HAMILTON CYCLES IN CUBIC (4, n)-METACIRCULANT GRAPHS

NGO DAC TAN

Abstract. It is shown that every connected cubic (4, n)-metacirculant graph has a Hamilton cycle.

1. Introduction

There are only four known nontrivial vertex-transitive graphs which do not have any Hamilton cycle. These graphs are the Petersen graph, the Coxeter graph [8, p. 241] and the graphs obtained from them by replacing every vertex by a triangle. L. Babai [6] has asked whether there are infinitely many such graphs. C. Thomassen [7, p. 163] has conjectured that there are not. None of these four graphs is a Cayley graph so that it may be conjectured that every connected Cayley graph on a finite group has a Hamilton cycle. This has been shown to be true at least for abelian groups [9] and for some other special groups [10, 12].

The class of (m, n)-metacirculant graphs was introduced in [1] as an interesting class of vertex-transitive graphs which includes many non-Cayley graphs and probably further examples of non-hamiltonian graphs. In particular, the Petersen graph is (2, 5)-metacirculant. It is reasonable to ask [1, 2] whether every connected (m, n)-metacirculant graph which is different than the Petersen graph has a Hamilton cycle.

There are several papers that study the above question. In [2, 3] an affirmative answer was obtained for prime n. Connected cubic (m, n)-metacirculant graphs different than the Petersen graph are also proved to be hamiltonian for m odd [11] and m = 2 [4, 11]. In this paper we will consider the above question

for connected cubic (4, n)-metacirculants. We will prove that every connected cubic (4, n)- metacirculant graph has a Hamilton cycle.

2. Preliminaries

a)(m, n)-metacirculant graphs

The reader is referred to [1] for basic properties of (m, n)-metacirculant graphs. Here we will only describe their construction.

We will denote the ring of integers modulo n by Z_n and the multiplicative group of units in Z_n by Z_n^* . Let m and n be two positive integers, $\alpha \in Z_n^*$, $\mu = \lfloor m/2 \rfloor$, and $S_0, S_1, \ldots, S_{\mu}$ subsets of Z_n satisfying the following conditions:

- (1) $0 \notin S_0 = -S_0$.
- (2) $\alpha^m S_r = S_r$ for $0 \le r \le \mu$.
- (3) If m is even, then $\alpha^{\mu}S_{\mu} = -S_{\mu}$.

Then we define the (m, n)-metacirculant graph $G = MC(m, n, \alpha, S_0, S_1, \ldots, S_{\mu})$ to be the graph with vertex-set $V(G) = \{v_j^i \mid i \in Z_m; j \in Z_n\}$ and edge-set $E(G) = \{v_j^i v_h^{i+r} \mid 0 \le r \le \mu; i \in Z_m; h, j \in Z_n \text{ and } (h-j) \in \alpha^i S_r\}$, where superscripts and subscripts are always reduced modulo m and modulo n, respectively.

The set $V^i = \{v_i^i \mid j \in Z_n\}$ is called the *i*-th block of vertices of G.

The above construction is designed to allow the permutations ρ and τ on V(G) defined by $\rho(v_j^i) = v_{j+1}^i$ and $\tau(v_j^i) = v_{\alpha j}^{i+1}$ to be automorphisms of G. It is clear that the group $\langle \rho, \tau \rangle$ generated by ρ and τ is transitive on V(G). So G is vertex-transitive.

b) Quotient graphs

The concept of quotient graphs with respect to a semiregular automorphism was introduced in [5].

A permutation β is said to be semiregular if all cycles in the disjoint cycle decomposition of β have the same length. If a graph G has a semiregular automorphism β , then the quotient graph G/β is defined as follows. The vertices of G/β are the orbits of the subgroup $<\beta>$ generated by β and two such vertices are adjacent if and only if there is an edge in G joining a vertex of a corresponding orbit to a vertex in the other orbit.

<

Because of the action of β , a vertex of G/β corresponds to a circulant subgraph of G and an edge of G/β corresponds to a perfect matching between the corresponding orbits of $< \beta >$.

