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A REPRESENTATION THEOREM FOR
SYMMETRIC STABLE RANDOM OPERATORS

DANG HUNG THANG

Abstract. In this paper, it is shown that every summetric p-stable random
operator has a representation of the form of a random integral with respect to
an p-stable random measure. A necessary and sufficient condition is given for
the existence of a representation of the form of a random series.

1. Introduction

Random operators in Hilbert spaces were investigated by Skorokhod [6].
They often arise in a variety of theoretical and applied contexts such as linear
equations with random coeflicients, stocl:hastic integrals and stochastic differen-
tial equation in Hilbert spaces. The theory of random operators acting between
Banach spaces have been developed in {2, [7], {8], [9].

Let X,Y be separable Banach spaces. In [8] it was shown that every sym-

metric Gaussian random operator A into ¥ admits an expansion of the form
[ o]
- Ax = Zvn_b.nos : ‘ (1.1)
n=1 .

Here (b, ) is a sequence in the space L(X,Y) of nonrandom linear operators from
X into Y and (7,) is a sequence of real-valued independent standard Gaussian
random variables. The series (1.1} is a. s. convergent in Y.

A natural problem is to establish an analogous representation for symmetric
p-stable {Sp$) random opérators. The purpose of this paper is to prove Theorem
3.2 which states that every SpS random operator can be represented as a random
integral with respect to an SpS random measure. 'Mo.reover, an SpS random

operator. A admits a representation of the form (1.1) if and only if the subspace
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of Lo($?) spanned by the r.v. ’s {(4z,y),z € X,y € Y'} can be isometrically
imbedded in to £,(1 < p < 2).

2. Preliminaries and notation

Let X,Y be two separable Banach spaces and Y the dual space of Y. By a
random mapping 4 from X into ¥ we mean a correspondenée that associates
to each element = in X an Y-valued random variable Az. A random mapping
A from X into Y is called a random operator if

~ 1) For all 2;,29 in X and t;,1; in R we have
A(tlﬂ,‘l + tzdfg) = tlAml + ngSEg a.5.

2) Ve >0 hm P{H Az, — Az ||>¢} =0

We say that a random operator B is a representation of the random operator
A if for every finite sequence {{zk,yx)} in X x Y’', the laws of two random
variables {(Az,yr)} and-{(Ba;k,yk)} are the same.

The random operator A is called an SpS random operator if for every finite
sequence {(zk,yx)} in X X Y’ the law of the random variable {(Azx,yx)} is
symmetric p-stable.

Let (S, T, 1) be a measurable space. A mapping M : 3 — Lg($2) is said
to be an SpS random measure on (S, ), ) if '

1) For each A € 3, M(A) is a random variable with the ch. f.

_ Eexp{itM(A)} = exp{~u(4) |1 [P}.
2)If {An} isa sequence of disjoint sets in 3, then {M(A,)} are independent
and M(UZ ZM(A ) a.s.

In [5] Rosinski mtroduced a random integral of Banach space valued func-
tions with respect to an SpS random measure M. This integral is constructed

as follows: Let F be a separable Banach space . For a simple function f : § —
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E,f= i'ciff.;‘., where (A;) are disjoint sets in 3 and (¢;) C E, we define
i=1 ' .

f fdM = i:ciM(A,-)

A measurable function f : § — E is said to be M -int'egrable if there ex-
itst simple functions {f,) such that f, — f in p-measure and the sequence
{ J frdM?} converges in probability. If f is M-integrable, then we put [ fdM =

— lzm [ fadM. This value does not depend on the choice of the approximat-
ing sequence (f,). The set of M- 1nteg,1able functions f : 5 — E is denoted by
Lg{M). Some crucial properties of this p-stable random integral are hsted in

Theorem 2.1 and Theorem 2.2 below.
THEOREM 2.1. [5] 1) If f € Lg(M), then [ fdM an E-valued SpS random
variable with the ch. f.

Fla) = expf- [ 1(f(,0) P du(v)}. a€ B

2)For 0 <r <p<2and f € LE(M), we put

uu:wn/MMwwﬂ

Then | f Ir is a quasi-norm (a norm if r > 1) on Lg(M). For 1 <p.<
2,Le(M) becomes a Banach space under the norm | f |,. Moreover there

exists a constant C depending only on r such that
uspapr<olyl,

for all f € Lp(M). ; _
3)The mapping f — [ fdM is a linear continqous operator from Le(M) into
L% = L%(S, > E).

