihyl, + a;h2f(tn, yn). (2.1)

We shall compute iterates Xz-('” ), rather than Yt-('" ), because the quantities
X t-(” ) are of smaller magnitude and are therefore less sensitive to rounding errors.

In terms of X; and z;, The stage-vector equation (1.2¢) reads

k
X; = k2 Zﬂijf(fn +eih, X;+2;5), t=1,...,k (1.2cc)
J=1

We define the paralle] RKN methods as follows

) |
Ynt1 = Yn + ity + boh?F(ta,n) + B2 Y bif (bn + i, X{ 4 20),  (2:20)

i=1

k
Vigs = Vo + dohf(tn,vn) + b Y dif (bn + cils Xi* + 2:) (2:2b)

=1
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X 126,f(tn + cib, X+ ) = X7V — 67 f(tn + eih, X7V b 2))

k .
—w#[Xi(u_l) - h2 Zf(tn + th3 X}u_l) + 3:2')]7 (22C)
j=1
wherei=1,...,kip=1,2,...,m;w, are the réelaxation parameters, and 9; are

the iteration parameters which are assumed to be positive.

Since the k systems which are to be solved in each iteration step of (2.2¢) can
be solved in parallel and each has the dimension equal to that of the system
(1.1), the iteration process (2.2) is on a k-processor computers of the same
coputational complexity as a m-stage SDIRKN method on an one-processor
computer.

For ‘the sake of simplicitty of notation and presentation, we assume that
(1.1) is a scalar initial-value problem. However, all considerations can be triv-
jally extended to the systems of equations. -For scalar ODE y = f(t,y), we
suppose that the solution of (1.1) uniquely exists and equal to y(t). In some
neighbourhood of this exact solution, y(t) can be well represented by a solution

of the so called variational equation:

y = fty(0) + OF 10y(t, y(E)ly — y(2)] (2.3)

Assuming that 9 f/0y can be locally "frozen”, then (2.3) takes the form y =
Ay +g(t, y(t)). Since g(t,y(t)) does not depend on y, we arrive at the conclusion

that it is enough to perform our investigations only for the scalar test equation

y =M. (**)

2.1 Predictor

For starting the iteration (2.2c), we need a predictor to compute the initial
approximations X gﬂ) _ For more details about the predictors we refer to [9]. As
in [11] we follow two more attrative predictors:

Explicit predictor I with X}U) = —a;h2f(tn, yn)

Implicit predictor II with X}O) = —a; D2 f(tn, yn) + h20:if(tn +cih, X§°) + ;).

In view of stability, an important property of the predictors is the degree of

amplification of stiff components(here, stiff components are understood to be
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eigenvector components corresponding to large negative eigenvalues of 9f/ Oy)-
From Theorem 2.1 of [11] we know that both of the predictor I and predictor

II are of order one, i.e.

€9 = X; - x9 = o(r?).

2.2 Convergence

It is evident that if X,-(" ) defined by (2.2¢) converges as p ténds to oo, then
X 5” ) converges to the ¢-th component of the solution of the stage-vector solution
of (1.2cc), i.e., to X;. Concerning the convergence of the iteration process (2.2c),

we have the following theorem

THEOREM 2.1. If|| I —w,(I —2zD) (I —zA) ||< Cy < 1 for any z < 0, where
D is the diagonal matrix with diagonal entries &; then X*) defined by (2.2c)

converges to X; as u tends co.
PROOF: Ai)plying our parallel method to the scalar test equation (**) we ﬁave
[X — XU = [T —w,(I - 2D)"}(I — zA)|[X — X»~1]
with X = (X;), X® = (X", z = ARZ. (2.5)
It follows from (2.5) that
X —X* ST —w (I —2D) I —2A) | X = X* 1. (26)
By the assumption of the theorem we get the recusion |
| X —X® < Co || X — X1 || with Cp < 1. (2.7)

The recusion (2.7) leads to Theorem 2.1. Notice that condition || I —w,(I —
zD)™Y(I — zA) ||< 1 is considered as a minimal requirement for a method like
(2.2). In the folowing section the norm || [ —w, (I —2D)~ (I - zA) || is replaced
by its spectral radius. | |
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2.3 Stability

In [9] and [11] we have studied the stability of parallel RKN methods of the
form (2.2) by applying the method to the scalar test equation (**) and we have

derived the stability function for these methods.

If we denote w41 = (:nfl ) then we get vn41 = [M (z)—Em_(z)]v;l, where
Yn+i
/14 by + BT - zA) e+ za) 1 pT(I — zA) te
= (FE U w LAY oy
. zdo + AdT(I — 2zA) Hetza) 1+ 2dT(I — zA) e

is the stability matrix of JRKN methods, e is %-dimensional vector with unit

" entries.

