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ON A FREE BOUNDARY PROBLEM ARISING
IN THE POLYMER INDUSTRY

PHAN HUU SAN AND NGUYEN DINH TRI

Abstract. A free boundary problem arising from a model for sorption of swelling
solvent into glassy polymers is considered. Global existence and uniqueness of
the solution are proved.

- 1. Introduction-

In this paper we consider a free boundary problem arising from a model for
sorption of swelling solvent in a glassy polymer. This model has been proposed
1978 by Astarita and Sarti [2]. It has been studied in different abstract forms

(see [1], [3], [4], [3], {7], [8D-

This model is characterized by the presence of a threshold value for the con-
centration under which no sorption takes place. The polymer is then divided -
into two i'egions of different morphology, a swollen. zone in which the concen-
tration of the solvent exceeds the threshold value, and a glassy zone in which
the concentration is negligibly small and actually taken zero in the model. The
interface between these regions is -the free boundary. The solvent is supposed

to diffuse in the penetrated zone accordmg to Fick’s law.

The most mterestlng case from both the application and the mathematical

point of view occurs when the polymer is initially unpenetrated. -

Here we study one of the abstract free boundary problems arising from above

model. It can be formulated as follows:.

PRrOBLEM (P): . Find a triple (7, s(t),c(a: t)) such that T > 0, s(t) € €10, T},
o(z,t) € C% 1(_DT) N C(Dr), Dr = {(z,1) : 0<az< s(t),O < t < T}, where
(Dr is the closure of Dr), ¢, is continuous up to z = s(t) and the following

equations and conditions are satisfied:
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Cpz —Ct =0 in D, (1.1)
s(0)=0, | (1.2)
o(0,4) = g(t), g(0) =1, 0<t<T, (13)
5(2) = fle(s(t), 1)), 0<t < T, (1.4)
ea(s(8), 1) = —(e(s(8), 1) + )é(t), 0 <t < T (1.5)

where ¢q is a given nonnegative constant, f and g are given functions.

In this problem, ¢(z,t) + ¢ is the concentration at (z,1),¢ 1s the threshold
value. Condition (1.4) describes the penetration law, and condition (1.5) is the

mass bé,lance at the free boundary & = s(t).

Throughout the paper the functions f and g will be supposed to satisfy the

following assumptions:

Fec' (01, f(c)>0 Ve € (0,1, F(0)=0. Cae)
g € CH[0,+00), g() 2 0VE20, 024 ()2 ~G1VE 20, (1.7)

where G, is a given positive constant.

We notice that because of (1.6) there exists an inverse function & of f such

that condition (1.4) can be rewritten in the following equivalent form:

c(s(t), 1) = 8(5(1)),. 0 <t < T. _ (14

2. Local existence

Set R = {%(t) . r(t) € C1[0, TINC*(0, T), r(0) =0, 7(0) = f(1), 0 = #t) <
f(1)in [0, T, |'r(t)| < Kin (0,T)}, where T and K are some positive constants.

Let r(t) be a function of R. We consider the following auxiliary problem:

AUXILIARY PROBLEM: . Find a function ¢(z,t) € Cz’l(D)ﬂC(-ﬁ), D = {(z,t):
0<z<r(t), 0<t<T}, e is continuous up to z = r(t), such that:
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Cpz —C: =0 in D, o : (2.1)
C(O,t) =g(t), 9(0)=1,0<t < TaA (2.2)
e-(s(2),t) = —(B(F(2)) + ¢)F(t), O <t < T. (2.3)

It is well-known that with the assumptions above, Problem (2.1) - (2.2) has
a unique solution (see, for example, [6]). There are some a priori estimates of
the solution of this Problem.

PROPOSITION 2.1. Let ¢ be a solution of Problem (2.1) — (2.3). Then

e(z,t) <1 ¥(z,t) € D\{0,0}, _ (2.4)
—f((14+9) <coa,) <M V(z,t) € D\ {0,0}, (2.5)
where 2t
M = max {— (—e"27¢'(r))} 2 0.

(z,)eD T+ 10L a<T

PROOF: Using the maximum principle we can prove (2.4) and the first inequal-

ity in (2.5). In order to prove the last inequality in (2.5) we set v(z,t) =
e" (2 + 1)ez(2,t). Then v is a solution of the following problem:

2 2

L(’U) = Ve — mvz + [(—+1—)2 - 2]‘0 — W = 0 m D, (26)
v(0,1) — v,(0,1) = e 2g'(t), 0< ¢t < T, (2.7)
o(r(8),t) = —e 2 (E)(r(t) + I(B(HD) +¢), 0<t<T.  (28)

We notice that there are three cases: If v.< 0in D, then ¢, < M in D. If v

has a positive maximum in D orin ¢ =T at (zg,%0), then
Ut(xﬂatl]) 2 0: Ur(l'O}tO) = 01 U:x(.‘l’lg,to) < 0.

