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FOR NONLINEAR BOUNDARY-VALUE PROBLEMS

PHAM KY ANH AND BUI DUC TIEN

0. Introduction

This paper is motivated by previous works of Q. Axelsson [1] and D. Sweet
[2], and it is closely related to our recent results on the Seidel-Newton method
for nonlinear boundary-value problems (BVP) (3-8]. The principal result of
this paper is to present an iterative method for finding solutions of nonlincar
differential equations which satisfy nonlinear boundary conditions. Besides, no

special assumption on the structure of linear parts is required.

This paper is organized as follows: The first part deals with a modification
of the Seidel-Newton method for solving nonlinear operator equations mvolving
a linear Fredholm part. In the second part, an application to nonlinear BVPs
is considered. In particular, an inaccuracy in (2] is shown. Finally, in the third

part, some illustrative examples are given.
1. Inexact Seidel-Newton method

Let X and Y be two real Banach spaces. Consider the nonlinear operator
equation

Az = F(z), (1.1) -

where A : X — Y is a bounded linear Fredholm operator (of index zero), and
F: X — Y a possibly nonlinear operator. For any linear operator T, A(T') and

R(T) will denote the null space and range of T respectively.

Since A is a Fredholm operator, X and ¥ can be written as direct sums:
X=X 3 XY =Y, ©1%, where ¥; = R( A)ycYis a closed subspace, X, =

N (A) C X is a finite dimensional subspace and codim Y7 = dim X, < +co.
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Moreover, the restriction T of Ato X has a bounded inverse. Denote by P
and Q the bounded linear projections satisfying conditions:- R{(P) = N(¢) =
Y R(Q) =N(P) = Y,. Clearly, P+Q =11s the identity operator.

For the Seidel-Newton method [3-8], at each step, we have to solve a linear
system of equation. This can be expensive and moreover, may not be justified
when approximate solutions are still far from an exact solution. Hence, it may

he of interest to consider the following inexact Seidel-Newton method.

Suppose that the n-th approximate solution is found: 2, = uy + vn {un €
X,;v, € Xo). We construct the first component of the (n + 1}-th approximate

solution by the formula

Avniy = PF(z,). {1.2a)
Then putting
Ty = Uptl + Vn- (1.21)
We find M, € Xy such that
QG (Gl x, M + QF(En)il £ TIIQEF(E), (1.2¢)

where G is a continuously Fréchet differentiable oipera‘tor and 7 € (0,1) 15 2

fixed number.
The second componént Unt1 is defined as follows:
Vpt1l = Un + Man. (1.2d)
Finally, let

Tpti = Un+1 T Unti- (129)

We have the following result.

THEOREM 1.1. Assume that the mapping F is of the form F = G + H, where
G X — Y is continuously Fréchet differentiable in an an open set D which
includes the closed ball § with center at z¢ and radiusr > 0 and H is continuous

on D. Further, suppose that F, G, H satisfy the conditions

€y iPF(z) — PF(y)|| < allz —yil
1QH (=) ~ QH(y)l| < ellx — yil;
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1QG (=) — QG (W)l < plllz — yll), (z,y € 5),

where p is a Dini function (i.e. p is nonnegative, nondecreasing, continuous and
p(0) = 0).
QG (@) < 85 QG (2)lx, )7 I <y (z €S).

If the coefficients a, € are sufficiently small, and the initial approximation xq

is good enougﬁ such that

’ 1
0 =298+ A+ 8+ 57 [ pttio)de <1, (13)

and
261 =)t <, ‘ (1.4)

where 8y = ¥(8 + €)||A~|.||Azo — PF(xo)|| + ||QF(0)|]], then the sequence
{z,} constructed by (1.2a)-(1.2¢) with a suitable choice of T € (0,1) converges
to a solution z* € S of (1.1} and

[z — 2"l < rg", (1.5)
where g € (0,1) is a constant.
PROOF: Let § = (14 7)6y and
¢ =207(B+ A1+ eBy* + rl20r(B + AT 1+
+ 8L+ )T + BB+ )1 - T) N+