THEOREM 2.2. [5] (Characterization of M-integrable functions) A.function f :
S — E is M-integrable if and only if the function F(a) = exp{— [ | (f(t),a) |P
- du(t)},a € E' is the ch. f. of an SpS measure on E.
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Following Linde [4] we say that an operator T': E' — L,(S, 3, p) is an Ap-
operator if the function F(a) = exp{— || Ta ||} is the ch.f. of SpS measure on
E. Tt was shown (see Th. 7.4.6 of [4]) that if T' is an A,-operator (0 <p < 2),
then there is a function f : § — E such that for each a € E', Ta(?) = (f(t),a)
for p-almost ¢. Combining this fact and Theorem 2.2 we get

‘THEOREM 2.3. An operator T ) S L,(S,Y, ) is an A, -operator if and
only if it is of the form

Ta'() = (f()! a) ian(S: Za Ju)

where f € Lg(M) and M is an SpS random measure on (S, 3, 1t)-

3. Representation theorem

" PROPOSITION 3.1. Let M be an SpS random mea‘,sure on a measurable space
(5,5, 1) and G : X — Ly(M) be a linear continuous operator. Then the
random mapping B from X intoY given by

Bz = f GazdM | (3.1)

is an SpS random operator.

ProOOF: By Theorem 2.1, the mapping H : Ly(M) — LY given by Hf =
f fdM is linear and continuous. Hence B = H o G is a linear continuous
operator from X into LY, ie. B is a random operator. Now for each fi-
nite sequence {(zk,yk)} in X x Y’, the linear combination Y tx(Bzi,yx} =
[ t(Gzr, yx)]dM is an SpS random variable. Consequently, B is an SpS

random operator.

Of cause, every random operator which. has a representation of the form
(8.1) is an SpS random operator. The Representation theorem states that the

converse 1s also true.
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THEOREM 3.2. Suppose that A is an SpS random operator from X into Y0 <
p < 2). Then there exist an SpS random measure M on some measurable space
(5,3, 1) and a linear continuous operator G : X — Ly (M) such that the SpS

random operator B given by (3.1) is a representation of A.

PROOF: Let [A] denote the closed subspace of Ly(Q2) spanned by the random
variables the {(Axz,y),o € X,y € Y'}. For each h € [A] we put

p(R) = [~InEexp{ih}]*/?.

By a theorem due to Bretagnolle et al. [1] (see also the Addendum of 3], p(h)
is a F-norm (a norm if p > 1) on [4] such that h, — h in Ly(R) if and only if
p(hn — h) — 0. Moreover, ([4], p) embeds isometrically into some L,(S, ", 1)
by an isometry I.

Let X ® Y’ be the tensor product of X and Y'. By the property of the
tensor product the bilinear mapping (z,y) — (Az, y) induces a linear mapping
A:X®Y' — [4] such that A(z @ y) = (Az,y). Put T=ToA: X QY —
Ly(S,>, ). For each u € X @ Y’ we have

Eexp{iflﬁ} = exp{— || I(fiu) 17} = exp{— || Tu ||”}. (3.2)
In particular, for u = z ® y we have
exp{— || T(z ® y) ||’} = Eexp{i(Az,y)}.

This equality shows that for each fixed ¢ € X the mapping y — T(z ® y) from
Y' into Ly(S,>,p) is an A,- operator. By Theorem 2.3 there exist an SpS
random measure M on (S, >, ¢) and a function, denoted by Gz, belonging to
Ly (M) such that for each y € Y,

T(z®y)() = (Gz(),y) p-—as. (3.3)

We claim that the mapping z — Gz is a linear continuous operator from X

into Ly (M). Indeed, the linearity of G follows from the linearity of T’ and the
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separability of Y. In order to prove the continuity of G we use the closed graph
theorem. Let z,, — z in X and Gz, — f in Ly(M): We have

(Alzn —2)y) 2 ] (Gzn = 2),y)M

for each y € Y'. Because (A’cn — Az, y) £ 0 and f(Ga:n,y)de A f(f.y)dM

as n — oo, it follows that

/(f,y)dﬂ:f = f(Grc,y)d]lfI =p—lim f(Gmn,y)dNI

for each y € Y'. Hence [GzdM = [fdM, ie. Gz = f as desired. Put
Bz = [ GzdM. It remains to prove that B is a representation of A. Indeed,

for each finite sequence {(x,yx)} in X x Y7, from (3.2) and (3.3) we have
Eexp{i Z tr(Bxy,yr)} = Eexp{i /[Z tr(Gag, ye)|dM} =
exp{—/ | > te(Grrsyi) IP dit) =exp{-/ l ztkT(?:k@byk) P du} =
exp(~ [ T P du} = exp(~ || Tu |} =

Eexp{ifiu} = Eexp ?{Z tr( Ak, yr)}-

(Here we put u = 3 ti(zr @ yx))
This shows that the random variables {{ Azx, yx)} and {(Bz, yx )} have the_

" same law. Thus Theorem 3.2 is proved.

