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ON MULTISTEP SEIDEL-NEWTON METHODS
FOR QUASILINEAR OPERATOR EQUATIONS

‘NGUYEN MINH CHUONG AND NGUYEN VAN KHAI

1. Introduction

In this paper we consider the following operator equation :
Az = Fuz, | : (1.0)

where A is a bounded linear Fredholm operator (index zero) and F is a nonlinear
operator from a Banach space X to another Banach space Y. It is well known
that by the assufnptions of A wehave X =X, 0 X2, Y =Y18Y;, X2 = Ker
A, Y, =Im 4, dim X; < +ooand Y}, isclosedin Y. Further, we can conclude
that dim X, = codim Y3 = m < +oco and the restriction Aof Aon X 1 has a

bounded inverse A1,

Let us denote by P a bounded linear projection from ¥ on Y1, PY =
Vi, Q = (I — P), where I is the identity operator in Y. Then equation (1.0} is

equivalent to the system :

{A’u=PF(u+u), 1)

QF(u+v) =0,
where u € X;, v € Xs.

Note that the operator equation (1.0) has been investigated by many authors
(see [1-5] for instance). In [2] it has been solved by an usual Seidel-Newton
method and convergence theorems have been obtained. In this paper we will

study the above mentioned equation (1.0) by using two multistep Seidel-Newton
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methods, and we shall show that under some assumptions on F' the rate of

convergence of the approxirnate solutions to the exact one is quadratic.

2. First multistep Seidel-Newton method

Given initial value zq, let us construct a sequence (z,), by using the fol-

lowing relations :
Uny = A 'PFz,,
Unip1 = A TPF(up; +0p), i=1,2,..,k—1,
Unk = Ung = Uniie ) (2.1)
Vnt1 = Vn — [QF (Unt1 + 0n)] 3, QF (unt1 + vn),
Tptl = Upg1 T Untls
where tn; € X3, ¥n >0, i=1,..,k and v € X3. -

THEOREM 1.1. Let F(z) be continuously differentiable (in the Gateaux sense)
on each segment [a, b} lying in the ball B = {z| {lz —2¢|| < R} and forall z € B,

IPF'z|l| < a, [|QF|| < B

Assume that the restriction of QF'z on X, has a uniform bounded inverse
QFzIZ NQF IZL < v and [IQF'z — QF'y|| < p(llz — ylI), where p :
[0,00) — [0,00) is a continuotus nondecreasing function with p(0) = 0." Let

a be small enough and zy be chosen such that the following relations hold:

- 2k—1 N ) i )
ae =[(1A )" + 3 (1A [a) o8 + ] plEit)dt < 1,
=1 _
26k(1 — )" < R, |

k—1 _
8 -=[_Z(|I5‘!L7“1 lla) 14|14 — PF)zollv8 + YIIQFzol|.

Then the sequence (z,), constructed by (2.1) converges to the solutions z* of

equiation (1.0) and we obtain

len—a'l<RG. (22
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Proor: We will show by induction the following relations: z, € B, Vn >
0, Tni= un,i""'vn € B Vn 2 03 : =‘15-"3 ks ”un,l'—un” S 6kQ]?, ”un+1—un” S
rqt, llvntr — vall < Grgf.

It is clear that 2o € B. We have |jug,1— ug|| = [|[A~1 PFzo — A~ Az]| <
[|A™ II(PF — A)aol| < 8k, thus zo,; € B. It is easy to see that

uo,iz1 — wo | < ILAH| 1P Eao — PFag ]
< (A lle) lluos — woll, ¢ =1,...,k — L.
Hence

Hzo,i+1 — @oll < [Izo,i41 — 2o,4|] + .. + {[2o,1 — 7ol

< (I e} {luo,s — wol] + - + w0, — woll-
Therefore
llzo,i+1 — @l < NNAT[ N(PF — A)aol| [L+ (|47 + ... + (|47 )],

It follows that |[zo i+1 — zo]| < 6, hence zoiy1 € B, 1 =1,...,k— 1. When
¢ =k~ 1, we have ||zgx — ]| < 6 < R.