+ B8+ )1 —1)! /0 p(t8)dt,

where 7 € (0,1) is an arbitrary fixed number. Since § — 8y,¢ — ¢o when 7 — 0,
and by virtue of (1.3),.(1.4), there exists 7 € (0,1) such that ¢ < 1 and

0< 25(1 —g) < (1.6)

Let )\n = Upty —~ Up = :En — xnaMn =Up41 = VUp = Tpy1 — &En- Suppose that
foralln>0,z,,%, € S. Then

lAall = A PF(z,) — PF(zpll] < ¢l A~ Y|(Aaotl + |[Ma-sll)- (1.7)
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Using the condition (ii} and the relation (1.2c) we get:

Ml < YNQG (En)lx, Mall S (1 + TIQF(Za)ll- (1.8)
lFurther, |

QOF G < IQF(ER) + QG Gallxa Mall + QG (En)lxa Mall <
< 7||QF G| + BlIMall- -

Therefore _
IQF @ < B —7)7 [IMal]- | (L.9) -

" On the other hand, o
10F (@ns2)ll € 11QC(2ntr) — QG(En) = QG ()]s Mall+
+QH (2ns1) — QH(En)| + |QF(E2) — [QG (En)lx. Mall <
1
< [ AMDIMlldt + el Moll + IQFGI

Hence :
10F(@as)l| < enll @Gl (1.10)
where ' )
en =7+ (c+ ] D ol Ma D) Ml IIQF - (1.11)
Further, |

IQF(Fns )|l < N1QF(@as)ll + (B + el Ausall. (1.12)
Thus; by (1.8), (1.10), (1.12) we get the estimate '

' IMastll < @4 IAIQFGnsll < (L4 THIQF@ns)ll + (8 + Il
< 4(1+ DB + NPAnsall + eal QFGEI.

Combining the last inequality with (1.9}, we obtain:

Magall €20+ 7)E + Hwall + Bealf + 70 =) IMall), (113)
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Next, we prove by induction the following relations

Zn,&n €5, (14)

IAall < 8% || Mal| < 8¢™. (15)

Forn=0,2q € § and ”)\0” = “‘U.l - u0|| < ”j—lu HA(BG - PF(I[))” < 8y < 6.
Further, by (1.2¢) and (1.6),
IMol| < (1 + T)IQFE < 11 +7){IIQF (z0)l| + (B + )l|AolI} <
< (1 + T){IIQF(zo)ll + (B + )l A~ |||l Azo — PF(o)||} = 6 < 1.

Thus, (1.14) and (1.15) hold for n = 0. Assuming that (1.14), (1.15) hold for
all £ < n, we shall prove that they also hold for £ = n + 1. Since

lnsr —zoll < Y llzrgr — 2l < (el + IMal]) <
k=0 k=0 .

<26) ¢F<28(1-g) <r,
k=0

it follows that zn41 € S. Further, (1.7) implies that
Al < @l ARSI+ IMa]]) < 20|47 ||6g™ < 6g™1 (L.16)
From (1.16), (1.6) we get

HEn+1 = Zoll < [|Eag1 — ol + l|1Zags — 2ol €

< [Pl + 2R+ Ml <

k=0

< bg"tl 4 262(1" <25(1—-¢) ' <r.
k=0

Therefore #,41 € §. Using (1.13), (1.16) and the inductive assumption we find

[[Masill < ¥(1+7)B+e){2al| A |6 + Ben(B+e) 11— 1) 26¢"} = 8¢" T,
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where Ty = 2ay(1 + 7)(8 + )| A7 || + B¥(1 + 7)1 — 7)Yen. By (L.8), (1.11)
and the inductive assumption we have ‘

en <7+ (et f 154" )E)(1 + )y STHy(l+7)(e+ / " p(15)de).
Hence
T <2091+ 7B+ AT+
+By(1+ (= 7))+ j ' p(8)d6)) == g

Thus, ||Mnii|| < 6¢™t! and relations (1.14), (1.15) are proved for k = n + 1.
Finally, since ||Zat+1 — Zal| < |As]]+ [|[Mzll £ 26¢7, {zn} is a Cauchy sequence.

