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HAMILTON CYCLES IN CUBIC
(4,n)-METACIRCULANT GRAPHS

NGO DAC TAN

Abstract. It is shown that every connected cubic (4, n)-metacirculant graph
has a Hamilton cycle.

1. Introduction

There are only four known nontrivial vertex-transitive graphs which do not
have any Hamiiton cycle. These graphs are the Petersen graph, the Coxeter
graph [8, p 241] and the graphs obtained from them by replacing every vertex
by a triangle. L. Babai [6] has asked whether there are infinitely many such
graphs. C. Thomassen [7, p. 163] has conjectured that there are not. None of
these four graphs is a Cayley graph so that it may be conjectured that every
connécted Cayley graph on a finite group has a Hamilton cycle. This has been
shown to be true at least for abelian groups [9] and for some other special groups
[10, 12].

- The class of (m, n)-metacirculant graphs was introduced in [1] as an inter-
esting class of vertex-transitive graphs which includes ma.njr non-Cayley graphs
and probably further examples of non-hamiltonian graphs. In particular, the
Petersen graph is (2, 5)-metacirculant. It is reasonable to ask [1, 2] whether ev-
ery connected (m,n)—met'acirculént graph which is different than the Potersen
graph has a Hamilton cycle.

There are several papers that study the above question. In [2, 3] an affirma-
tive answer was obtained for prime n. Connected cubic (m,n)-metacirculant
graphs different than the Petersen graph are also proved to be hamiltonian for

m odd [11] and m = 2 [4, 11]. In this paper we will consider the above question
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for connected cubic (4,n)-metacirculants. We will prove that every connected

. cubic (4, n)- metacirculant graph has a Hamilton cycle.

2. Preliminaries
a)(m;, n)-metacirculant graphs -

. The reader is referred to [1] for basic properties of (m,n)- meta,arculant
graphs. Here we will only describe their construction. - ‘

We will denote the ring of integers modulo n by Z, and the multiplicative |
group of units in Z, by Z*. Let m and n be two positive integers, « € /)
g = |m/2], and Sp, S1,. .., S, subsets of Z,, satisfying the following conditions:

(1) 0 ¢ So = ~5o.

(2) a™Sr = Srfor 0 <r < p.

(3) I s is even, then a*S, = —S.

Then we define the (m, n)-metacirculant graph G = M C(m n, o , S0, 51,

S,) to be the graph with vertex-set V(G) = {v} |1 € Zm;j € Zn} and edge—se_t
E(G) = {viojt" |0 <1 < p; ¢ € Zm; hyj € Zn and (h—j) € &*Sr},
where superscripts and subscripts are always reduced modulo m and modulo n,
respectively. '

The set Vi = {v} | j € Z,} is called the¢- -th block of vertices of G

The above construction is designed to allow the permutations p and 7 on
V(G) defined by p(vi) = viy, and 7(v] ) = vih! to be automorphisms of G. It
is clear that the group < p, > generated by p and 7 is transitiye on V(G). So

G is vertex-transitive. &

b) Quotient graphs

The concept of quotient graphs with respect to a semlregular automorphism
was introduced in [5]

A permutation 8 is said to be semlregular if all cycles in the dls_]omt cycle
decomposition of 8 have the same length. If a graph G has a semiregular
a)utbfnorphism B, then the quotient graph G/B is defined as follows. The vertices
of G/B are the orbits of the subgroup < # > generated by § and two such
vertices are adjacent if and only if there is an edge in G joining a vertex of a

corresponding orbit to a vertex in the other orbit.
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Because of the action of §, a vertex of G/# corresponds to a circulant sub-
graph of G and an edge of G/B corresponds to a perfect matching between the
corresponding orbits of < 8 >.

Let 3 be of order ¢ and G°, Gl,-. .., G"* be the subgraphs induced by G on
the orbits of < B >. Let vi,vi,...,vi_; be a cyclic labelling of the vertices of
G* under the action of § and C = G°GiGY...G"G® be a cycle of G/8. We
consider paths of G érising from a lifting of C. Such a path starts from v§ and
goes to a vertex vl of G°, then to a vertex vg of GY following G* in C, and
so op until it returns to a vertex v of Gy. The set of all paths that can be

constructed in this way is called [5] the coil of C and is denoted by coil (C).