T T
- PP, (H() KL () PP, (H(:)Kx(2) )
Bm(2) (dTA‘le(H(z))Kl (z) dTA™ Pr(H(2))K2(2) (2:9)

is the iteration error matrix with p¥ = pT A1 for nonstiffly accurate corrector,
p’ = el for stiffly accurate correctors, Pm(z) := [1hei(1 — wyz) and H(z) =
[I—-zD)7MI- 2A]. Futhermore, in (2.9) Ki(z) = [[—2zA] 7 zAle+ za), Ka(2) =
[[—zA]~!z Acfor the predictor I K1(z) = {I-—zf!t]”lzA[e—l—za]-—[lr—z.D]"1 [zD(e+

za) — za), Ka(2) = I - 24" zA — (I — zD)7'zD)le for the predictor II, and

Run(z) i= (M (z) — En(2)) (2.10)
is the stability function of the parllel methods.

DEFINITION 2.1. The parallel RKN methods are said to be A-stable for my if
Rum,(z) < lforany z < 0. Charactezing the stability of parallel RKN methods
we introduce the critical value of m defined as minimal value of m such that

the parallel methods are A-stable for all m equal to or greater than this value.

Let us denote this value by 7 crit -

9.4. Determination of the number of iterations

Theorem 2.1 gives us the condition for the convergence of the parallel meth-
ods (2.2). In these parallel methods we suppose that m is an’interger such that
X{m) approximates X with sufficient accuracy. In pratical use of the parallel

methods (2.2) we have to study some criterion for the detemination of m, ie.,
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some criterion to stop the iteration (2.2¢c)per step and per processor (for the
stability of the parallel methods the number m has to be equal or greater than
Merit-)

For this purpose we shall from now denote the step values of the corrrector
solution by un4) and u;,;, (the solution obtained by the parallel method (2.2)
by y,41 and !Iln+1
DEFINITION 2.2: We shall say that the order of the iteration error for the step
values of the slution obtained by the parallel methods (2 2) equals to ¢* if

Upt+t — Ynt1 = O(hq +l)a U, y,n-i-l O(hq +l)

THEOREM 2.2. For the parallel methods (2.2), if the order of the iteration error
for the stage-vector solution equals to ¢*, then the iteration error for the step

values of the solution is at least of order q*, Le.,

X = X" = O *) = tn gy ~ gogr = O(hT T )ul ) —hyy = O(RT F1)
(2.11)
PROOF. For the scalar equation, if we use the notation in which for any vector

v = (v;), f(v) denotes the vector with entries f(v;), then the corrector (1.2) can

be written in the following form

Unt1 = Yn + hyL + bohzf(tn,yn) + hzbfrf(t’:t1rl + ch,Y), (1.2a%)
Uns1 = Yo + doh f(tn, yn) + hdT f(ety +ch, ), (1.2b")

Y =yn +chy, + h’af(tn,yn) + B2 Af(etn +ch,Y). (1.2¢)

From (1.2¢) and (2.1) we derive
fletn +¢h,Y) = h"2A7YY — ey, — chy!, — h%af(tn,ys)] = R 2A7IX (2.12)

Relations (1.2), (2.1), (2.2) and (2.12) give us

Unt1 =Yn + By + boh? ftn,yn) + Y 0iXi,

i=1

k
Upiy = Yy + dohftn,yn) + 271 BiX: (2.13)

=1
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k
Yosr = g + B+ oh2 () + 3 @i XL

=1

k
y;1+1 =y, + dolf{tn,yn) + Rt Z ﬂia’YEm] (2.14)

- i=1
where «; and f; are the components of the vectors & := TA g:=dl 471,
In many cases, the corrector satisfies the ralations of stiff accuracy, i.e., ¢x =
1,by = a, and bTA™ = e{. In such cases, the step value u, 4, produced by
the corrector is given by the last component of the stage vector, i.e., Y. This

leads us to replacing the formula for u, 41 and ya41 in (2.13), (2.14) by

Unt1 = Yn + hyh + boh® f(ta,yn) + X
Yntl = Yn T+ hy:—, + bﬂh'zf(t'n:yn) + .X,(L.m)- (215)

The three last formulas prove Theorem 2.2.

