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ON THE INVERSE SOURCE PROBLEM
FOR THE WAVE OPERATOR

LE TRONG LUC

Introduction

In this paper we study the following inverse source problem for the wave
operator '

i '
P, _.azAma>0:

where A, is the Laplace operator, on the closed strip
Gr={(z,t) eR™ :2€ R 0<t< T}, T>0.

- Given any distribution v € D'(R™+!) with supp v C R*® x (t > T'), satisfying

the wave equation

Pyo(z,t) =0,t > T,in D'(R™ x (t > T)),

find a (source) distribution v with supp v € G such that the wave potential
E, # v, the convolution of the fundamental solution E, of P, and v, satisfies

the condition

B+ v(z,t) = v(z,t),t > T

In Section 1 we shall present some results and remarks about the genemiizcd
Cauchy problem (see [5], [6]). Section 2 deals with the solvability, the structure
of the set of solutions, and the stability of the proposed problem (cf. (4] for the

case of the heat conduction operator).

We use the terminologies of [5], [6].
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1. Remarks about the generalized Cauchy problem

Due to Wiadimirow ([5], [6]) the classical Cauchy problem:

w(a, 1) € CHRP x (¢ > 0)) 0 CL & x (¢ > 0)), (1)

Pyu(x,t) = flz,t),t > 0, (2)
92%%*—) — uy(z) € C(R™), | (3)

u(z,0) = uo(z) € C(R™), | | (4)

where f,u1,up are given, may be generalized tothe so-called generalized Cauchy

problem of finding a distribution v € D'(R™!) which satisfies the eguation
Pou(z,t) = f(z,t) + uo(z) x &'() + uy(z) x 6(t),in D(R"), (5)

where f € D'(R™, R x{t 2 0)),uo € D'(R"), and u3 € D'(R™). For arbitrary
set A C Rt D/(R™HY, A) denotes the class of all distributions ¢ in D'(R"*")
with supp g € 4. :
Put
F(z,t) = f(z,t) +uo(z) % §'(t) + ui(z) x 6(1).
Since E,, is the fundamental solution of Pr and F' € ’D’(R““, R"x(t = 0)), the

convolution Ej * F' always exists in D/(R™1). The generalized Cauchy problem

(5) has a unique solution, namely (see [5])
w=F,*F,

which continuously depends on F' with respect to the weak topology 1n
D'(R™"). Hence, the generalized Cauchy problem (5) is well-posed.

Throughout the paper we consider the cases n = 1,2,3. At first let us study
some properties of the convolution E, * F. The fundamental solutions E,, for

n = 1,2, 3 have the explicite form (see [5]):

El(z,'t.) = —lz-ﬂ(at —lzhyn =1,

Eo(z,t) = blat—lel) __ oo,

Iwar/at? — |22
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8(t) a(t)
E3(:E,t) = 4775,‘2,52 63«:(:) = ﬁa(aztz - |:v|2),n =3,

where 6 is the Heaviside function.
Note that the fundamental solutions F,,n = 1,2,3, are locally integrable
and have the support on the closed cone

P_'F = {(:r,t) . a?t? < |2f?).

Further, for ¢ — +0 we have (see [5], p. 170) -

aETl(x!t) . azEn(wrt)
ot = 8(a), ot? -

If f(z,t) € D'(R"*!,Gr), then E, * f exists in D'(R™*'). If

E.(z,t) =0, 0 in D'(R™) (G)

E,xfeCYR"x (t>0))nCYR" x (i > 0)),

we say that f belongs to the class Sp(G7). This class if nonempty (see [5]).
For the potential E, * f we have

PJL(En*f)Z(PnEn)*f=6*.f:f'

Particularly, if f € C¥(Gr) forn = 2,3, and f € CY(Gr) for n = 1, then we

obtain

Vo= E.* f € CH{R" xt>0)),

C PuVa(z,t)=0 in R*x(t>T),

oV,
Vn|t=0 = 0; _aTnh:O =0.

If F(z,t) takes the form F(z,t) = ug(z) x §(t) or F(a,t) = wu(x) x &(1)
with uo,u1 € D'(R"), we call the corresponding convolutious E, * F swrfuce

_potentials and denote them by
Vi(z,t) := Ep(z,t) * [ug(z) x §(2)],
V(z,t) := En(z,t) * [u1(z) x 8(2)].