LEMMA 1. Let ¢t.-be the order of a semiregular automorphism B of a graph
G and G° be the subgraph induced by G on an orbit of < # >. If there
exists a Hamilton cycle C' in G/f such that coil (C) contains a path P whose
terminal vertices are distance d apart in G® where P starts and terminates and
ged (d,t) =1, then G has a Hamilton cycle. '

PROOF: Let C = G°G'GY...G"G® be a Hamilton cycle of G/8 and P =
v§vivi ... v7vY a path in coil (C) with ged (d,t) = 1. Denote by P(v?) the path
vgv;+evb+e Vo oSince ged(d,t) = 1, the vertices vg,vgd,vgd,...,v?t_l)d,
v]; = vy are all the vertices of G°. Therefore P(v))P(v$)P(v3,). .. P(v{,-1)a)v0
is a Hamilton cycle of G. '

¢} Condition for connectedness

LEMMA 2. Let G = MC(4,n,«a SU,SI,Sg) be a (4, n) -metacirculant graph
such that So = 0,51 = {s} with0 < s < n and Sy = {k} with 0 < k < n. Then
G is connected if and only if ged (k— s(1+ a) n)=1.

PROOF: To begin with, we note that if va(l) and v} (2) of the block V! are joined
by a path ?;(1)”2(1)"&1)”;(2): then a(2) = a(l) + as + a?s+ ok = a(l) —alk —
(14 a))( mod n), i.e., they are distance f apart in V! with f to be a multiple
of (k—s(1+¢)). Similarly, if ”;('1) and ”2(2) of the block V! are joined by a path

Va(1)Va) Vh1)Vecay then a(2) = a(l) + ak — a?s - as = a(1) + a(k — s(1 + a))
(mod n), i.e., they are also distance f apart in V! with f to be a mu1t1ple of
(k — 3(1 + «)). Denote byr Q( a(,)) the path va(z)vb(z)vc(:) and by Q(Ua(z)) the
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path vi(i)vg(i)vg(i). Let vy and v;( 2) be two vertices of V1! joined by a path
Q not containing any vertices of V%, Then it is not difficult to see that @ has

either the form
Q= @(’01(1).)6(03;(2)) e Qvaa—1y)Ve(a)

or the form B _ o
Q= é(”i(n)é(”i(z)) oy é(vi(d—n)”i(d)-
Therefore, they are distance f apart in V! with f to be a multiple of (k—s(1 +
@)). Similar conclusions are also true for vertices from the block V2 and the
block V3.
Assume that ged (& - s(1 + a),n) = e > 1. Consider a path

_ .0 (1) i(2) i(h—1) o0
P = Va1)Va(2) * * * Ya(h—1)Ya(k)

such that every vi((?) is not a vertex of V. Then P.must be of one of the types
listed in Table 1. By the remarks in the preceding paragraph we can calculate
a(h), the subscript of vg( jy of P. These detailed calculations for the respective
cases are given in Table 2.

From Table 2 we see that in such a path P, the vertex v) is joined to vJ with
a to be a multiple of (k—s(1+a)). Therefore, among vertices of V?°, v] is joined
by a path in G only to a vertex v? with a to be a multiple of (k — s(1 + a)). .
Since ged(k~s(1+a),n) = e > 1, among vertices of V?, there exists a vertex v?
which is not joined to v§ by any path in G. This means that G is nof connected.

Conversely, assume that ged (k —s(1+ a),n) = 1. Let -

0 0,2 1
R(va) = vav(a+k)v(a+k—as)v?a+k-—s(1+a))'

Then we can. join vg to _v'(ok—s(l-l-_o-)) by R(vg),v?k_s(1+.q)) to Ugék-,s(\1+a)) by
R(U?k—S(I-ka))) ? vg(k—s(l-{-a)) t.o Ug(k-s(l-{-a)) by R(vg(k—s(1+a)))? e Therfafore,
every vertex of V° can be joined to v by a path in G because ged(k — s(1 +

~a),n) = 1. Now we can easily see that G is connnected. Lemma 2 is proved.
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1. P =vgvg(qy - Vagao1yVacay

2. P= vgvi(l) .- -U;(h—z)vz(h—l)vg(h)
3. P= vf,’v;(l) e U;(h—s)”zth—ﬂ”z(h-l)”g(h)
4 P = vl Vg im1yViay
5. P =vlvl, ..v;(h_3)v2(h..2)vg(h—1)”2(h)
6. P=vjvgyy . Varhe1)Va(n)
7. P =vgv50) - V(o9 Va(h-1)?ach)
8. P =vgvg() -+ Va(he3)Pa(h-2a(h—1)V s (h)
9. P =wfvy) Vit sy Vach-1)%acn)
10. P =0gv,y) - - Vg(h_3)Va(h—2)Vach—1)Vach)
11. P = vgvﬁ(l) . —'?’2(h~1)”g(h)
12. P = vgvg(l) . vj(h_2)v§(h_1)“g(h)
13. P = vg‘vﬁ(l) . ..vg(h_”vz(h_g)vi(h_z)”g(h)
14 P = vQog(sy - Vg (honyVa(hon)Vaqny
15, P = vgvg(l) .. .vz(h_3)vi(h_2)vﬁ(h_1)”2(h)

Table 1. Types of P

3. Main result

The purpose of this section is to prove the following result.

