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AFFINE POLAR QUOTIENTS
OF ALGEBRAIC PLANE CURVE

LE VAN THANH

Abstract. The aim of this paper is to introduce the notion of *affine polar
quotients” of algebraic plane curve and its applications for the study at mﬁmty

1. Introduction

Let f: C%,0 — C,0 be a germ of a holomorphic function, £ = fz — ay
a generic linear form and v ¢ {(z,y)/ agf + B -2—5 = 0} an irreductible com-
ponent of the polar curve of f. Then vf'!( flv) = %(2’)(‘—:))“ is called a polar
quotient of f~*(0) (cf. [LMW]). The polar quotients have been used by several
authors to study the local singularities. In particular, Le-Michel-Weber [LMW]
have recently proved that the polar quotients of a plane curve singularity are
the topological quotients defidned by the link of the singularity (namely the
quotients of the linking coefficients by the braid indexes of all of Seifert fibers

defined by the link of the singularity).

In this paper we give the notion of ”affine polar quotient” of algebraic plane
curve and its recent applications to the global topology of affine curves. This
notion is a generalisation of the one in the local case to the global case. Our
main result generalizes Theorem C of [LMW]. As consequences, we recover
again the theorem of Mbh—Ephaim about the regularity of algebraic plane curve
which has only one place at infinity (cf. [E]) and Vu1 s proof for a Neumann’s

conjecture about the link at infinity [H].

2. Affine polar quotients

Let P € Clz,y] be a polynomial. Let v be a ”component at infinity” of the

affine polar curve of P. This means that there is a linear form ¢ = Bx —ay
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such that £71(0) is not tangential to P~1(0), v C {a%{ 4+ %?5 =0} \ P~1(0)
and there is a representation
¢ = z4(t) € t=NC{t}
T { y =y(t) €tVC{t}
wiht ||(z(t); yx($))|] = o0 as't — 0. In other words, v is a Puiseux expansion

at infinity of the affine polar curve of P.

DEFINITION: We set

ve(P(z4(8), ¥+ (1)))
ve(£(z4(8), ¥(1)))

and call it an affine polar quotient of P~1(0).

vP(Ply) =

REMARK: 1). f §#Oandy=yy(z) = 2 axz> is a representation of v,
, AEQ,AK1 |
then it is easy to see that

‘U.C;O(P/’Y) = U?(P(mayw’(m))):

where

v(D bue*) = max{p [ by # 0}

HEQ A
Thereby an affine polar quotient of P~1(0) is the natural valuation (at infinity)
of the restriction of P on some ”component at infinity” of the affine polar curve
of P. |

2) If v5°(P/v) > 0, then
v2((P — a)/7) = vP(P[7) VaeC.
But this is not true in general if v3°(P/y) < 0.

EXAMPLE: P = z{zy — 1). It is evident that £ = z — y is generic for P~10)

and the affine polar curve

{2zy— 142" =0} or {y=§1~;—-;-}
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has only one irreductible component. But there are two "components at in-

= -t - =3~

z =¢t"1
finity” (namely two directions go to infinity): v, = { 1

{w B }

Yo = 1., 1 0 We have

Yy = 2t - 2t
v (P/m) =3
022 (P/) = —1

2

and vS((P —a)/n) = 3,v3((P - a)/v)=0 VaeC*.

-3. Link at infinity and topological quotients

1
2

}m

Let P € C[z,y] be a reduced polynomial. Then the intersection of P~1(0)

with any sufficiently large sphere S® around the origin in C? is transverse and
give a well-defined link (5%, L), called the link at infity of P~1(0). In [N] the

link at infinity of P~1(0) can be described as follows.

Let C = P~1(0) be the compactification of P~1(0) by an embedding C? C

PZ. We can assume that the line P! at infinity is not a component of C. So C

meets P! in finitely many points Y7, ..., ¥,, say. Choose an embedded disk Dy
in P! which contains C' N P! and let D be a thin 4-disk regular neighborhood

of Dy in P? whose boundary S = 8D meets C and P! transversely.

Jij

o N

Y —
\.