Let β be of order t and G^0, G^1, \ldots, G^h be the subgraphs induced by G on the orbits of $<\beta>$. Let $v_0^i, v_1^i, \ldots, v_{t-1}^i$ be a cyclic labelling of the vertices of G^i under the action of β and $C = G^0G^iG^j \ldots G^rG^0$ be a cycle of G/β . We consider paths of G arising from a lifting of G. Such a path starts from v_0^0 and goes to a vertex v_a^i of G^i , then to a vertex v_b^j of G^j following G^i in G, and so on until it returns to a vertex v_d^0 of G_0 . The set of all paths that can be constructed in this way is called [5] the coil of G and is denoted by coil G^i .

LEMMA 1. Let t be the order of a semiregular automorphism β of a graph G and G^0 be the subgraph induced by G on an orbit of $\langle \beta \rangle$. If there exists a Hamilton cycle C in G/β such that coil (C) contains a path P whose terminal vertices are distance d apart in G^0 where P starts and terminates and $\gcd(d,t)=1$, then G has a Hamilton cycle.

PROOF: Let $C = G^0G^iG^j \dots G^rG^0$ be a Hamilton cycle of G/β and $P = v_0^0v_a^iv_b^j \dots v_c^rv_d^0$ a path in coil (C) with $\gcd(d,t)=1$. Denote by $P(v_e^0)$ the path $v_e^0v_{a+e}^iv_{b+e}^j \dots v_{c+e}^r$. Since $\gcd(d,t)=1$, the vertices $v_d^0, v_{2d}^0, v_{3d}^0, \dots, v_{(t-1)d}^0, v_{td}^0 = v_0^0$ are all the vertices of G^0 . Therefore $P(v_0^0)P(v_d^0)P(v_{2d}^0) \dots P(v_{(t-1)d}^0)v_0^0$ is a Hamilton cycle of G.

c) Condition for connectedness

LEMMA 2. Let $G = MC(4, n, \alpha, S_0, S_1, S_2)$ be a (4, n) -metacirculant graph such that $S_0 = \emptyset$, $S_1 = \{s\}$ with $0 \le s < n$ and $S_2 = \{k\}$ with $0 \le k < n$. Then G is connected if and only if $\gcd(k - s(1 + \alpha), n) = 1$.

PROOF: To begin with, we note that if $v_{a(1)}^1$ and $v_{a(2)}^1$ of the block V^1 are joined by a path $v_{a(1)}^1v_{b(1)}^2v_{c(1)}^3v_{a(2)}^1$, then $a(2)\equiv a(1)+\alpha s+\alpha^2 s+\alpha^3 k\equiv a(1)-\alpha(k-s(1+\alpha))(\mod n)$, i.e., they are distance f apart in V^1 with f to be a multiple of $(k-s(1+\alpha))$. Similarly, if $v_{a(1)}^1$ and $v_{a(2)}^1$ of the block V^1 are joined by a path $v_{a(1)}^1v_{c(1)}^3v_{b(1)}^2v_{a(2)}^1$, then $a(2)\equiv a(1)+\alpha k-\alpha^2 s-\alpha s\equiv a(1)+\alpha(k-s(1+\alpha))$ (mod n), i.e., they are also distance f apart in V^1 with f to be a multiple of $(k-s(1+\alpha))$. Denote by $\overline{Q}(v_{a(i)}^1)$ the path $v_{a(i)}^1v_{b(i)}^2v_{c(i)}^3$ and by $\overline{\overline{Q}}(v_{a(i)}^1)$ the

path $v_{a(i)}^1 v_{c(i)}^3 v_{b(i)}^2$. Let $v_{a(1)}^1$ and $v_{a(d)}^1$ be two vertices of V^1 joined by a path Q not containing any vertices of V^0 . Then it is not difficult to see that Q has either the form

$$Q = \overline{Q}(v_{a(1)}^1)\overline{Q}(v_{a(2)}^1)\dots\overline{Q}(v_{a(d-1)}^1)v_{a(d)}^1$$

or the form

$$Q = \overline{\overline{Q}}(v_{a(1)}^1)\overline{\overline{Q}}(v_{a(2)}^1)\dots\overline{\overline{Q}}(v_{a(d-1)}^1)v_{a(d)}^1.$$

Therefore, they are distance f apart in V^1 with f to be a multiple of $(k-s(1+\alpha))$. Similar conclusions are also true for vertices from the block V^2 and the block V^3 .