Evidently, z* = limz, is a solution of (1.1) in S, and the estimate (1.5) holds.

2. Nonlinear boundary-value problems

Consider the BVP

&= Alt)r + f(t,z,2) te(0,1), (2.1)

Tz = Ag(t, 2, T), ' (2.2)

where A € C([0,1],R"*") is a continuous (n x n) matrix, I', A : C([0,1], R"*™ —
R™ are bounded linear operators, and f, g are vector-valued functions.

Let X = C¥([0,1},R"),Y = C([0,1],R"),Z = Y x R" be Banach spaces

with the norms

|lyll = [max ()], (y € Y)s lllelll = ll=]] + [iz]l, (= € X),
1zl = NN = Hlwli + Irl, (z € Z).- Here, |.| denotes the maxnorm of vectors

and the corresponding norm for matrices. The transpose of a matrix or vector

will have a superscript T. The scalar product in Y will denote by < ¢,¢ > =
1
IN wlpdt.
We are particularly interested in the resonance case of (2.1)-(2.2), i.e. when

~ the homogenous BVP
T = A(t)x; Fz=0
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has nontrivial solutions. The main difficulty of this case is that the solvability

of (2.1), (2.2) mainly depends on the structure of the nonlinear parts f and g¢.

Problem (2.1), (2.2) can be reduced to the operator form (1.1), where

= A()x )
Av = ( Tz )’ Flw) = (/\g(.,m,.i‘))'

Let U(t) be the principal solution of # = A(¢)a, i.c.
U=AWU, UO)=E

where E' is the identity matrix. By Riesz’s representation theorem, I': =
f dn(t)z(t), where n € BV([0,1],R"*") is a matrix, whose entries are of
bounded variation. Denote by D the so-called determining matrix D =
f dn(t)U(t) and let rank D = n — v (0 < » < n). Then Problem (2.1),
(2.2) is at resonance if and only if v > 0. For convenience, we assume that
0 < # < n. The remaining cases v = 0 and v = n are more simple and may be

considered by the same argumnents.

Denote by {2;}}, {wi}{, {y;}7,, fixed bases of the subspaces A (D), N (DT)

and R(D), respectively. Without loss of generality we can assume that w! w; =

by (1.7 =T,v);3 Y2 Ys = Sre (k,s —v-[—l,n).

Let vj(3 = v +1,71) be any fixed vectoxs satisfying conditions Dx; = y, ()=
v+1,n). Let i = Ult)r; (i = 1,v) and ®(t) = (#1,-.20). Concerning

operator A, we have the following result [2].
LEMMA 2.1. The following statements hold:
(1) N(A) = {®(.)e | « € R*}; dim N(A) = v}.

(2) ( ) € R(A) if and only if < y,h > +wTu = 0 for any w € N’(D"') and
y" =wT [ dy(s)U(s)U1(t).

(3) Let Qox = @()(fﬂ &7 (s)®(s)ds)? f; T (s)as)ds. Then Qp is a hounded
linear projection, R(Qo) = N(A) and & =N(Qy) @& N(A).
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. Notice that the matrix M = [ 87T (s)®(s)ds = (< i, p; >)'1’ is a Gramm
matrix. Therefore the linear-independence of p; = U(t)z; (i = 1, v) implies the

nonsingu]a'rity of M.
LEMMA 2.2. A: X — Z is a bounded linear Fredholm operator.