We say that a distribution u(z,t) € D'(R*1) belongs to the class C(1 >
0),p=1,2,...,00, if (u,9) € CP(¢t > 0) for all ¢ € D(R") (cf. [5], p. 170}, i.c.
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Ot 2 0F 1= {u € DR s (ufz, ), 9(2)) € CP(t 2 O),p € DA,

A function ue(x) € C(R") is said to belong to the class SF of type zevo, 1.e.

ug € S, if the corresponding surface potential
En(z,t) * [ug(z) x &'(1)} € CHR" x (t>0))N CY{R" x (t > 0)).
Similarly, a function u1(z) € C(R") is said to belong to the class S{',u; € 57,
if
Eo(z,t)* [ui(z) x 8(t)] € CHR"x(t>0)N CHR" x (t 2 0)).
It is well known that the convolution haé the translation property, i.e. for
f.g € D'(R®) we have (see [5]) -
f(z+ h)* g('c) = f(z)*g(z + h)=(f xg)(z + R}, Vh € n, (7)
where |
(o + ), p(0)) = (F(2), 9z — W), € DB, (5)

In addition, for the fundamental solution En(x,t) (see [5], p. 173) we have
En(z,t)xu(z) x §(t) = Eq(z,t) xu(z) in D'(R", (9)
where E,(z,t)* u(z) is defined by

(Ba(, &) (), (2, 5) = (Bl t) x (@), n(a8® — o Yol + 1)),
] . © c D(R'u+l ),
(10)

and n(r) is any function of the class C °o( R1) vanishing for —7 < —4 and equal
1 for 7 > —€(6, € are arbitrary numbers with § > € > 0). In view of (7) (10} we

have

E.(z,t) * u(x) X &(t — T)= (En*u X Mz, t — T)={(Ep *u)a,t =7T), (11}

where (E, *u)(z,t — T) = En(z,t = T) * u(z) is defined by
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(En(mat = T) xufz), p(z,1)) == ((En * u)(wat - T)? rp(m, t))
= ((En * u){,t),0(z,t + T))
= (En(x,t) x u(y),n(a®t® — [z*)o(z + y,t + T), € D(R"™")
| (12)
This means that
Eu(z,t) % u(2) x §(t — T) = Ey(z,t — T) *u(z) in D'(R"T'). (13)

It is well known that

DO(f(x) % g(x)) = D7 f(2) # 9(a) = £() « Dg(e),

where & = (o1, ++ ,0,) is any multi-integer and f,¢g € D'(R"™). This together
with (13) implies
Ep(z,t) *u(z) x §'(¢4 - T) = %(En(:v,t) xu(z) x §(t — T))
3}

= E(En(:':,t —T)*u(z)) = %En(:g, t — T) * ufx). (14)

So we have proved

LEMMA 1. The following equalities hold:

) En(z,t) *u(z) X §(t = T) = Ep(z,t — Ty xu(z) in D(R*"),
Eu(z,t) *u(z) x §'(t - T) = %En(l‘,t ~T)*ufz) in D'(R"F'),

where Ep(z,t — T) * u(z) is defined by (12).
LEMMA 2. Let ug,u; € T'(R™). Then the following statements holds:
(i) The convolution | |
u(z,t) := En{a,t) * [ue{e) x 6'(t — T) + wa(z) x 6(t — T)) (15)
is the unique solution of the operator equat_ic;n

Pru(z,t) = uop(®) x &'t —T)+uwa(z) x §(t = T) in T(R"t).
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Furthermore, it has the properties:

u(w,t) € C=@>T), | (16)
Pou(a,t) =0 in D(R*x(>T) (17)
ulw,t) — uole), as t— 4T, in- D'(R"), (18)
@%ﬂ Cuy(e), as t—+T, in DR (1)

The generalized Cauchy problem of finding the distribution u € T (R,
satisfying (17)-( 19), is well-posed.

(ii) Let uo € S¢»u1 € S». Then the distribution u of (15) has the following

properties:
(e, t) € CHR x (t>T)N CHMR" x (t = T)), (20)
Pou(e,t) =0 in R*x(t>T), | (21)
u(,t) = uo(z), as t— +T | (22)
Q_lf%_tﬁl —uy(z), as t—+T o (23)

The classical Caucly problem of finding the function u of the class of (20),
satisfying (21)-(23), is well-posed.

ProOF: (i) Since E,(z,1)* u(z) EAC°°(?5 > 0)* (see (5], [6]), we obtain
En(z,t—T)xu(z) € CT{> 0)*.
By virtm‘a of Lemma 1 we have (16). Because
Suppluoe(x) x 6'(t = T) +ua(z) x &t — Ty CR*x(t=1)
- we obtain

Pu(s,t) = PuBa(z,t) * [uo(x) x 8/t = T) +ua(e) x o0t = T))
— wo(z) x §'(t — T) +ua(z) x 6(t = T)
-0 in D(R",R*x(t# 0)).