Let us estimate |Jv; — vg]|. Obviously

por - - vo|| < ||QF (2o, k)” < vBlu1 — U0|| + 7/|QF zo| = &&.
Whence |[z; — zo|| < 20; < R, i.e. 2, € B.
Assuming that the assertion is valid for m < n — 1, we shall prove it for n.

Indeed, since ZTa-1,i € B, 1 =1,..,k, we have z,_1 y = 1y + vp—1 € B and
[[tn = tn]] < 61:9';:_1: [lva —vp—a]] £ 6;:—1'

Therefore

n-—-1 n—1

[[EM —3’0“ < E”*’L'J+l _‘TJH < 26; qu <R,

j=0 3=0
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Le. &n € B. Now let us estimate ||un,1 — u,||. We have
lluny = unll = 1A PPz, — A PFep_y |} <
< NA™|aflfunm1,k = Uneimtl] + [[on — vas ]
(A 1) Hetn-1,1 = waall + 1A el lon = vacs ] < 6eg].
It is not difficult to see that
lletmitr = tinill < (A @) {[ttns — un]| for s =1,.... k— 1.
Hence
i1 = ail] < (JA @) 8rg2 ™" + (A |a) + 6P,

for ¢ =1,...,k — 1. It follows that

i .
nitr ~nall €Y flun iz — na il € Srgp A ot
=0

+ (A1) + oo+ (JA )™ + (LA [Jo)* + (JAY )™+ 4 ..+
+ (A @) 1] < bigl for i = 1,.... k.

Thus z,; € B,i = 1,..,(k—1). Fori = k we have [[upy1 — un|] < brqP.

Furthermore, we obtain

llont1 = vall S HQF(2n )l < YQF (2 t) — QF 2]l + 1||QFwn]]
S'Yﬂ”'vn-i-l - 'U_n” +’)’”QF$n‘“‘
- QF(wn—l,k) - QF’(xn—l,k)(vn - vn—-])” .

1
<1Bl[vnsr— vall + 7 j IQF (21,4 + (v — vy

= QF (@n—1,0)l lon — vnn}dt
2k~1 y

<VBIAIA o + 3 (A o) Tbxqm + (v / p(16) )60

i=1

< 6kq£a
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ie. zip1 € B (Note that ||zn — zol| € Ty {|zia — 24| < 26, > ¢k < R).
Therefore
m-1

llentm = Zall < D lentitr — Tnnill < 260681 = ¢F*)(1 - gqx)™" < Ry
=0

Passing to the limit as m — oo we get
llen — ="l < Rei.

Taking into account the continuity of A and F we can show that z* is the

solution of Equation (1.0). The proof is complete.

THEOREM 1.2. Let F'(z) be continuously differentiable (in the Gateaux sense)
on each segment [a,b] in a neighbourhood of the solution z* of equation (1.0).
Moreover, assume that the restriction of the QF'(z*) to X, has a bounded
inverse and

2k-1

IQF'z|| [@F'z*] II[Z(IIA HHIPE'2* | + (A | I PF'2*|)*] <

If zy is sufficiently close to z*, then the sequence (z,), constructed by (2.1)
converges to x* and we have the estimate (2.2) with 0 < q; < 1.

THEOREM 1.3. (Rate of convergence) Let F(z) be continuously differentiable
(m the Géateaux sensej on each segment [a b in a nelghbourhood Q of the
solution g* of Equation (1.0). Assume that PF' is Lipschitz continuous on
each segment [a,b] in Q with constant K and PF'z* = 0. Furthermore, assume
that ||QF'z|| < B, Vz € Q and QF'x is Lipschitz continuous with constant L
and |][QF’x]}§H <, Ya € Q. Ifzy is sufficiently close to =*, then the sequence

(zn)n constructed by (2.1) converges to z* with quadratic rate.