THEOREM 1. Let G be a connected cubic (4, n)—métacifculant graph. Then G

possesses a Hamilton cycle.

PROOF: Let G = MC(4,'h,a, S0, 51,52) be a connected cubic (4, n)-metacir-
culant graph. Then 4 divides the order 4n of G. But 4 does not divide 10
which is the order of the Petersen graph. So if Sy # @, then the graph G has a
Hamilton cycle [11].

We assume now that Sy = §. Since G is a cubic (4, n)-metacirculant graph,

only the following cases may happen:
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1.a(h)=s+ filk—s(lta))—-s= fi(k - s(1 + @))( mod n)
2. a(h) = s+ fa(k—s(1+ a)) +as — k= {fr — 1)(k — s(1 + a))( mod n)

.a(h)"=’s+f3(k—s(1+a))+as+azs+d3sE

= (fs — a® — 1)(k — 5(1 + a))( mod n)

ca(hy=s+ falk—s(1+ @) +ak+o’s=

=(fs —a® +a— 1)k —s(1+a))( mod n)

ca(h)=s+ fs(k-s(l+a))+ak—a’s—k=

= (fs + o — 1)(k — s(1 + a))( mod n)

6. a(h)=k+ fo(k—s(1+a)) -k = fo(k — s(1+ a)) mod n)

9.

10.

11.
12.

18.
14,

15.

caWy=k+ frilk—s(l+a))—as—s=

= (fr + 1)(k — s(1 + a))( mod n)

. a(h)Ek+f3(k—s(1+a))-—as+ak+a3sE

= (fs — a? + a)(k — s(1 4+ a))( mod n)
alh) = k+ folk —s(1+a))+a*s+a’s=
= (fo — a®)(k — 5(1 +@))( mod n)
a(h) = k+ fiolk —s(1+a)) +e’s —ak—s=
= (f10 — & + 1)(k — s(1 4 a))( mod n)
a(h) = —ads + fua(k —s(1+ a)) +a®s = fu(k - s(1 + «))( mod n)
a(h) = —a®s + fia(k—s(1+a)) —a’s —k =
= (fuz + D)k — (1 + a))( mod n)
a(h) = —a®s + frs(k - s{l+a))—a’s—as—s=
| = (fis + o + 1)(k — s(1 + @))( mod n)
alh) = —als + fuulk—s(l+a)) —ak—s=
=(fiu+aol—at+1)(k—s(l+ a))( mod n)
a(h) = —a®s + fis(k —s(1 + o)) —ak+as—~k=
= (fis + & — a)(k — s(1 + ))( mod n)

Table 2. Values of a(h) for réépective cases of P
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1) So=0,51=0and| S |=3.
2) So=0,|S1|=1and |5 |=1

Case 1 does not occur because G is connected. ‘

Consider now Case 2. Let S = {s} with 0<s<nandS; = {k} with
0 < k < n. Let p be the automorphism of G defined as in Section 2, ie.,
p(v;) = vj- 41 for every vertex vj- € V(G). Then p is semiregular because p =
(0309 ... v8_)(vdvl...vl_)(vdvi.. . vl )(v§v]...v3_,) is the disjoint cycle
decomposition of p and all these four cycles have the same length n. Since any
power of a semiregular automorphism is semiregular, this implies that Pt s
also semiregular. Thus, we can construct the quotient graph G/p*~! of G. It is
not difficult to verify that the quotient graph G//p®~! is isomorphic to the (4,7)-
metacirculant graph G = MC(4 I, @, 90,91, 92), where i = ged (a—1 n) 1=
a@ = o mod 7), S = @,Sl = {5} with § = s( mod n) and 0 < 5 < 7 and
S, = {k} with & = k( mod %) and 0 < k < 7. Therefore, we can from now on
identify G'/p®~! with G and in order to avoid the confusion between vertices of
G and G we assume that V(G) = {w} | i = 0,1,2,3, and j € Zz}. From the

connectedness of G it follows that G is connected. by Lemma 2,
ged (B—3(1+a),7) = ged (k—23,7) = L. (1)

By the definition of (4,7 )-metacirculant g,raphs we have @%k = —k( mod %) &
2k = 0( mod 7). This means that '

2k = uR (2)
for some integer u. ,

Assume first that n is odd. Then 7 = ged(a — 1,7) is odd.. If k& were
not equal to 0, then in (2) u might be even and greater than 0. Therefore,
from (2) it would follow that k¥ = (u/2)7 with »/2 > 1. This would con-
tradict & < 7. Thus, k = .0. From this and (1) we have ged(25, n)y = 1.
Therefore, gcd(45,7) = 1 and in this subcase G possesses the Hamilton cycle

= Q(wg)Q(wi5)Q(wgs) - Q(w(n 1)a3)» Where Qw}) = 1u?w}+3w§+23w§+3-§.