Consequently,
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Pau(z,t) =0 i D'(R" x (t>T)).
In view of (6), (11) and (14} we get
u(e,t) = En(z,t) * [uo(z) x §'(t = T) + u1(z) x 6(t — T
= E,(z,t = T) * uo(z) + Bn(z,t — T} * ui{2)
— uo("”), as t— 4T, in P’(Rn)v

and

x,t _ .
&ugt, ) =B (z,t — T) s ug(z) + E (2, — T) % w((2)

— uy(x), as t—+T, in D'(R™).

Thus (16)-(19) are proved. Now, let up,u; € D'(R") be given. Then the
generalized Cauchy problem of finding a distribution v € D'(R"*!), satislying
(17)—(19), is uniquely solvable and u is expressed by (15). From the continuity

of the convolution it follows that the problem considered is well-posed.

(ii) Let ug € S§,u1 € ST. Then by definition of ST, ST the distribution

w(z,t) = Ep(z,t) # [ug(z) X §'(1 ~ T)‘+ ur{z) x &(t — T)]
= (B! %o + En v u)(z,t — T) (24)

has the property (20)-(23). Indeed, (see [5], [6]) the distribution -
u(z.7) := (B! % uo + En *ug)(z, )

has the properties

u(z,7) € CHR™ x (1 > 0)) N CYR" x (1 > 0)), (25)
Pou(z,7)=0 for 7>0, (20)
u(z, 1) — u(z), Cas 7o +0, (27)
—-——-a“gl: ), ui(z), as T — +0. (28)

Setting 7'=1t — T in (25)-(28) we get (20)-(23). The classical Cauchy problem
(25)—(28) is therefore transformed to the classical Cauchy problem (20) (23)
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which has the unique solution u(z,t) of (24). The stability of the problem (:.'_7()) -
(23) follows from that of the problem (25)-(28) (see [5], p.181). The problem
(20)—(23) is thus well-posed. ‘

2. Inverse source problem for the Strip G

9.1. Ezistence und uniqueness theorems
We denote

Gy :={(z,t): 2 € R",0<t < T}, T >0,

Gr = {(z,t): s €R", 0SS T},

G, = {(z,t): z € R",t > T},

H:={veD(G):Pow=0 in D'(Gy)}.

The inverse source problem for the wave operator P, on the closed strip G with
respect to any distribution v € H is to find a distribution ¥ € D(R" . Gy)

satisfying
E, xv(z,t) =v(z,t),t > T, in D'(Gy).

Denote by L(v) the set of all solutions of the considered problem, i.c.
Liv):={re DR, G7) : En xv(z,t) = v(z,t),t > T}

Then the inverse source problem may be considered as the study of the following
multivalued mapping

L H — 9P (R™Gr)

v o L(v) € 2P (B0,

Let us introduce the following subclasses of H:

Ho = H.ﬂ D’(Rn+1;—G_1),

Hy:==HnN Cl(t 2 T)*,

Hg = HnN Sn(Rn X (t z T))a

where
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SUR"x (12 T))={v € CHR" x A >THNC R " x (+ > T)):
(91)(3;,1‘)'
i=

v(z,T) € S7, T

r €57},

Then we have
H,CH, CHyCH. {29)

Further, let us introduce the following subclasses of D'(R*T! R" x (t = T));
AR x (t=T)) = {v=1uv(z) x §'(¢t — T)+
+'I)|(.’l?) Xﬁ(f.—T):Uo,’Ul ED’(R“)}, 7
AR x(t=T)):={v e A(R" x (t =T)) 1 v € 5,1 € S/'}.

Then
AR x (1 =T) CA"R" x(t=T)) CD(R*™ ,R" x (+ =T)). {30}
A relation between (29), (30) 1s established in the following

THEOREM 1. {Inverse Statements)

(i)Yo € Hy 3ve Lw)NT(R™,R"x (t=T))
(i) ¥o € H, e Lv)n A*(R" x (t = T)),
(iii) Vo € Hy 3w e L{v) N A*™(R™ x (t = T)).

H

PROOF: (i) Let v ¢ HND'(R*,G}). Since supp v C G, we have
Pyo(z,t)=0 for t<T in _D'(R""'V1 ) {31)
On the other hand, by the definition of H we have
Py(v(z,t)=0 for t>T in D(R"FH). | (32)
Combining (31) and (32) we get

Pyo(z,t)=0 for t#T in D'(R") : (33)
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- which yields supp Pav & R™ x (t = T). By the definition of the fundamental

solution we obtain

v(iz, 1) = 8(z,t) x v(z,t) = (PnEn(z, 1)) * v{z,t)
= En(z,1) * Pyo(z,t) in D'(R™1).

Consequently,
v(z,t) = Ep(x,t) * Poo(z,t),t >T in .‘D'(R"'H ).
That means P,v € L(v). In view of (33),
v = Py € Lw)ND(R™, R* x (¢ =‘T)j.