PROOF: By the assumptions, ‘thefe exists a ball B(z*,R) C £ such that
IPFz]| < a, 1QF']l < 6, QFaZ < 7, IQF's— QFy|| < ¢ for al
z,y € B(z*,R) and

2k—1

gt = 6903 (A |a) + (A la)*] + ey < 1.

i=1
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Choose o such that [|[zo—2"|| < oo —u*||+|lvo —v*]| < &k with 28k(1—gx)"t <
R. It can be verified that &n,Tn,i 3¢ defined and belong to B(z*, R) for all
n>0,1=12 . k. Then we have

(o1 — u*||'= || A" PFaq — AT PFa”|

< A1), ] 1PF[" + t(zo — +*)(@o — =*)lldt

< |37 ] (P + o ~ 27} — PF'(a")I 1o — <" [1dt
< A K floo — =" 1/2 < (MATHIK)S/2.

Consequently,
llzo — =l < 8k(IATHIK6:/2+1)-

From fhis we have
lluo.z —w*ll < (KNAT/2)leon —<7IIF < (1A 1K /28 + IGIT.
I we set [|A|K/2 = fr, (R +1)* = fo, then
ugs — vl € fi-8 o — w'll € ok
By recursion it is not difficult to show that lfwox — w*ll = llua — u*ll < & fi
with f; = filRfies + 1161, i =2, k. Clearly,
oy — v*| < Bllur —u™ll + é(nul —w*|] + llo — v*|I) Hlvo —¥7lI-

Hence
s — o711 < B Fe + T2 FeR+2FICI

where G is a bounded linear projection from X on X,,G(z) = v for each
z=utv, u€ Xy, veEXy Hwe choose 6 such that at the same time we have
§i(l—qp)' <Rand 6:C <1 with C = [fx +7Bfx +7LfkR+'yLHGlA|2], then
we get- , A
llr — ™1 < C6: = (1/C)w?, with w= Cé, < 1.
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Now, by induction we will prove that ||z, — 2*|] < (1/C)w?". Assume that
the assertion holds n — 1. Then
w11 —u*ll < (ATIE/2) [2no1 — 2*|* = fillzaos — 2|2,
fun-1,2 = | < (JAHIE/2) |00y ~ 2*[PIUA ) /2 ony — 2|1+
+lG|IP? |
SHlenwr =" [PfLf-R G = llen-1 — 2*[]2 fo,

and so on, and {[up—1x — u*|| < ||lzn—1 — 2*|[2fr with fi defined as above.

Moreover,
fom = w11 < 9Btn =711+ 75l = w1l loms ="+ 3 Zlfocs — o7
It follows that
Iow = 711 < (B + 75 fe + v NCHE s — o]
From this we get
o =1l < llewms = a* P1fs + 283 +7LRS + 7 2IIGIF)

ie. |[zn —2*|| < (1/C)w?". The proof is complete.

REMARK I: 1) The S-eidel—Newton method used in [2] is a special case of method
(2.1) when k = 1. Theorems 2.1 and 2.2 of [2] are special cases of Theorems 1.1
and 1.2 in this paper when k = 1. However, Theorem 1.3 concerning the rate

of convergence is new, it says that the rate is gquadratic.

2) Under the above assumptions, the (k + 1)-step method is, in general,
better than the k-step method in the following sense: If the k-step method is
applicable to a class of operators then (k + 1)-step method can also be applied
to this class. Moreover, for the following problem the k-step method (for some
k > 2) is applicable, whereas the Seidel-Newton method used in [2] (the 1-step
method) is not applicable. | '

Consider a nonlinear equation

Az = Fa - (21)
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in the real Hilbert space £2, where Az = (0,¢2,&3, ...,€k,...) and F(z) = (£ +
%, -113(52 +sinéa), ..., liz-(& + sinég), ...) for z = (zi1, €2, .y Eky o) € 2,