Assume that $gcd(k - s(1 + \alpha), n) = e > 1$. Consider a path

$$P = v_0^0 v_{a(1)}^{i(1)} v_{a(2)}^{i(2)} \dots v_{a(h-1)}^{i(h-1)} v_{a(h)}^0$$

such that every $v_{a(x)}^{i(x)}$ is not a vertex of V^0 . Then P must be of one of the types listed in Table 1. By the remarks in the preceding paragraph we can calculate a(h), the subscript of $v_{a(h)}^0$ of P. These detailed calculations for the respective cases are given in Table 2.

From Table 2 we see that in such a path P, the vertex v_0^0 is joined to v_a^0 with a to be a multiple of $(k-s(1+\alpha))$. Therefore, among vertices of V^0 , v_0^0 is joined by a path in G only to a vertex v_a^0 with a to be a multiple of $(k-s(1+\alpha))$. Since $\gcd(k-s(1+\alpha),n)=e>1$, among vertices of V^0 , there exists a vertex v_a^0 which is not joined to v_0^0 by any path in G. This means that G is not connected.

Conversely, assume that $gcd(k-s(1+\alpha),n)=1$. Let

$$R(v_a^0) = v_a^0 v_{(a+k)}^2 v_{(a+k-\alpha s)}^1 v_{(a+k-s(1+\alpha))}^0.$$

Then we can join v_0^0 to $v_{(k-s(1+\alpha))}^0$ by $R(v_0^0), v_{(k-s(1+\alpha))}^0$ to $v_{2(k-s(1+\alpha))}^0$ by $R(v_{(k-s(1+\alpha))}^0)$, $v_{2(k-s(1+\alpha))}^0$ to $v_{3(k-s(1+\alpha))}^0$ by $R(v_{2(k-s(1+\alpha))}^0)$,.... Therefore, every vertex of V^0 can be joined to v_0^0 by a path in G because $\gcd(k-s(1+\alpha), n) = 1$. Now we can easily see that G is connected. Lemma 2 is proved.

1.
$$P = v_0^0 v_{a(1)}^1 \dots v_{a(h-1)}^1 v_{a(h)}^0$$

2. $P = v_0^0 v_{a(1)}^1 \dots v_{a(h-2)}^1 v_{a(h-1)}^2 v_{a(h-1)}^0 v_{a(h)}^0$
3. $P = v_0^0 v_{a(1)}^1 \dots v_{a(h-3)}^1 v_{a(h-2)}^2 v_{a(h-1)}^3 v_{a(h)}^0$
4. $P = v_0^0 v_{a(1)}^1 \dots v_{a(h-2)}^1 v_{a(h-1)}^3 v_{a(h)}^0$
5. $P = v_0^0 v_{a(1)}^1 \dots v_{a(h-3)}^1 v_{a(h)}^3 v_{a(h-1)}^3 v_{a(h)}^0$
6. $P = v_0^0 v_{a(1)}^2 \dots v_{a(h-1)}^2 v_{a(h)}^0$
7. $P = v_0^0 v_{a(1)}^2 \dots v_{a(h-2)}^2 v_{a(h-1)}^1 v_{a(h)}^0$
8. $P = v_0^0 v_{a(1)}^2 \dots v_{a(h-2)}^2 v_{a(h-1)}^3 v_{a(h-1)}^3 v_{a(h)}^0$
9. $P = v_0^0 v_{a(1)}^2 \dots v_{a(h-3)}^2 v_{a(h-1)}^3 v_{a(h)}^0$
10. $P = v_0^0 v_{a(1)}^3 \dots v_{a(h-3)}^3 v_{a(h-2)}^3 v_{a(h-1)}^3 v_{a(h)}^0$
11. $P = v_0^0 v_{a(1)}^3 \dots v_{a(h-3)}^3 v_{a(h-2)}^3 v_{a(h-1)}^3 v_{a(h)}^0$
12. $P = v_0^0 v_{a(1)}^3 \dots v_{a(h-3)}^3 v_{a(h-2)}^2 v_{a(h-1)}^3 v_{a(h)}^0$
13. $P = v_0^0 v_{a(1)}^3 \dots v_{a(h-3)}^3 v_{a(h-2)}^2 v_{a(h-1)}^3 v_{a(h)}^0$
14. $P = v_0^0 v_{a(1)}^3 \dots v_{a(h-2)}^3 v_{a(h-1)}^3 v_{a(h)}^0$
15. $P = v_0^0 v_{a(1)}^3 \dots v_{a(h-3)}^3 v_{a(h-2)}^1 v_{a(h)}^3$

Table 1. Types of P

3. Main result

The purpose of this section is to prove the following result.