PROOF: By Lemma 2.1, N(A) is v-dimensional subspace and R(.A) is a closed
subspace. Hence, to prove that A is a Fredholm operator, it will be sufficient
to show that Z = Z; @ Z;, where Z; = R(A) and dim Z, = v. Putting Z» =
span{ (1&_)}{, we have dim Z, = v. Let (:) € Z,NZy. Then h =0 and u =
> iy cawi. Since (*) € R(A), it follows that for any w € A(DT),0 =< y,h >
+wTu = wTu. In particular, for w = u € N(DT), we have uTu = 0, therefore
Z1NZy = {(g)} Now for an arbitrary (ﬁ) € Z, we define ¢; =< ¢;, h > +wlu,
where

$T = wT ] IS U(UTNE), (=T,

Clearly, ( & )€ 2y, a0d Z = 2, ® 2.

of,) = N 23)

LEMMA 2.3. Let
where ¢; =< ¢;, h > +uTw; (i = 1,v). Then Q is a bounded Linear projection,
N(Q) = R(A) and Z = R(A) & R(Q)-

PROOF: Since Q? (:) = (E_(::}wa')’ where ¢} =< 0,9%; > + EJ- cjw;*-rw,- = ¢i, we
get @2 = Q. Further, N(Q) = {(*) :< b9 > +uTw; = 0, (i = T,7)}. By
- Lemma 2.1, N(Q) = R(A) and it follows from the proof of Lemma 2.2 that
Z =R(A) + R(Q).

REMARK: D. Sweet [2] considered the following project'ion Py : Z — Z defined
by '

P, (2) _ (w( IN \D(s)\DT(s)ds)‘;( S U(s)h(s)ds + Wu))’
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where - _ -

¥=1:-. ; W=
oT wl
Clearly, Py is more complicated than the above mentioned projection ). More-
over, Py is not always well-defined. The necessary and sufficient condition for
the existence of P, is N (DT) Al N
= {0}, where N’ = {a € R™: Tfo dn(s) U(s)ds = 0 (a.e.)}. In what follows,

we shall use the following notations:
P=1- Q=X1,='N(Q0)_,X2 = N(A), Zy = R(-A),‘Zz = R(Q).

It follows from Lemma 2.1 and 2.3 that Z; = MV (Q)and X = X, 9 X,,Z =
Z1 ® Zs. Now we shall construct the inverse operator A~ and estimate its
norm. Let Az = ( ). Then

= U)o + [ U7 oh(s)ds) (24)
and 1 | . |
e = /0‘ dn(t)z(t) = u. (2.5)
From (2.4), (2.5) it follows that

Dzy = u——/ dn t)U(t)/ “Hs)h(s)ds = Z Bivi, (26)

j=v+1

where

| i =Y T(u —f dn(t)U () / U~Y(s)h(s)ds) (_]=V+ L,n). (2.7)

Let
Za T+ z Bizj, (2.8)
J=v+1
where the coefficients {a;} are undetermined. Then (2.6) is evidently satisfied.
We choose a; such that z(t), defined by (2.4), belongs to X1 = NM(Q)), i.e.
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Qoz = 0, or equivalently
> QU ( )z +p(t) =0, (2.9)
i=1 '

where p(t) = QDU(t){E;;VH Biz; + _fot U~1(5)h(s)cfs}. Since QoU()z; =

Qo: = @i (¢ = 1,v), we can rewrite (2.9) as
Za;(pi + p(t) = 0.
i=1

Multiplying scalarly both sides of the last equation by ¢; (j = 1,7), we obtain

the following linear system for determining o;
14
Z_<<pi,9oj >a;=—<pp; > (7=1v). - (2.10)
i=1

Let o= (o, s @), P = —(< P01 >, < Py oy >)T and M = fol ST (t)B(t)dt.
We can reduce (2.10) to the vector form Ma = p. Since M is nonsingular,
a = M~1p. Now in order to get an estimation || A~1|| < w, we first estimate
the norm of & = A1 (") and its derivative & = A(t)z + h. It follows from (2.4)
that

lall < max [U2){(feo] + max [T (2)] |14 (2.11)

Evidently, ||:z:|| < mtaxlA(t)l llz|| + |}k]|. This together with (2.11) implies
M=l = lzll + 1121} < coleol + ea |, (2.12)
where

o = (1 + mgs [ A0) ) max [0 1)
c1=T+(1+ max A mtax|U(t)|mta,x [T1(2)].