It can be verified that
KerA = Xg = {3’: e ezlm = (EI,O, __.,0, ,)} = Y27

X1 =Y ={z € Plz = (0,62, ., &)}, (14l =1, Hfi“1n=1

wQF( )—(100 g?] 0,...,0,...), Pij (0, —-(:fg—l—smﬁg) (§k+sin5k),...).
This problem has the solution z* = (0,0 ...) and. H[QF’(:::*)]X1 || = 100,
35 < ||QF'($*)|[ < 3%, ||PF'(z*)|| = §. It is obv10us that

2| A ||| PF (") QF' (")I| IHQF'=")% H>%>1

and for each k > 2,

2k-1

IIQF’(J:*)II IQF =" 15,11 Z(llﬂflll |PF'a*|) + (1A [IIPF'=*|)*] < 1

Hence using Theorem 1.2, it is easy to see that if the initial approximation z,
is sufficiently close to z*, then the sequence (), constructed by the formula
(2.1) converges to a solution of (1.1). Observe further that the Seidel-Newton
method in [2] is not applicable.

3. Second multiple Seidel-Newton method

Given initial value zo, let us construct the sequence (z,), by using the

folowing relations:
 Upl = Up — [QF'mn]};QF:cn,
Unit1 = Vnyi — [QF (tn + vn,i)] %) QF (un 4 05,i), 1 =0,k — 1,
Un,k = Un+1 = Yn+1,0
Uptl = —Z—IPF('U;“ -+ Un+1),

| Tp4l = Untl F Vni, ' : , (3.1)

where v,,; € X3, Yrn>0,:=0,.k u, €X1¥n >0
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By an argument analogous to that used in the previous section, we get :

THEOREM 3.1. (Convergence theorem). Let F(z) be continuously differen-
tiable (in the Gateaux sense) on each segment [a, b].in B = {z| ||z — zo[| < R}
and ||PF'z|| < a, ||[QF'z]x,|| < B, V2 € B. Assume that [QF':c];{lgH < v and
[QF'z]x, is Lipschitz continuous with constant L in B (note that [QF'z]x, is

the restriction of QF'z on the subset X;). If

gy = ma‘x{Qk,ls Qk,z} < 1’
26,(1 = qx)"! < R,
- 8k = max{éz1, bk2}
with

k-1 )
gk1 =B+ (EvL/2P T + (8vL/2)? " S (6L /2)7 7,

i=1

qr,2 = H;‘[“lHCE + Hg_l“a-‘lk,la
k—1 .

b1 = YQFxo]| Y (vL/2)*v||QFzo|* 7,
=0

Sk2 = [|A7 labrs + [JA7H] |(A — PF)aol),

then the sequence (x,), constructed by (3.0) converges to the solution z* of

equation (1.0) and we have

llzn —2™[| < Rgy.

THEOREM 3.2. Let F(z) be continuously differentiable (in the Giteaux sense)
on each segment [a, b] in a neighbourhood ) of the solution z* of equation (1.0).

- Moreover assume that the following inequalities hold

NQF' =% (IQF «*]x, || < 1,
NAH PR 2|1+ HIQF' "] 1 NQF 2*]x, |]) < L.
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If 2o is sufficiently closed to z*, then the sequence (zn)n defined by (3.1) con-

verges to z* and we have the estimate
[l#n —2*|l < Cq",

with0<g<l,andCisa constant independent of n.

THEOREM 3.3. (Rate of convergence). Let F(z) be continuously differentiable
(in the Gateaux sense) on each segment [a,b] in a neighbourhood 2 of the
solution +* of equation (1.0). Assume that PF' is Lipschitz continuous on each
segment [a,b] in Q with constant K and PF 'z* = 0. Furthermore assume that
NQ@F'zix, || <5, N@Fzx 1l <7, Yz € Q, and QF'z is Lipschitz continuous
. with constant L. If zg is sufficiently close to =*, then the sequence (zq)n defined

by (3.1) converges to x* with quadratic rate.

REMARK 1I: 1) When &k =1, method (3.1) turns out to be another variant of
the Seidel-Newton Method used in [2). Nevertheless, Theorem 3.3 concerning

the rate of convergence is new.