Figure 1.

Let L; be the link of P1 U C' at the point ¥; (the link of a singularity) and
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Ly = (S,(P1 U C)N S) denote the link of PLUC on S. Then Ly is the splicing
of L; (i = 1,...,n) along the component Ko=Pins. '

Now let N(P') be a thin closed tubular neighborhood of P! in P?. Then
$3 = ON(P') is a "sphere at infinity” in C?, and L:) = (53,582 NC) is, but for
orientation the link at infinity that interests us. Note that N(P!) is obtained
from D by adding a 2-handle along Ko C S = 8D. So L:) is obtained from Lo
by (+1)-Dehn surgery on Kj. '

Finally, by reversing the _ambient orientation of L:) we obtain the link at
infinity of P~1(0). Hence we have described the link at infinity (global link L)
in term of the links of the singularities L; (the local links). This description is

canonical but not unique in general.

Let p be a (typical or exceptional) fiber of the Seifert structure of the (global)
link L induced by the Seifert structures of the (local) links L;. By the meaning
of homotopical invariance, it is called a virtual component of L. For any virtual
component p, let £(p, L) denote the linking number between p and L (called
the linking coefficient of p) and {(p, Ko) the linking number between p and K
(called the braid indez of p with respect to Kp). Then the quotient 2%3% is
called the topological quotient of L given by p, it with respect to Ko {or to the

chosen projectification).

4. Topological character of affine polar quotients.

4.1. THEOREM. Suppose that P € C[z,y] reduced. Let @ be the set of all of
affine polar quotients of P~'(0) and Q,p be the set of all of topological quotients
of the link at infinity of P~*(0) with respect to a chosen projectification. Then

Q = Qtap U {qmax}, where Gmax = maX{q € Q}.
PROOF: Theorem 4.1 is reduced from the following lemmas :

4.2, LEMMA. For any affine polar component at infinity -y we have

_(P70)7)
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where d is the degree of P, P~1(0) and ¥ are compactifications of P~1(0) and
~, respectively, and z = 0 is'the line at infinity of P2.

PROOF: . We may choose the coordinates such that the polar curve is given as

G ={(z.v) € cﬁla—ng—y) — 0}

and, in addition, the component at infinity v+ C G has Puiseux expansion at
infinity:

y={(z 9y =yp(@)} with y(e)= > aaz®
ae€l4+Q -

where @~ = {a € Qja < 0} and Py(z,y,(x)) = 0. In particular, the point at
infinity in question is in z 3 0. One has

v (P/7) = v (P(z, y4(2)))-

On the other hand, if P(z,y) = z%P(%,%) is the equation for P—1(0) in local

ztz

coordinates at infinity, then Py(z, zy,(1)) = 0, which means that

Fi=A(59) 1y = 20(5) = v3(2))

is the compactification of y. Therefore,

0Bz, y5(2))) = d = v2(P(2, y3(2)))-
But in the local situation, one knows that

N )
v, (P(z,y7(2))) ¥{z=0}

Thus, Lemma (4.2) is proved.

4.3. LEMMA. (cf. [L], 2.1). Let p be a virtual component of L (the link at
infinity of P~1(0)) and L, the local link of singularity of P=1{0) at Yi(p) which
has also p as a (Iocal) virtual cémponent. Let g(p, L) (resp. g{p, Lip))) be the
topological quotient of L (resp. Lj,)) given by p with respéct to K;. Then
a(p, L) + q(p, Li(,)) = d, where d is the degree of P.
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ProOOF: Note that (1/k)-Dehn surgery on a knot Kp in 52 replaces the linking
number £(Cy,C2) of any two disjoint 1-cycles, which are disjoint from Ko, by
2(C1, Ca) — k(C, Ko)¥(Cy, Ky). Applying this with C; = p, C3 = Ly we have

#p, L) = —4(p, Ly) = —[&(p, Lo) — £(p; Ko )&(Lo, Ko)]
On the other hand, £(p, Ly) = &(p, Li(,) and £(Lo, Ko) = d. Hence