THEOREM 1. Let G be a connected cubic (4, n)-metacirculant graph. Then G possesses a Hamilton cycle.

PROOF: Let $G = MC(4, n, \alpha, S_0, S_1, S_2)$ be a connected cubic (4, n)-metacirculant graph. Then 4 divides the order 4n of G. But 4 does not divide 10 which is the order of the Petersen graph. So if $S_0 \neq \emptyset$, then the graph G has a Hamilton cycle [11].

We assume now that $S_0 = \emptyset$. Since G is a cubic (4, n)-metacirculant graph, only the following cases may happen:

1.
$$a(h) \equiv s + f_1(k - s(1 + \alpha)) - s \equiv f_1(k - s(1 + \alpha)) \pmod{n}$$
2. $a(h) \equiv s + f_2(k - s(1 + \alpha)) + \alpha s - k \equiv (f_2 - 1)(k - s(1 + \alpha)) \pmod{n}$
3. $a(h) \equiv s + f_3(k - s(1 + \alpha)) + \alpha s + \alpha^2 s + \alpha^3 s \equiv (f_3 - \alpha^2 - 1)(k - s(1 + \alpha)) \pmod{n}$
4. $a(h) \equiv s + f_4(k - s(1 + \alpha)) + \alpha k + \alpha^3 s \equiv (f_4 - \alpha^2 + \alpha - 1)(k - s(1 + \alpha)) \pmod{n}$
5. $a(h) \equiv s + f_5(k - s(1 + \alpha)) + \alpha k - \alpha^2 s - k \equiv (f_5 + \alpha - 1)(k - s(1 + \alpha)) \pmod{n}$
6. $a(h) \equiv k + f_6(k - s(1 + \alpha)) - k \equiv f_6(k - s(1 + \alpha)) \pmod{n}$
7. $a(h) \equiv k + f_7(k - s(1 + \alpha)) - \alpha s - s \equiv (f_7 + 1)(k - s(1 + \alpha)) \pmod{n}$
8. $a(h) \equiv k + f_8(k - s(1 + \alpha)) - \alpha s + \alpha k + \alpha^3 s \equiv (f_8 - \alpha^2 + \alpha)(k - s(1 + \alpha)) \pmod{n}$
9. $a(h) \equiv k + f_9(k - s(1 + \alpha)) + \alpha^2 s + \alpha^3 s \equiv (f_9 - \alpha^2)(k - s(1 + \alpha)) \pmod{n}$
10. $a(h) \equiv k + f_{10}(k - s(1 + \alpha)) + \alpha^2 s - \alpha k - s \equiv (f_{10} - \alpha + 1)(k - s(1 + \alpha)) \pmod{n}$
11. $a(h) \equiv -\alpha^3 s + f_{11}(k - s(1 + \alpha)) + \alpha^3 s \equiv f_{11}(k - s(1 + \alpha)) \pmod{n}$
12. $a(h) \equiv -\alpha^3 s + f_{12}(k - s(1 + \alpha)) \pmod{n}$
13. $a(h) \equiv -\alpha^3 s + f_{13}(k - s(1 + \alpha)) \pmod{n}$
14. $a(h) \equiv -\alpha^3 s + f_{13}(k - s(1 + \alpha)) \pmod{n}$
15. $a(h) \equiv -\alpha^3 s + f_{14}(k - s(1 + \alpha)) \pmod{n}$
16. $a(h) \equiv -\alpha^3 s + f_{14}(k - s(1 + \alpha)) \pmod{n}$
17. $a(h) \equiv -\alpha^3 s + f_{14}(k - s(1 + \alpha)) \pmod{n}$
18. $a(h) \equiv -\alpha^3 s + f_{14}(k - s(1 + \alpha)) \pmod{n}$
19. $a(h) \equiv -\alpha^3 s + f_{14}(k - s(1 + \alpha)) \pmod{n}$
11. $a(h) \equiv -\alpha^3 s + f_{14}(k - s(1 + \alpha)) \pmod{n}$

Table 2. Values of a(h) for respective cases of P

- 1) $S_0 = \emptyset$, $S_1 = \emptyset$ and $|S_2| = 3$.
- 2) $S_0 = \emptyset$, $|S_1| = 1$ and $|S_2| = 1$.

Case 1 does not occur because G is connected.