In the parallel iteration (2.2), in each step, per processor we have to solve a
(general) system of nonlinear equations by Newton's method for dertermination
of the sfa.ge—vector solution X; ") which approximates X; so that sve can control

the iteration error by the following approximation

I ym _x =] xtn) o y(e=1) Il - (2.16)

In practice in order to economize the volume of computer memory and

computational costs, we need the following theorem.

THEOREM 2.3. Let the iteration process -ng’_‘) defined by (2.2c) converge to X;

. k
(fori=1,2,...,k) as p tends to +o0, then [X}"') —~h? 3 ai;f(ta —|—cjh,X§-“) +
j=1 _
z;)] and [th"+1) — Xf,u)] (for i = 1,2,...,k) converge to 0 as p tends to +o00

of the same or_der.

" PROOF. Applying iteration process (2.2¢) to the scalar test equation (**) we
have ' '
(pt1) (#) S ' )
D _ X)L — 26 = w,[XP — 82 Y @i flta + cjh, X} +25)],

j=1
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i=1,...,k z=h*A<0 (2.17)

. k
allse r (i) «
XY = XU = €l X =02 Y aiif(tn + 50, X2 425) || (218)

=1

The relation (2.18) proves Theorem 2.3,

3. Construction of parallel RKN methods with high stability

In this section we will consider the construction of parallel methods which
have high stability. In fact, the parallel RKN methods have been theoretically
constructed in section 2. In this section we will choose the iteration parameters
8i(=1,2,...,k)andw, (g = 1,2,...,m) of the iteration process (2.2¢) in order
to get some properties needed. The minimal requirement for these properties
is the sufficient condition for the convergence of the iteration process (Theorem
2.1). We will set all relaxation parameters equal to one. Furthermore, we denote

the spectral radius of the matrix M by p(M), and define
o(z) = p(I = H(z)) = p(I — |1 — D] [ — z4]) (3.1)

In [11] (also [9]), by setting all relaxation parameters w, equal to one, we
followed two iteration approaches: Zaratonello iteration and siiff iteration.

Zarantonello iteration mode requires the maximum by z < 0 of o(z) is
minimized by the choice of §;(¢ = 1,..., k). Let this min-max value be denoted
by p.

Stiff iteration mode requires o(—oc) is minimized by the choice of §;( =
1,...,k). Let this minimal value be denoted by p(co). The convergence condi-
tion of the iteration process in this case is p < Cp < 1.

By these two iteration modes, for three single direct collocation-based IRKN
methods derived in [8] Dr(3/4,1), Dr(-1/5, 9/10) and Dr(-1/4,0,9/10,19/20,1)
we have constructed three corresponding parallel methods with rather small
magnitudes of p and p(oo) which ensure in some sence, fast convergence. How-
ever these parallel methods do not have good enough stability properties. Table
3.1. below lists the minimal value of m such that the parallel methods are A-

stable for m equal to or greater than this critical value_ which is denoted by

M erit &
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Table 3.1. Values of m ¢ with explicit predictor I and implicit predictor II

Merit
Correctors (5),‘-Itera.tion parameter .
Predictor I Preditor II
Dr(3/4,1) (0.168?5,0.27777777778) - . 2 1
Dr(-1/5,9/10,1) (0.0154593016,01137764435,0.1301060266) 4 5
Dr(-1/4,0,9/10,19/20,1 (0.0073679545,0.0465886564, > 10 8
0.0508800912,0.05535786425

Now we choose the iteration parameters in such a way that the parallel
RKN methods are convergent and A-stable for any number of outer iferations
to be performed. The derivation of these iteration parameters is very difficult,
and it is not feasible to obtain them by analytical means, so that we apply nu-
merical search techniques. Using these search techniques we have successfully

derived, for a number of A-stable IRKN methods of direct collocation type (the
" method Dr(—1/5,9/10,19/20,1) differs from [11]), optimal iteration parame-
ters which ensure the convergence of the iteration process and give our parallel
RKN methods (2.2) A-stability for any number of outer iterations per step and
per processor. Table 3.2 and Table 3.3 below report the results of the search.