Now we are going to find a condition ensuring that the SpS random operator

A has a representation of the form of a random series.

ProposITION 3.3. Let (8,) be a séquence of i.i.d. random variables with the
ch.f. e,xp{— | |7} and (b, ) a sequence in L(X,Y") such that for cach v € X the
series E 9, b,z is a. s. convergent in ¥'. Then the random mapping B from

n=1

X into Y given by | - _
Bz = Z B b (3.4)
=1
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is an SpS random operator from X into Y. Moreover, if a random operator A

has a representation B of the form (3.4), then [A] embeds isometrically into (,.
¢

ProOF: Put B,z = ) Oibyz. Clearly, B, is a random operator for each

k=1
n and we have Bz = p — limBpz for all z € X. By [7, Thm.1.3.d] B is

a random operator. It is easy to check that B is an SpS random operator.
Next, let M = [(6,,)] be the closed subspace of Ly(§2) spanned by the sequence
(6r). It is well known that (M, p) is isometric to £, (see [3]). Then if A has a

representation B of the form (3.4), [A] embeds isometrically into €, under the
3

L
mapping ) (Azk,ye) — 2 (brg, yi).
. k=1 k=1 . .
THEOREM 3.4. Suppose that A is an SpS random operator (1 < p < 2) such
that [A} may be isometrically embedded into £,. Then there exists a bounded
sequence (b,) in L(X,Y") satisfying '

oo

- . . - I Vs

1) For each ¢ € X, the series ) 8,b,2 converges a.s. in Y.
n=

1
2) The SpS random operator B from X into ¥ given by
Br=3 8ubuz
n=1

is a representation of A.

PROOF: Because ¢, embeds into some L,(5,>, ) it follows that there exist
sequences (e,) in Ly(S, 3, 1), {gn) in L3(S, ), 1) and a mapping I : [4] —
L,(S, 3, u) such that

Ih = Z(Ilz,gn)en
, n=1
and
| IR = [p(R)]? = > | (Ih,ga) I? (3.5)
n=1

PutT=1o ;1 X QY — Ly(S, >, 1). From (3.2) and (3.5) we get

Eexp{idu} = exp{— || Tu ||P} = exp{— Z | (Tu,gn) I}

n=1



60 ‘ DANG HUNG THANG

As we have shown in the proof of Theorem 3.2, there are an SpS random measure
M on (S,Y,p) and a linear continuous operator G from X into Ly (M) such
that T(z@y)(-) = (Gz(-),y) p-a s . For each fixed g € Ly(5, S, pt) consider
the linear mapping Vg J XY gwen by

Vo(e) = [ gt)Gatidu(t | (3.7)

The Bochner integral (3.7) exists since [ || Ga(t) ||? du(t) < co. From Theorem

2.1 we obtain

Vo) 1<l ol ] | Ge(t) [P du(e)”
<Clell G levns C g MGl 1,

which showns that Vg € L(X,Y) and || Vg IS C |l g Il G . Put b, = Vgn.
We have a bounded sequence (b,) in L(X,Y) and

(o) = (Va(2)9) = [ (GG 0)(8)

- / T © y)()gn(B)dp(t) = (T(& B y), g0)-

Consequently, putting u = & ® y, from (3.6) it follows that

Eexp{i(Az,y)} = exp{— > | (T(z @9}, 0a) '} = exp{— Y | (baz,y) [P}

n=1 - n=1

(3.8)
Now we are ready to prove that the series E 8,b,z converges a.s. in 1" for
’ n=1
N

each @ € X . The ch.f. of the partial sum Z 8,bpz is equal to exp{— N

(b 2,y) [P} and it converges to Eexp{i (-1.1: y)} as N — oo by (3.8).. Thus

E Onbnz is convergent a.s. in ¥ by ItoNisio’s Theorem.
n=1
It rernams to check that the SpS random operator B given by

" Bz Z 0,baz is a representation of A. Indeed, for every finite sequence

n=1
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{zr,y6)}t C X X V' and (tx) C R, we have

k1] o0 k17
Eexp{i Y te(Bzi,ye)} = Eexp i{) > te(bizs,yx)8:} =
- |

i=1 k=1

exp{= Y | Y ta(T(ok ®u).g) 7} = exp{= D | (Tu,g) [P} =

i=1 k=1

Eexp{idu} = Eexp{i > te(Azg, i)},
k=1

T
wherc u stands for ) tx(zr @ yi).
) k=1

(1]
(2]
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