Let 7 and 7 be the automorphisms of G defined by p(w}) = wjy, and
T(w}) = w;'-'"l for every wj- € V(G). Set 7 = p°7. Then ¥ is an automorphism
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of G and 7(wf;-) = ﬁsf('wj) = ﬁg(wj-“) = w;'_';_}a- That is, 7¥ maps every vertex
of G to its following vertex in C;. This means that G is a circulant graph.
Therefore, since & in cubic, it is not difficult to see that that w) is adjacent to
wia (= wi) and wy,; (= wk J) is adjacent to wi;; (= w_3). So we can
construct the following Hamilton cycle C' of G from C; (see Figure 1). Start
C at w). Extend it by going around C; from w) in the direction of wi until
reaching wl,;_5. Take now the edge wjy;w,; 3 and then proceed C by going
around C) from wl,,_ in the direction of w},; ,5 until reaching w35 To

return to w) we take the edge w3;;wg-

Fig. 1

Let P be the path of coil (C) which starts at v). This path terminates at
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v? with

a=s+as+als+alsts+-+afststak—efs—as—s—als— ..,

—s—a’s—o*s—k (mod n),

where the numbers of s and (—a?s) are |[7/2] +1, while the numbers of as, o?s,

a®s,—s,—as, —a3s are |7/2] and the numbers of ak and —k are 1. Therefore,

a=s—cols+ak—k=s(l-a)l+a)+kla—-1)

=(a—-1)k—s(1+a))=(a~-1)d (modn),

where d = (k — s(1 +a)). It is not difficult to see that p*~! has the order
t = n/m. Since G is connected, by Lemma 2, we have ged(k — s(1 +a),n)=1.
Therefore, ged (d,t) = 1. By Lemma 1, G has a Hamiltan cycle.

Assume now that n is even. Then a must be odd and therefore 7 = ged(a —

1,n) is even. If k were equal to 0, then from @ = 1 it would follow that 2

would divide ged (% — 5(1 4+ @),7) = ged(25,7). This would contradict (1).
Thus, k # 0. From (2) and k < 7 it follows that k¥ = 7/2. Moreover, because
of (1), k¥ = 7/2 must be odd. From (1) it also follows that ged(2s,7/2) = 1.
Hence gcd(43,7%) = 2. Consequently, C; = Q(wd)Q(wl5)Q(vds). .. Q(wlas_43)
and €y = Q(w)Q(w? 5)Q(w] 1 55) - .. Qw515 _43) are cycles of G. Moreover,
V(C)NV(C;) =0 and V(G) = V(C1) U V(Cs). Since @ = 1 and k = 12/2, the
(= wy_3) of
Ci is adjacent to w%i /2)-3 of C;. So we can construct the following Hamilton
cycle C of G from C; and C; (see Figure 2). Start C' at w). Extend it by

going around the cycle'Cy from w} in the direction of wl until reaching w3, 3

vertex wg of Cy is adjacent to wfz ), of Cz and the vertex wgﬁg_g

Proceed it by taking the edge w},;_sw{z/y)_5 and then by going around the
cycle Cs from w%i /2)_3 in the direction of 'w?-ﬁ 12)—23 until reaching w%- /2" Finally,
to return to wy we take the edge w2 ,wy.

Let P be the path of coil {C) which starts at vJ. This path terminates at
v0 with

_ 2
a=s+tas+a’s+alststotstastalstals—s—als—a's—as—s

—..—a’s—a’s+ o’k (mod n),
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..

Fig. 2

Where the numbers of s,as,ols, —s,—a’s,—a’s are (7/2), while the numbers

of a3s, —as are (7/2) — 1 and the numbers of ok, ok are 1. Therefore,
@ =as—o’s + o’k + otk =as(l - a?) — ak + o’k

= a(a — 1)(k — s(1 + @)) = (e — 1)d( mod n),

- where d = a(k — s(1 + @)). The automorphism p*~! has the order t = n/mn.
By definition, ged (@,n) =1 and since G is connected, by Lemma 2, ged (k—

s(1 + a),n) = 1. Therefore, ged (d, ) =1 'By Lemma 1, G has a Hamilton
cycle . The proof of Theorem 1 is completed.
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