Consider now Case 2. Let $S_1=\{s\}$ with $0\leq s< n$ and $S_2=\{k\}$ with $0\leq k< n$. Let ρ be the automorphism of G defined as in Section 2, i.e., $\rho(v_j^i)=v_{j+1}^i$ for every vertex $v_j^i\in V(G)$. Then ρ is semiregular because $\rho=(v_0^0v_1^0\ldots v_{n-1}^0)(v_0^1v_1^1\ldots v_{n-1}^1)(v_0^2v_1^2\ldots v_{n-1}^2)(v_0^3v_1^3\ldots v_{n-1}^3)$ is the disjoint cycle decomposition of ρ and all these four cycles have the same length n. Since any power of a semiregular automorphism is semiregular, this implies that $\rho^{\alpha-1}$ is also semiregular. Thus, we can construct the quotient graph $G/\rho^{\alpha-1}$ of G. It is not difficult to verify that the quotient graph $G/\rho^{\alpha-1}$ is isomorphic to the $(4,\overline{n})$ -metacirculant graph $\overline{G}=MC(4,\overline{n},\overline{\alpha},\overline{S}_0,\overline{S}_1,\overline{S}_2)$, where $\overline{n}=\gcd(\alpha-1,n),1=\overline{\alpha}\equiv\alpha\pmod{\overline{n}},\overline{S}_0=\emptyset,\overline{S}_1=\{\overline{s}\}$ with $\overline{s}\equiv s\pmod{\overline{n}}$ and $0\leq \overline{s}<\overline{n}$ and $\overline{S}_2=\{\overline{k}\}$ with $\overline{k}\equiv k\pmod{\overline{n}}$ and $0\leq \overline{k}<\overline{n}$. Therefore, we can from now on identify $G/\rho^{\alpha-1}$ with \overline{G} and in order to avoid the confusion between vertices of G and \overline{G} we assume that $V(\overline{G})=\{w_j^i\mid i=0,1,2,3,\text{ and }j\in Z_{\overline{n}}\}$. From the connectedness of G it follows that \overline{G} is connected. by Lemma 2,

$$\gcd(\overline{k} - \overline{s}(1 + \overline{\alpha}), \overline{n}) = \gcd(\overline{k} - 2\overline{s}, \overline{n}) = 1. \tag{1}$$

By the definition of $(4, \bar{n})$ -metacirculant graphs, we have $\bar{\alpha}^2 \bar{k} \equiv -\bar{k} \pmod{\bar{n}} \Leftrightarrow 2\bar{k} \equiv 0 \pmod{\bar{n}}$. This means that

$$2\overline{k} = u\overline{n} \tag{2}$$

for some integer u.

Assume first that n is odd. Then $\overline{n}=\gcd(\alpha-1,n)$ is odd. If \overline{k} were not equal to 0, then in (2) u might be even and greater than 0. Therefore, from (2) it would follow that $\overline{k}=(u/2)\overline{n}$ with $u/2\geq 1$. This would contradict $\overline{k}<\overline{n}$. Thus, $\overline{k}=0$. From this and (1) we have $\gcd(2\overline{s},\overline{n})=1$. Therefore, $\gcd(4\overline{s},\overline{n})=1$ and in this subcase \overline{G} possesses the Hamilton cycle $C_1=Q(w_0^0)Q(w_{4\overline{s}}^0)Q(w_{8\overline{s}}^0)\dots Q(w_{(\overline{n}-1)4\overline{s}}^0)$, where $Q(w_j^0)=w_j^0w_{j+\overline{s}}^1w_{j+2\overline{s}}^2w_{j+3\overline{s}}^3$. Let $\overline{\rho}$ and $\overline{\tau}$ be the automorphisms of \overline{G} defined by $\overline{\rho}(w_j^i)=w_{j+1}^i$ and $\overline{\tau}(w_j^i)=w_j^{i+1}$ for every $w_j^i\in V(\overline{G})$. Set $\overline{\gamma}=\overline{\rho}^{\overline{s}}\overline{\tau}$. Then $\overline{\gamma}$ is an automorphism