Further, by (2.6) we have

|zo] < ezlal + ¢318], - (213)
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where c2 = 3 ., |zil,e5 = E?=u+1 |z;| and |a = m?.xlad, 8| = max|B]. From
J
(2.7) it follows that

181 < ¥ |(Jul + | D] max [U~" ()] [}A}), (2.14)

where Yo = (yu+41,-.,¥n). Since a = M7'H, we have |o] < [M7Y|p| <
M~ [max|®7(¢)] x ||p|l. On the other hand, |lp|| < [|Qollmax|U(£)|{c,|8] +
mtax|U_1(t)| 17|} It follow from Lemma 2.1 that Qo] <
mgxl@(t)]m?x@T(t)HM"lL Then |a} £ cB| + cs||hl|, where ¢; =
c1|M'1|2(m?x|¢?T(t)|)2mf,x|<I>(t)|m?.x|U(t)|, and ¢c5 = c4c1—1mtax|U“1(t)|. Tak-

ing into account the last inequality and (2.13) we have
|zo| < c6|B| + erl|Rl], - (2.15)
rwhere Cs = CyCq + C3; €7 = ¢z¢5. Finally, using (2.12), (2.14), (2.15) we obtain
llzlt < co(esl Bl + erliRll) + esllRl| <
< coco 1l + {eoco ¥ D] mpclU (0 + -+ cace) 1l < ol () I
where
w == niax{cocﬁlmTh e1 + eger + cocs| YT || D) mfwt U~1(1)]}. (2.16)
Summarizi.ng the above results we come to the follox;ving

THEOREM 2.1. A:X — Z is a bounded linear Fredholm operator with R{A) =
N(Q). Moreover, the restriction A of A to X1 = A (Qo) has a bounded inverse
defined by the formula ' |

- h t

.«4"1( ) = U(t){zg —i—/ﬂ U~1(s)h(s)ds},

U

To = Y+ i, By, where B = yl(v —
Jo (U [ U ()h(s)ds)(§ = 7F L,n) and & = (a1,...,a,)T satisfy the



74 PHAM KY ANH AND BUI DUC TIEN
relations _ |
1 1 1
(/ T ()@ (t)dt)a = —-(/ pTgolds,...,f‘ plo,ds),
D . 0 0

plt) = B(t) f 87 (s)8(s)ds)"" j ST S st

j=vt

) “Ir TAT;S
+/0U (7)h(7)dT }ds.

| Moreover, ||A~!|| < w, where w is determined by (2.16).

Now let us consider the nonlinear operator F(z). For the sake of simplic-
ity, we shall restrict our consideration to the case where f,g¢ are continuously

differentiable function.

Let A = {(t, 2,8t €[0,1],2,§ € R™,|z], || < R} and @ = {z € X | [|[z]]| <
R}. '
LEMMA 2.4. Suppose that f,g : A — R™ are continuous in the first variable
and- continuously differéntiable in the remaining variables. Moreover, suppose
that
() £, 2,6)| < a1, |fi(t, 2,6 < a1, |g2(t, 2,6)| < a2, lg¢(t, 2, €)| < a2 for any
(t,z.£) € A ‘
@) £zt 2,6) = F(t 3, Ol < bulle — yl + 1€ = ¢,

“fé(ta T, 5) - fé(t Y, C)” < bl(lx _y|.+ |£ - Cl):

gz (2, 2,€) = g2t v, Ol < B2l =yl + 1€ - ¢,

llge(t, =, ) — g¢(t, 5, Oll < balle —yl + 1€ = CD)-
for all triples (t,z,€),(t,y,() € A.

Then the operator

R = () X -2

is continuously Fréchet differentiable on §) and its derivative satisfies the relation
IF'@)N < a=a1+as| Al
lIF'(z) = F'(y)ll < blllz = yllt = (b1 + bl A DI}z — yl]
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for all z,y € Q. Moreover, the restriction [QF'(x)]x, is of the form
QF @lxsh = (s
10z Zf:l C; Wy ’

where h = 370 djp; € Xo5¢ = >z 8i3d;, and

sij =< ¥i, (fz + [z A)p; > +wl A(gy + geA)o;. (2.17)

PROOF: For any z € §2,h € X, we have

falt,z, &)k + fg(t,m,x')h)
AGy(t T, &) + gh(t, z,2)h/)

F'(z)h = (
Further,

[[F'(@)hl| = ||fih + fihll + | A (ghh + gih)| <
< ar (IRl + HAID + 11 A Haa(HRI + 1[R]1) = afl1R]]].