_ UeL) _ UenLip)
E(P: I{O) E(p, I{O) '

‘I(p:L)

4.4, LEMMA. Let f:C*0 — C,0 be a germ of a hcﬂomorp]u'c function,
2z = fz —ay a linear form, and y C {agj:- +ﬁ%5— = 0} an irreducible component
of the polar curve of f~1(0) with respect to z = 0. Let Q'°¢ (resp. Qig;) be
the set of the local polar (resp. topological) quotients of f~1(0) with respect to
z = 0. Then
| Q" = Qi35 U {gmin

where ¢%, = min{q € Q'°°}

PROOF: This is a generalisation of [LMW] (Theorem C) to the case where
{z = 0} may be not transversal to f~*(0) (i.e., z may be not generic). The
proof of Lemma (4.4) is the same as in [LMW], word by word, but only replacing
the multiplicities by the corresponding intersection numbers. Note that the first
local polar quotient (in the order of [LMW]) is a minimum one. In the relative
situation (z = B¢ — oy may be not generic) this minimum quotient may be not

the intersection number between: f~1(0) and {z = 0}.

5. APPLICATIONS: In this section we give some applications of Theorem 4.1 for
the study at infinity of algebraic plane curves. We recall that the curve P~1(0)
is called regular at infinity if outside of a compact domain of C? the polynomial
P define a trivial fibration in some neighborhood of P~0).
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5.1. THEOREM. Let P € C|z,y| be a reduced polynomial. Then the following

are equivalent :

(i) P~1(0). is regular at infinity.

(ii} The topological quotients of the link at infinity of P~1(0) with respect
to any projectification of C* are not negative.

(iii) The affine polar quotients of P~1(0) are not negative.

ProoF: That (i) = (ii) was already proved in [N] because the braid index is

always not negative.
That (ii) = (iii) follows from Theorem 4.1.

It remains to prove (iii) = (i}). Suppose that (iii) holds. That is, for all
components at infinity - of the affine polar curve

e : P P -
G={($,y)602:aa—w+ﬁa—={)}

(@, B general), one has v°(P/v) > 0. This means that P(z,y)/y, ~ 0 as
l(z,y)| — oco. So there exists § > 0 such that for sufficiently large R one has

P HANN(C?*—Br)NG =,

where As = {t € C : |t| < 6} and Bg = {(z,y) € C? : |(z,y)| < R}. In other
words, we have a line field a2 +[3(~% which is transverse to P~(¢)N(C? — Bg)
for all t € As. Then the vector field

8 0 oP opP
(s + ﬁé‘g)/(a}:ﬂ‘ + ﬁ@;)
trivializes the neighborhood at infinity P“I(Agj n{c? — B r) of P71(0). This

completes the proof.

5.2. REMARK: Theorem (5.1) gives us a criterion for the regularity at infinity
of algebraic plane curves. It was first proved in [L] (and then [NL]). Note that
the implication (ii} = (i) is a conjecture of [N] and was settled in [H] by using

Lojasiewirz numbers at infinity.
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5.3. COROLLARY. (Moh-Ephraim theorem [E]). Any algebraic pIane curve,

which has only one place at infinity, is regular at infinity.

PROOF: Let 4 be a "component at infinity” of the affine polar curve of P~1(0).
By Lemma 4.2, its corresponding polar quotient has the form
_ (P7H0)7)

(z2=07)
Let T be the irreducible component of the affine polar curve of P~1(0) which
contains . Then I' has not any other point at infinity because P~1(0) (and
hence P~1(¢) Vt) has only one point at infinity. So we have (P~1(0).) =
(P-1(0).T)s and (z = 0.7) = deg T (degree of T'). Hence

(P71(0).D)eo
oo e _—
v-y (P/’Y)_d degI‘

v(P/v)deg T = d.deg T' — (P=1(0).T)oo

vP(P[y)=4d

By Bezout theorem d.deg T is the total intersection number in P? of P=1(0)
and T, so it is greater than (P~1(0).T')e in general. Hence' v°°(P/fy) > 0 and
the corollary is proved by Theorem 5.1 (iii).
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