of \overline{G} and $\overline{\gamma}(w_j^i) = \overline{\rho}^{\overline{s}} \overline{\tau}(w_j^i) = \overline{\rho}^{\overline{s}}(w_j^{i+1}) = w_{j+\overline{s}}^{i+1}$. That is, $\overline{\gamma}$ maps every vertex of \overline{G} to its following vertex in C_1 . This means that \overline{G} is a circulant graph. Therefore, since \overline{G} in cubic, it is not difficult to see that that w_0^0 is adjacent to $w_{2\bar{n}\bar{s}}^2(=w_0^2)$ and $w_{2\bar{n}\bar{s}}^1(=w_{n-\overline{s}}^1)$ is adjacent to $w_{4\bar{n}\bar{s}}^3(=w_{n-\overline{s}}^3)$. So we can construct the following Hamilton cycle C of \overline{G} from C_1 (see Figure 1). Start C at w_0^0 . Extend it by going around C_1 from w_0^0 in the direction of $w_{\bar{s}}^1$ until reaching $w_{2\bar{n}\bar{s}}^1$. Take now the edge $w_{2\bar{n}\bar{s}}^1$ and then proceed C by going around C_1 from $w_{4\bar{n}\bar{s}-\bar{s}}^3$ in the direction of $w_{4\bar{n}\bar{s}-2\bar{s}}^2$ until reaching $w_{2\bar{n}\bar{s}}^2$. To return to w_0^0 we take the edge $w_{2\bar{n}\bar{s}}^2$ w_0^0 .

Fig. 1

Let P be the path of coil (C) which starts at v_0^0 . This path terminates at

 v_a^0 with

$$a \equiv s + \alpha s + \alpha^2 s + \alpha^3 s + s + \dots + \alpha^3 s + s + \alpha k - \alpha^2 s - \alpha s - s - \alpha^3 s - \dots$$
$$-s - \alpha^3 s - \alpha^2 s - k \pmod{n},$$

where the numbers of s and $(-\alpha^2 s)$ are $\lfloor \overline{n}/2 \rfloor + 1$, while the numbers of αs , $\alpha^2 s$, $\alpha^3 s$, -s, $-\alpha s$, $-\alpha^3 s$ are $\lfloor \overline{n}/2 \rfloor$ and the numbers of αk and -k are 1. Therefore,

$$a \equiv s - \alpha^2 s + \alpha k - k \equiv s(1 - \alpha)(1 + \alpha) + k(\alpha - 1)$$
$$\equiv (\alpha - 1)(k - s(1 + \alpha)) \equiv (\alpha - 1)d \pmod{n},$$

where $d = (k - s(1 + \alpha))$. It is not difficult to see that $\rho^{\alpha - 1}$ has the order $t = n/\overline{n}$. Since G is connected, by Lemma 2, we have $\gcd(k - s(1 + \alpha), n) = 1$. Therefore, $\gcd(d, t) = 1$. By Lemma 1, G has a Hamilton cycle.

Assume now that n is even. Then α must be odd and therefore $\overline{n} = \gcd(\alpha - 1, n)$ is even. If \overline{k} were equal to 0, then from $\overline{\alpha} = 1$ it would follow that 2 would divide $\gcd(\overline{k} - \overline{s}(1 + \overline{\alpha}), \overline{n}) = \gcd(2\overline{s}, \overline{n})$. This would contradict (1). Thus, $\overline{k} \neq 0$. From (2) and $\overline{k} < \overline{n}$ it follows that $\overline{k} = \overline{n}/2$. Moreover, because of (1), $\overline{k} = \overline{n}/2$ must be odd. From (1) it also follows that $\gcd(2\overline{s}, \overline{n}/2) = 1$. Hence $\gcd(4\overline{s}, \overline{n}) = 2$. Consequently, $C_1 = Q(w_0^0)Q(w_{4\overline{s}}^0)Q(w_{8\overline{s}}^0)\dots Q(w_{2n\overline{s}-4\overline{s}}^0)$ and $C_2 = Q(w_1^0)Q(w_{1+4\overline{s}}^0)Q(w_{1+8\overline{s}}^0)\dots Q(w_{1+2n\overline{s}-4\overline{s}}^0)$ are cycles of G. Moreover, $V(C_1) \cap V(C_2) = \emptyset$ and $V(\overline{G}) = V(C_1) \cup V(C_2)$. Since $\overline{\alpha} = 1$ and $\overline{k} = \overline{n}/2$, the vertex w_0^0 of C_1 is adjacent to $w_{(\overline{n}/2)-\overline{s}}^1$ of C_2 and the vertex $w_{2n\overline{s}-\overline{s}}^3 = (w_{n-3}^3)$ of C_1 is adjacent to $w_{(\overline{n}/2)-\overline{s}}^1$ of C_2 . So we can construct the following Hamilton cycle C of \overline{G} from C_1 and C_2 (see Figure 2). Start C at w_0^0 . Extend it by going around the cycle C_1 from w_0^0 in the direction of $w_{\overline{s}}^1$ until reaching $w_{2n\overline{s}-\overline{s}}^3$. Proceed it by taking the edge $w_{2n\overline{s}-\overline{s}}^2$ until reaching $w_{2n\overline{s}-\overline{s}}^2$. Finally, to return to w_0^0 we take the edge $w_{n/2}^2$ w_0^0 .