Analogously, for any z,y € Q,h € X,

IF'(2) ~ F@)AI = (A 8) = £l 6k + [ 20 2) — FLCo o g1l 1+
LA LG 2,2) ~ gl 31+ Algh( @, &)= gh(-r s 311 <

< (Bl RM] (1l = il + bl e =yl + 11 A {82l = g1l + 14l =
= Bli1Bl}] [[l= — wllI

Thus, [|[F'(z) — F'(y)]| < bll|z — y||I. Finally, for h = Yoizy dj0; € Xo, we have
QF'(z)h = (Zu Dck_w'), where ¢; =<1, fLh -l—féh > 4wl A(gLh —l—géfz). Since
h = Az, it follows that ¢; = Z;=1 sijd;, where s;; are defined by (2.17).

LEMMA 2.5. Let the matrix S = (s;;)¥ be nonsingular. Moreover, suppose that
|S'1(a:‘)| < 7o (Va € Q). Then the restriction [QF'(z)]x, of QF'(z) to X,
has a bounded inverse [|[[QF'(z)l3ill < 7, where v = (1 +
wl
max|A(ODIW] 3.2, lleill and W =
T

w;,

PROOF: Putting d = (dy,...,d, )T, ¢ = (¢1,.0re,)T, and w = 3.1 ciw;, we can
rewrite (2.17) as Sd = c¢. Further, ||h|| = I|E;’=I die;ll £ |df Z;';l ol <
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Yolel 351 llw;lls hence [[[R]]] < (1 +max|A(8)])e] 32} lle;l]. Since e; = w]w;,
we get |c| < [W] |w|. Therefore,

”]h[“ = [|[QF'(1)]\2< )H < I+111m[4(t Z Hed] TW Jw] = v[w).
The following fact immediately follows from linear algebra.

LEMMA 2.6. Let f(t, e, y) = My(t)z+ N, (y+efi(t, z,y). gt 2, y) = My(t)e+
Na(t)y + eg1(t,2,y). Suppose that the matrix Sy = (.s( )) with entries of the

form
s =< 4 (M + Ny A)e; > +wTl A (M, + Ny A)p;

is nonsingular. Further, assume that fi.q, have uniformly bounded partial
derivative in A. Then the matrix S defined by (2.17) has a uniforinly bounded

inverse whenever ¢ > ( is sufficiently small.
Notice that for the operator Q defined by (2.3), we have the estimation

Q| £é= ZIw,-lma}:{ma.x|\I!(t)|, "]} and HPH: H -Qll<1+4ec.

i=1
Applying. the inexact Seidel-Newton method (1.2a)-(1.2¢) to BVP (2.1)-(2.2),
we obtain the following algorithm: Let an initial approximation r®) € Q he
given. Setr = R—|||2{Y]||, fOt) = f(¢, +®, #9)), g ¢) = g(t, x93+ o =
(1 +é&)a, B = éa,L = &b and

§= B’yw{m?x[:i'w) A)2® — O+

' (4 v
+ [Tzl — Ag® 4 Zcﬁmwil} + ¥ cho)wil,

i=1 =1
where ¢! =< f10) 4. 5 +wl A ¢®,

Suppose that the k-th approximate solution is known

2 =20 4o (1> 0),
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wherev®) = B(t)( f3 87(s)8(s)ds)™! [ 8T (s)a ¥ (s)ds, and 2 (t) = 2 ()~
v(k)(t). Letting f(k)(t) — f(t,:c("),;ic(")),g(’“)(t) — g(t,m(k),:&(k)), cf-"') - f(k),
Pi > +wl A g™ and putting