2) With vL §/2 small enough (zo sufficiently closed to solution z*), the
(k 4+ 1)-Step Method is better than the k-Step Method (smce Gh+1 < gr) in the

sense stated in Rema_rk 12).

3) It can be said that the two above multistep Seidel-Newton Methods are
dual. To apply method (2.1) it is necessary that ||A=1||a is sufficiently small,
and for method (3.1) we need the smallness of v6 and the Lipschitz-continuity

of [QF"I']Xz -

4. Periodic boundary-value problems

Consider the following periodic boundary-value problem
{ i = ft,2,4,8), 0<t <1,

4.1
2(0) = 2(1), #(0) = (1) 1)
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Problem (4.1) may be reduced to the form (1.0} by irtroducing the following

spaces and operators :

X = {2 € C?[0,1]) 2(0) = a(1), $(0) = #(1)},

Y =Co,1],
llellx = max 2(8)] + max |#(2)] + max [£(2),

lylly = [0 lu(£)],

Xl—{uEX|f (s)ds =0}, ¥; = {yEYl/ (s)ds = 0},
Xo=Y,={const}, A: X =Y, Az =%, F: X -7,
F(z) = f(t,z,2, 7).

It can be verified that A is a bounded linear Fredholm operator with Ker
A=X;, ImA=Y,, X =X,8X,, ¥ =Y, &Y,. Moreover the restriction A
of A to X; has a bounded inverse A! and |[|[A~1|] < £ (see [1], [2]). Suppose
that the funtion f(2,z,£;,&2) is continuous in t and continuously differentiable

in the remaining variables and for all pairs (¢, z, &1,62), (4, %, &1, &) € I, where

I={(t26,8)] 0St<1, 2| SR, &) SR, |ziz]| < R},
af(taxafla‘f?) < af(t1$1§11§2) '<a | af(ts$:§1:§2) I< .

| e I «, | a& 852
a s I, L, a 5_1— y_ T 3 3
| f(t :1(;51 £2)  Of( 52;_1 5_2) IS L(|lz — &) + |61 — &1 + |62 — &),
l 3f(t,;§1,§2) _ 8f(f=;éfl’52) < Ll —al+ o — L+ e — i =

Further, assume that %(t,m,él,ﬁg) > a(t) for each (t,z,£,&) € I, where
fol a(s)ds = vy~1 > 0.

Then F(z) is continuously differentiable in the closed ball § = {z € X| [|z|[x
< R} and for all 2,y € S, ||PF'z2|| < 2a, [|QF'z|] < o, ||QF'z — QF'y|| <
Li|z — y||. Moreover, the restriction of QF'(z) to X, has a uniformly bounded
inverse ||[QF'z]3.|| <y foreach z€S.

From Theorem 1.1 we get the following
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THEOREM 4.1. Suppose that the above conditions are satisfied. If moreover,

2k—1

)
0= (e +Z( ooy + 120 <1

2601 —qx)” < R
t 1
6’~ - Z(_Q_E’Za) ZHf(t,0,0,0) - A f(t,0,0,0)df“”"}’a—i—Tl / f(t,0,0,0)dtL

then the sequence {2}, constructed by the following formulas

(20=0 for all t € [0,1]

_iin,l = f(t,;cn,ci:,é}n —fo F(s, 20, &n, ¥, )ds,

fin,it1 = f{t Uni + Un, Un,i, Gin,i) — f; (8, tn iy tn iy tin,i)ds,
i=1, (k= 1), Unk = Uni

un,i(O) = un,,-(l), 't'l,n,,'((]) = t‘tn,,’(l), i = 1, k

1 . "

. j; F(s,unpr4vn,itngr,iing1)ds

Up+1 = Yn — fl
0

%{,‘(&“n{-l"’vnsi¢n+1y'&n+l)d5,
Tnt1(t) = Uns1(t) + vni1,

Uni € X1, ¥ 20, i = 1.k, v, € Xy,

\

converges to a solution of (4.1} and the estimate (2.2) holds.
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