Let P be the path of coil (C) which starts at v_0^0 . This path terminates at v_a^0 with

$$a \equiv s + \alpha s + \alpha^2 s + \alpha^3 s + s + \dots + s + \alpha s + \alpha^2 s + \alpha^3 s - s - \alpha^3 s - \alpha^2 s - \alpha s - s$$
$$-\dots - \alpha^3 s - \alpha^2 s + \alpha^2 k \pmod{n},$$

Fig. 2

where the numbers of $s, \alpha s, \alpha^2 s, -s, -\alpha^2 s, -\alpha^3 s$ are $(\overline{n}/2)$, while the numbers of $\alpha^3 s, -\alpha s$ are $(\overline{n}/2) - 1$ and the numbers of $\alpha^3 k, \alpha^2 k$ are 1. Therefore,

$$a \equiv \alpha s - \alpha^3 s + \alpha^3 k + \alpha^2 k \equiv \alpha s (1 - \alpha^2) - \alpha k + \alpha^2 k$$
$$\equiv \alpha (\alpha - 1)(k - s(1 + \alpha)) \equiv (\alpha - 1)d(\bmod n),$$

where $d = \alpha(k - s(1 + \alpha))$. The automorphism $\rho^{\alpha - 1}$ has the order $t = n/\overline{n}$. By definition, $\gcd(\alpha, n) = 1$ and since G is connected, by Lemma 2, $\gcd(k - s(1 + \alpha), n) = 1$. Therefore, $\gcd(d, t) = 1$. By Lemma 1, G has a Hamilton cycle. The proof of Theorem 1 is completed.

ACKNOWLEDGEMENT: I would like to thank Professor Brian Alspach for providing reprints of his works on metacirculant graphs.

REFERENCES.

- [1] B. Alspach and T.D. Parsons, A construction for vertex-transitive graphs, Canad. J. Math. 34 (1982), 307-318.
- [2] B. Alspach and T.D. Parsons, On hamiltonian cycles in metacirculant graphs, Annals of Discrete Math. 15 (1982), 1-7.
- [3] B. Alspach, E. Durnberger and T.D. Parsons, Hamiltonian cycles in metacirculant graphs with prime cardinality blocks, Annals of Discrete Math. 27 (1985), 27-34.
- [4] B. Alspach and C. -Q. Zhang, Hamilton cycles in cubic Cayley graphs on dihedral groups, Ars Combin. 28 (1989), 101-108.
- [5] B. Alspach, Lifting Hamilton cycles of quotient graphs, Discrete Math. 78 (1989), 25-36.
- [6] L. Babai, Problem 17, In: Unsolved problems, Summer research workshop in algebraic combinatorics, Simon Fraser University (1979).
- [7] L. W. Beineke and R. J. Wilton, eds., Selected topics in graph theory, Academic press, London (1978).
- [8] J. A. Bondy and U. S. R. Murty, Graph theory with applications, Elsevier, New York (1976).
- [9] C. C. Chen and N. F. Quimpo, On strongly hamiltonian abelian group graphs, Combinatorial Mathematics VIII (K. McAvaney, ed.), Lecture Notes in Math. 884 (1980), 23-34.
- [10] K. Keating and D. Wittle, On Hamilton cycles in Cayley graphs in groups with cyclic commutator subgroup, Annals of Discrete Math. 27 (1985), 89-102.
- [11] Ngo Dac Tan, On cubic metacirculant graphs, Acta Math. Vietnam. 15 (1990), 57-71.
- [12] D. Wittle and J. A. Gallian, A survey: hamiltonian cycles in Cayley graphs, Discrete Math. 51 (1984), 293-304.

INSTITUTE OF MATHEMATICS P.O. BOX 631, BOHO, 10 000 HANOI, VIETNAM