Since (—z—_%)—, — 2 £ 0, we have L(v(zo,%p)) < 0, which contradicts (2.6). So v
attaints its positive maximum only on z = 0. Hence

2

a,x( —2r '(T))<M

< .
ca(2,t) < z+1osrer ©



44 P.H. SAN AND N.D. TRI

REMARK 2.1: For any positive constant cp < 1 and f(1) > 7o > 0, 2 small
enough 7' > 0 can be found such that

(o) 2e0>0, (2,)€D, (2.9)

F($) 20 >0, 0Zt<T (2.10)

PROPOSITION 2.2. Let ¢ be 2 solution of Problem (2. 1) — (2.3), then ¢ €
C21(D), €.t € Cc(D\ {0,0}) and there exists a positive constant Q depending
on f,g,K such that

lei(e, )] < Qt + G, (2,1) € D\ {0,0}. (2.11)

PROOF: Set w = ¢;, then wisa colution of the following problem:

CWep—we=0 in D, (2.12)
w(0,8) =g'(t), 0<t < T, | : (2.13)
(we + w)je=r(t) = —#()g + B(H(E)) + &)

= h(t), 0<t<T. _ (2.14)

We notice that w € C(D) and that

|(#)] < Klg+1+ £(1) <mg»xm)¢’ ‘W)=

By the same way as in [3] we obtain
, - H =
0 < v(z,t) < max{G, -T—} =Gy, (z,t)€D.
0
Then (2.14) yields

(a0l = @)+ [ " wel6, Hde] <
< G,y + (H + Gof())F(1)E = G1 +Qt.

Denote by ¢;(z,t) the solution of problem (2.1) - (2.3) with respect toTi € R
and D; = {(z,t): 0 <z < r(t), 0<t< T}, i= 1,2.
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ProOPOSITION 9.3. Under the above assumptions, the constants Ty > 0 and
N > 0 can be found such that for any T € (0,Tp),

ler(r1(2),8) — c2(r2(t), )] £ NT|lry = rolloro,myy 0<t < T ~ (2.15)
Moreover, N depends on f;¢,q, K.
PROOF: As in [7].
Now wer prove the local existence of solutioﬁs of Problem (P).

Let o be a positive constant, & < 1. Denote by (#) a positive non-increasing
function defined for ¢ > 0. Let X (X, T,~) be the set of all functions r(t) € R
such that

[F(t1) = #(t2) S 9(T)(t = 82)*/?, 0< T <ty <t < T, (2.16)

Note that this set is closed in C'I[O,.T]. For any function r(¢) € X, we define
c(z,t) to be a solution of the auxiliary problem (2.1} - (2:3). Let ¥ be a solution
of the problem:

r(t) = fe(r(t),t)), 0 <t < T, (2.17)

7(0) = 0. (2.18)
Then we can define the transformation
F:reX—7elH0,TInC*0,T).
PROPOSITION 2.4. There are positive constants I{,T and a function ¥ such

that the transformation F is a ~ontractive mapping from X into itself.

PROOF: It is clear that 7(0) = f(1) and 0 < 7(¢) < f(1). We only need to show
that K, T can be chosen such that |#(t)| < K for all ¢ € (0,1) and then verify
(2.16). | -

Taking the derivative with resbect to ¢ on both sides of (2.17), we get

F(t) = £'(c(r(2), £))-[ea(r(t), D)7 (2) + ca(r(2), B)].
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Hence
7)) < FA[PF(L)+(Qt+G1), 0<t<T,
where Fy = max f(c), P = max{f(1)(1-+q), M}. f we choose K = 2F3(Pf(1)

CE[CQ,l

+ G4) and T small enough then F)| <K VYte (0 T) Hence we can proceed
as in [7] to complete the proof.

THEOREM 2.1. There exists a positive constant Ty such that Problem (P) has

a solution for T < Ty. Moreover,
ce € (Dr), ¢zt € C(Dr\{0,0}), s € C*[0,T).

PROOF: The existence follows from Proposition 2.4 and Banach'’s fixed point
theorem. The regularity properties of ¢ and s follows from Proposition 2.3 and

the definition of X.