59 = T (g Z Pwi— [ ) [ oW s,

PO(E) = B() ] 5T () B(s)ds) / B S APe,

j=v+1

]03 U“I(T)f“‘) (T)dr}ds.,l

-

p(k) = _(< p(k)s(tol Py < p(k)"tl‘o” >)T"

we can find al® (agk),...,ag,k))T from the system of equations

(fﬂ1 @T(t);ﬁ(t)dt)a(k) = p(X). Then the first component z**1) can be deter-

mined as
t
D () = U(t){Za(k)w, + Z B z; 4 / U=1(s)f W (s)ds).  (2.18)
j=v+1 0
Further, denote by fk,gk,ff,fé",ﬁg,ﬁg the values of f(t,z,€) and ¢(t,z,&) and
their derivatives fy, fi. g3, 9 caleulated at (¢, %)) where

F8) = 1) 4 (R - (2.19)

Then the corrector M(*¥) for the second component of the desired (k + 1)-th

approximation can be found from the condition
IQF' (&) x, M® + QFE®)| < r||QF(EM)II,

where 7 € (0,1) is a fixed number. Letting d®) = (dgk) dm) M =
< P fH > el AGH G = Toa® = (@0, a5
PO "SL) M(k) =¥ di“tp,- and denoting by M{® the matrix whose ele-
ments are m ) =< Pi, (f(L) + f(‘)keA)(pJ > +wl A (~(L) ngA)goj, we can
choose d(¥) suah that . ’

|MPIE £ d@®| < 7 TB] S )71 (2.20)

=1
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Indeed, by virtue of (2.20) and the fact that |[MB) Ry 4 B =

~{k :
tagx| 5, m D DB, we go
1

Q' (E®)x, M® + QFED)|| = | 3" m®PdPuy, 4 D& wi| =
ij i

=1

14 v
= | Z(Z mSJ’-c)dg-k) + EE’”)w,-I < max | Zm,(-f)dg-k) + 5,(-k)[ Z [w;| <
i i=1 =1
< 7l = +[QFED))|.
Finally we put

D) = (R 4 M®) (2.21)
g1 = H (k1) | (k1) | - (2.22)

The foﬂowing_convergence result follows from Theorems 1.1, 2.1 and Lemma
24, 2.5.

‘THEOREM 2.2. Assume that all conditions of Lemmas 2.4 and 2.5 are satisfied.
Moreover, suppose that ¢ =2afw? + LAy25/2 < 1 and'26(1 —g)"! < r. Then
there exists T € (0, 1) such that the sequence {z(®} constructed by (2.18)-(2.20)
converges to a solution z* of (2.1), (2.2) at the rate of geometric progression

1™ — 2*||| < rg¥, where g1 € (0,1) is a constant.

3. Nonlinear BVP for Duffing-Van Der Pol’s equations
Consider the following BVP

Y +ytef(tyy') =0,

~¥(0) +y(27) = € ;7 g(s,y(s))ds, (3.1)

y'(0) = y/'(2m),
where f(t,zl,xg),g(t,xlj- are continuous in ¢ and continuously differentiable
in the remaining variables, and ¢ > 0 is a small parémeter.. Putting z(t) =
(1,22)7 = (y,")7, f = (0, =ft2)T,§ = (9(t,21),0)T, Tz = —z(0) + (27),
Az = f;" z(s)ds, A = (2 ) we can reduce problem (3.1) to the operator
form ' : '

Az = eF(z), ' (3.2)
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o= (5) o= (5)
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where

Clearly, U(t) = ( o5 sint ) and Tz = fozﬂ dn(t)z(t), where

—smmit cosi

0 t € (0,27)
n(t) =
B t=0,2mr.