Table 3.2. “Optimal” iteration parameter(é;) and corresponding p(co) and p

Correctors
Dr(3/4,1)
Dr(-1/5,9/10,1)
Dr(-1/5,9/10,19/20,1)
Dr(-1/4,0,9/10,19/20,1)

% [(6;)-Tteration parameters | p(c0)| p
2 (0.175,0.275) 0.430|0.450
3 (0.12,0.144,0.18) 0.9100.910
4
4

(0.75,0.8,0.85,0.9) 0.988/0.988
(0.125,0.45,0.65,0.8) 0.987{0.987

o o |
ov s oo bl S

Note that the high stability of these parallel methods was shown on the

numerical experiment in [12,pp 18-19]
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Table 3.3. Values of m ¢, with explicit predictor I and implicit predictor I1

mcrit
Correctors pir k ((5,’)-Iteration parameters ]
Predictor 1] Predictor 11
Dr(3/4,1) 2| 2|2 (0.175,0.275) 1 1
Dr{-1/5,9/10,1) 3| 3|3 (0.12,0144,0.18) 3 1
Dr(-1/5,9/10,19/20,1) | 4 4] 4 (0.75,0.8,0.85,0.9) >10 1
Dr{-1/4,0,9/10,19/20,1) 5| 5| 4 (0.125,0.45,0.65,0.8) > 10 1

4. Numerical comparisons
In the numerical experiments we restrict the consideration to the new opti-
mal parallel PC methods listed in Table 4.1 below and the already available par-
allel RKN and seequential SDIRKN methods in the literature (see [9],{111},[14))

Table 4.1. Survey of new high stability paralle]l PC methods

PC Methods RKN corrector k P| 7| Predictor Tteration parameters (62) M crit
D2(I01) © Dr(3/4,1) 3| 5| 3{ Predictor II (0.175,0.275) 1
D3(I01) Dr(-1/5,9/10,1) 3| 6] 4} Predictor II (0.12,0.144,0.18) 1
D3(101) | Dr(-1/5,9/10,19/20,1) | 4| 7} 4| Predictor 11 (0.75,0.8,0.85,0.9) 1
D5(101) | Dr(-1/4,0,9/10,19/20,1) | 4| 5| 6| Predictor II|  (0.125,0.45,0.65,0.8) 1

Since the new parallel methods are A-stable for any m, we drop the stability
criterion m 2 m ¢y used in [9] and [11]. Using Theorem 2.2 and Theorem 2.3
the number of iterations m is determinated dynamically only by the condition

for the iteration error as follows:

Max ; [| X,-(m) ~ A® Zaijf(tn + cJ-h,XJ(m) + ;) o< CRPHY, (4.1)
i=1

where p is the order of the local error of the corrector methods. The constant
C is parameter independent on stepsize & but problem and method dependent.

Furthermore, in the table of results (as in [9] and [11]) M denotes the av-
eraged number of sequential systems to be solved per unit interval and NCD

denotes the number of minimal correct digits which is defined by

NCD (%) := — log (|| global error at the endpoint

of the integration interval |s0) (4.2)
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We consider the model linear stiff Kramarz-type problem (see 2D

diii(:) - (?:Z zia_;l))y(t),y(o) = (i) ¥/(0)=(0),0<t<100
(4.3)

with exact solution y(t) = (2cos(t), —-cos(t))T. For this linear problem, where
per processor, in each step only one Newton-iteration is required, the value of
M may serve as computional costs. The matrix of the system has two negative
eigenvalues —1 and —a so that when o is a large positive number, the system
is really stiff . In our experiment we take o = 2500. The results in Table 4.2
show that the new methods for k = 3,4, 5 are more efficient than the methods

of the same order from the literature.

Table 4.2 Values of NCD/M for problem (4.3)

PC Methods| s|k|p|r|h=1/5h= 1/1dh =1/20h = 1/40
Norsett,[0] 12| 1|31 00/10 | 18/20 | 27740 | 3.6/80
SFB,(3] |2|1]3| 1 0.6/10 | 15/20 | 2.4/40 | 3:3/80
Norsetia[o] 3] 1] 4| 1| 31/15| 3.1/30 | 41/60 | 5.2/120
SFByo] | 3| 1]4|1| 2.4/15 | 3.6/30 | 48/60 } 6.0/120
B,lo] |4]1|3|1] 0.0/20 | 1.8/40 | 2.7/80 | 3.6/160
Do(Is)[L} | 2 2| 2| 2| 0.9/14| 1.4/27 |- 1.7/40 2.4/80
Da(Esa)11]| 3| 3| 3| 3| 18/20| 2:7/42 | 8.7/80 | 46/160
Da(1S8)[11] | 5 4| 5| 5| 5.3/45 | 6.8/90 | 8.3/180| 9.8/360
Dogton) |2l 2] 2\2| 0.9/14| 14/27| 17/40) 2.4/80
D3(101) 1|3|3 3| 3| 1.8/15 2.7/29 3.6/59 4.5/117
Da(i01) | 4| 4| 4| 4| 3.8/25 | 5.0/40 | 6.0/80 | 73/159
Ds(101) | 5| 4] 55| 5.3/34| 6.8/59 | 82/100] 98/196 ]
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