3. Uniqueness

First we prove the monotone dependence of s(t), from which we get the

uniqueness of the solution.
-Let ¢;, s; (i =1,2) be a solution of the problem:
Cizr —Cit =0, 0<z<s(t), ti<t<T,
si(t:) =0,
ci(0,t) = g(t), ti<t<T,
5 = flelsil) ), ti<t<T,
cin(si(t), 1) = —(ci(si(t), 1) + Q)éie), ti<t< T

LEMMA 3.1. _Iftl < g, then
Sl(t) > Sg(t), to <t <T.

PROOF: Set

s(t) -
wety== [ )t 3.1
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This transformation carries (1.1) - (15) into a Stefan-like problem: .

Upp—u=0 in Dy, | (3.2)
5(0) =0, | | (3.3)
uy(0,t) = g(t)+¢q, 0<t < T, O (34)
u(s(2),t) =0, 0< ¢t < T, : (3.5)
uz(s(£),8) = B(5(t)) +¢, 0 <t < T. o (3.6)

Consider the function ui(z;t) obtained from ¢;(z,t) by (3.1). Suppose that
there exists ty = g mln {t 51(t) = 82(t)}. Then

$1(to) < $a(t0). a (3.7

Set w(z,t) = u(z,t) — uy(z,t). By the strong maximum principle, we obtain
wz(s2(t0),%0) > 0, hence §; () > 32(to), which contradicts (3.7)..

THEOREM 3.1. Problem (P) has at most one solution.

PROOF: Let (Th,51,¢1) and (13, sz, c2) be two maximal solutions of Problem
* (P). Suppose that T, < T) < +oo. For any ¢ > 0, we define-

3e(t) =s2(t —¢), cx,t) = co(z,t — €)
3_e(t) = sa(t + €), c_(z,t) = cy(z,t + ¢)
Because of the time invariance of Problem (P), (Th + es.,

¢e) and (Tp — €,5_, c_,) are also solutions corresponding to the data s.(e) =

0, s—e(—¢) = 0. Applying Lemma 3.1, we get
Se(t) < Sl(t), € S i S T2
Sl(t) < S_E(t), 0<5t<T —e

Letting € tend to 0, we obtain s1(t) = s2(t), 0 <t < Ty, and ¢;(x,t) = ez(, £)

in Dr,. Because of the a.ssumptlon on maximality, we obtain Ty = T5.

REMARK 3.1: From Theorem 2.1 and Theorem 3.1 it follows that for any so-
lution of Problem (P), a positive constant Tp > 0 can be found such that

¢ € C*Y(Dgq,), cpe € C(Dp, \ {0,0}), s € C?[0, Tp).
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4. Regularlty, convexity, global existence

PROPOSITION 4. 1 Let s,c hea squt:on of Problem (. P) for a g1ven T < +oo
Then there exists cg = co(T) > (0 such that

co ez, t) <1, 0<z <s(t), 0<t<T, (4.1)

1.0 < fleo) =70 S 3(8)  f(1), 0< < T, (42)
— F(1)(1 + g) < os(z,t) < M, in Dr. (4.3)

" Proor: If c(;r: t) attains the value 0- (we need only to con51der on z = s(t)) for

the first time at some point (s(to),t0), then cz(s{to), t0) = 0. On the other hand,

(s(to) to) is a minimum of ¢(z, 1) in D,,. Using the strong maximum principle
we get cz(s(to),to) = 0, which leads to 2 contradiction. Hence e(z, )2 >0
and $(¢) = f(c(s(t) t)) > f(co) = fo > 0. The last mequa.htles in (4.1), (4.2)
follow as in the proof of Propos1t10n 2.1. Similarly, we can prove the inequality
(4.3) | |

THEOREM 4.1. Let (T s,¢) be a solution of Problem (P) Then s € CZ[O T]
Moreover, if f € C*(0,1], then s € C°°(0 T].

PROOF: We can apply the 1terat1ve technique of [9] to the equivalent problem -
(3.2) - (3.6) with (3.6) rewritten in the form: |

- 8(t) = fluz(s(®),t) = q), 0<t<T

From the continuity of f'., it, foilowé the continuity of s in (0, T} If fel .°°('0, 1],
we similarly get s € C°°(0,T]. The continuity of 5(t) at ¢ = 0 is already known .
in Remark 3.1

Now we prove the convexity of the free boundary.

THEOREM 4.2. Assume that(T,s,c) solves Problem (P) Then
§(t) <0, 0<t<T. I ()

ProoF: The continuity of ¢; in D and the continuity of c;: in Dt \ {0,0}

follow from Theorem 4.1.
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Define
v(z,t) = [In(c + ¢)lss,

we can see that v is continuous in D7 and v; is continuous in D7 \ {0,0}.