Since D = 02” dn(t)U(t) = 0, we have R(D) = {0},N(.D) = M(DT) =

‘R?, and v = n = 2. Hence we can put ¥; = w; = (1,0)T, 2y = w, =
(0,1)7,01 = U(t)zy = (cost,—sint)T, s = U(t)zy = (sint,cost)”. Fur-

ther, set ® = (py,¢2) = U,UT = U~!. From Theorem 2.1 it follows that
A is a bounded linear Fredholm operator, N(A) = {U(.)a | a € R?}, dim
N(A) =2, and Qoz = = U(t) f "UT(s)z(s)ds is a bounded linear projection,
where X = N(Qy) @N(A) = X1 @ Xz. Further, Z=R(A)®R(Q) = Z; ® 2,

where Q() = (., %yr),

27 2w
€] = up + (hycost + hesint)dt, ¢ = uy + (hy cost — hy sint)dt.
0 0

Using Theorem 2.1 we can show that A4~1 (i‘) = U(t){zo + f; U~ (s)h(s)ds}
where zp = —ZL 02"(271" — 8)U7T(s)h(s)ds. Moreover, [|[A7!]| < w = 5 +
4m. For the nonlinear operator F(z) we have ¢ = (- cost,sint)l, ¢y =

—sint, —cost)7, and
( ;

” 0 0 g' 0
r__ . £ ‘
fz= ( ) e (0' 0)

A simple calculation shows that

2w 2w
s1p = (fzz sint — f, cost)smtdt+f gy, costdt,

2

2w
81p = — (f:::1 sint + f;z cos t) sin tdt +/ g;1 sin td¢,
' . 0 . 0
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2 .
Sg1 = (fy, cost— f._sint)costdt,
o
27 -

Sgg = (fz, sint + f,, cost) costdi.
0 _

Let us consider Duffing’s equations
vty ey +y° —u?) =0,
y(2r) — y(0) = € [2T y(t) sintdt, (3.3)
y'(0) = y'(2m). |
In this case, 811 = w,slé =0,80; =3 fomr z? cos? tdt,sqq = 7+ -g— fﬂh x? sin 2tdt.
Suppose that z € Q = {z €€ X : |||z|||| < R} where R? < . Then

.5'_1—( /7 0 )
—891 /7839 1/s22

and [S7'] = max{zx~; (x + |sa1|)(|s22])7"}. From [sz2] < 3R? foz’r cos? tdt = -
37R? and |s22]| > m — 3R? it follows that

IS < (1+3R)(x —3R?)! (Ve € Q).

THEOREM 3.1. Suppose that for the given function u(t) there are the relations

27T : 2
f u(t)costdt = / u(t)sintdt = 0.
0 0

Then there exist €y > 0 such that for any fixed € € (0,¢y) the sequence {z®}
constructed by (2.18)-(2.22) converges to a solution z* € Q of problem (3.3) in

the vector form (3.2} at the rate of geometric progression.

PROOF: Letting 2(®) = 0 and observing that g(e) = 0(e), 6(¢) = 0(e) we can
choose €9 > 0 such that for any ¢ € (0,¢),¢(€) < 1, and 28(e)(1 — ¢(e))™ =

0(¢) < r = R. Now Theorem 3.1 is an immediate consequence of Theorem 2.2.

We end this section by presenting some mimerical resiilts. First, we consider

problem (3.3) with u(f) = 1 + €%, where 0 < ¢ < 1. In this case, y*(t) =
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e, 2*(t) = (¢,0)T are the exact solutions of (3.3) and (3.2), respect:vely A
simple calculation by algorithm (2.18)-(2.22) shows that

2 = (0,075 2 = (e + ¢)(1,0)7; 2 = (e +0(¢"))(1,0)".

Thus, |||z — z*]l] = 0(67.). Finally, letting u(¢) = sin2t (0 <t < 27) and
applying algorithm (2.18)-(2.22) with the initial approximation 2 = (0,0)T

to problem (3.3) we get the following approximate solutions

z(t) = —(¢/3)(sin 2t,2 cos 2t)T + (' /36)(sint, cost)”,
D (t) = —((e/3) sin 2t + (2% /9) cos 2t (26/3) cos 2t — (4€%/9)sin 2¢.)

Evidently, |4z — eF(2™M)]] = 0(¢?) and [|Az® — eF(2®)]| = 0(€*)
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