Moreover v is a solution of the problem:

Ver + 2ne + Q)sve + 20% ~ vy = 0 in D,  (4.5)
v(0,1) = {(caslc + ¢) = c3)/(c+ @) }zmo, 0<t < T, (4.6)
v(s(t),t) = {8()@"(5(1))}/(2(5()) + a), O <t <T. (4.7)

Because 3(1) is continuous at ¢ = 0 and §{0) = f'(l)[g'(O)‘ - fz(l)(ll +¢)] <0
there exists tg > 0 such that $(¢) and consequently v(s(t), ) is negative in [0, #o).
Notice that c;.(0,2) = c4(0,t) = ¢'(t) < 0, we get v(0,¢) < 0. If v(s(ty),%0) = 0,
then vy(s{ty),0) > O by the strong maximum principle. Because of (4.7) we
obtain s(tg) = 0. Note that

va(s(t), 1) = {[=8(t)(c + gy + $(2).5()@"($(tN]/ (e + D }ie=s(0)-
Then v,(s(tg),ts) = 0, a contradiction.

COROLLARY 4.1. Let (T,s,c) be a solution of Problem (P). Then
Ci(wat) 2 _Gla (3": t) € ET- (48)

PRrOOF: As in the proof of Proposition 2.2, we set w = ¢; and get (2.12) -
(2.14). Since $(t) < 0, A(¢) > 0. So w cannot attain negative minimum on

2 = s(t). Hence

> min ¢(t) > — Dr.
w(z,t) 2 min ¢'(7) 2 =Gy, (e,8) € Dr

COROLLARY 4.2. If(T,s,c) is a solution of Problem (P), then
5(t) = [ ()¢ + 1) + G4l IGIE.aXI]f'(C), 0<t<T. (4.9)
PROOF: Using Proposition 2.1 and Corollary 4.1, we obtain

) = {Olexi) + elliemtn 2 mox FO-FOa+1) - G
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THEOREM 4.3. Problem (P) admits a solution for arbitrary T >0.

PROOF: Assume that there exists T > 0 such that the solution cannot be
continued beyond T*. Because of the nonotonicity of s and 3, lim s(t),

lim $(¢) both exists. Using the transformation (3.1), we obtain the followmg,

t—T* —

free boundary problem:

ey — s =0, 0 <2 <s(t),T*<t<T,
wa(0,8) = g(t) +1, T* <t < T,
u(s(t),t) =0, T* <t < T,

ua(s(t),t) = ®(5(1) +¢q, T <t < T.

with initial data

s(1)
ST = lim s(0) (x,T*)ziE%_{_/x elt,) + aldy}.

This problem has a unique solution for suitable T > T* (see [6]), which leads

to a contradiction.

5. Asymptotic estimates

Let s(t), c(z,t) be a solution of Problem (P) for any T > 0. Using Green’s
inequality

é PclT-{—Qd:r-*//%—?E)dd 0<t<T,
8D,

with P = zc; — ¢, @ = e, we get

s(t) i pt ’
%qsz(t)-l—] .’vé(at,t)d:t:+/ c(s(T),T)dT:/ g(T)dr. (5.1)
0 0 0

Set L = f0+°° g(r)dr.

THEOREM 5.1. If ¢ > 0, then

2L :
. 2L 5
tln;n s(t) £ . (5.2)
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Moreover, if L < +oc, then
lim $(¢) =0. ' (5.3)

t—-t oo
PROOF: To prove (5.2), it suffices to use the positivity of ¢ and (5.1). To prove
(5.3), we note that there exist lim s(f), lim 3(t) because of the monotonicity
t—too . t—+oo

of s, and of (5.2). But from (5.2) it follows that tliI-P i(t)=0.

THEOREM 5.2. If¢g =10, g(t) = G > 0 forallt > 0, G is a given constant, then

lim s(t) = +oo. (5.4)

t—+4oco

ProoF: From (5.1) we obtain

s(t) : t
/ xe(z,t)dr = / lg(m) - c(s(7), 7)ldr. (5.5)
0 0

Since 3(t) < 0, there exists . li? $(%), and consequently , 1i_|r{1 c(s(t),t). Suppose
—T 00 —_—T 0

that t_l}ﬁ_noos(t) < oo Then t_l}_irpoos(t) = 0 which implies ti}ﬁ_nooc(s(t),t) = 0.

It then follows '

g(7) = c(s(r),7) 2 G —c(s(), 7) 2 G* >0,

if 7 is large enough. Hence, the right hand side of (5.5) tends to +00 when
¢ tends to +o00. But the left hand side of (5.5) is bounded. Hence we have a

contradiction.
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