(ii) Let v € Hy = HNC(¢ 2 T)". Then v € D'(R™H) C D'(R" x (¢ > T)),
and (v(z,1),(x)) € C*(t 2 T) Vp € D(R"). From this there exist vy(ir), and
v1(z) in D'(R™) such that

(o). 1) = Jim, ol hea)) o € DU

(o) () = lim, 5 (0(2, )6 € DR

Then we have

o(z,£) = vo(z), as t—+T, in D'(B"), (31)
—av—((,;—;’—ﬂ — vl(m), as t—+T, in D'(R"). | (39)
The potential
(e, t) = Ea(z,6) * [oo(e) x 8/(t = T) + va(a) x 3(¢ = T} (36)

is the unique solution of the generalized Cauchy problem (see Lemma 2) for the
wave equation Ppv(z,t) = 0 for t > T with the initial conditions (34), (35).

Hence

v = vp{x) X §'(t — T) +vi(z) X 8(t = T) € L{v) N A*(R* x (1 = T)).
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Now suppose thait there are two distributions »,vs -of the class L(v) n
A*(R" x (t = T)), i.e. there exist vl,v[, € D’(R"),t = 1,2, such that

vi(z,t) = v(')(a:) X 6’(t -1+ v;(m) x 6t —T),i= 1_;2,‘ -' (37) |
" B, * v;(z, t)_ W * (T, ) = '
—v(:c t),t> T, in D'(R**1),i =1, 2 _ -(38)'-

Substituting v; of (37), by virtue of Lemma 2 (i) a.nd (34), (35), we obtain

- Eqn *vi(z,t) =V'E,,'('$_? t)i * [vd () x 8'(t=T) + vi(z) % 6(t — T)]
- — () = vi(z), as t = +T, in D’(R“), 4 = i,2.

This together with (37) implies
Vi =19 --'Ug(.‘!:) Xé’(t-—T)-ﬁ-‘Ul(m) X 5(t-—T) = v
- (iii) The proof of this pa.rt is analogous to that of (11)

REMARK 1: Fixing T we may conmder the inverse source problem on the closed

domain : S o
| Gror={(2,):s €R" Ty St<THOS T <T, -

as the study of the solution set '
L'To_(v) = {v € D'(R"*,Grp,1) V: E+ vz, t) =v(z,t),t > T, in D'(G1)}
with v € H. In this case we have the same results as in Theorem 1.
'REMARK 2: (1) Let vg,v; € D’ (R"),O < T1 < L. Then the distribution
v(z, t) = En (x 1) % [vo(a:) X 5'(t Dy 4ue) x6E-T)]  (39)

for t > T is the unique solution of the géneralized Cauchy problem:

u(z,t) € C°(t > T)*, - (40)
Pnu(a:’ t) =0,t>T;, in . ‘D’(Rr‘;-l-l)'! . (41) 3
u(:r:,t) = v(i:T2)’ ‘as t—'+12, in .‘ ’D’(Rn)a (42)

Ou(z,t)  Ov(z,t)
ot ot

lt=T,, as t—+T3, in ‘_D'(R").- (43).
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(ii) tet vy € SF, vy € 87,0 S.T1 < T;. Then the distribution v{xr,#) of (39)
is the unique solution of the following classical Cauchy problem for ¢ > T:

u € CHR™ x (i > Ty)) N C* (R x (t > Ts)), (44)

P,,u(t H=0t>Tp (45)
(e, Ty = v(z,Tg) € .5‘3, ' _ (-16)
Qu(x,Ty) _ Ov(z,Ty) 2 C

Now we 1ntr0duce the followmg classes:

A’(G}‘) = {Il = ‘U[)(IL') X 6’(t — T]) + vl(:c) X 6(t - Tg) Vo, ) € D'( R")
_ 0<T, T» < T},
CAY(Gr) = {y € A*(Gr):v € SF,v1 € ST}

denoting by E, * v|¢,, as usual, the restriction of E, * v on G we have the

following

THEOREM 2. {Direct Statement) The following statements holds:

(i) m : A*(G7)k— Hy C D'(G1)
v mui=E, xvlg, € Hy;
(i) my : A**(Gv) —» H; C D'(Gy)
v = myr = E, xvilg, € Ha;
(iii) s : J (Gr) - 16
vis myv = E, xv|g, € H2 N fe).

PROOF: (i) Let v € A*(G7), i.e. there exist T7,T> with 0 < Ty 1y < T andd
vo, 1 € D'(R") such that

vz, 1) = vo(x) x §'(t — Ty) + vi(z) x 6(t — T).

From Lemma 2 it follows that E, * v € C™( > max(T},T3))*. Since Ty <
T, Ty < T, we get E, xv € C'(t 2 T)*. In addition, because

Po(Ey, % (i, 1)) = vo(a) x 8'(t = T1) +v1(z) x 6( ~ T) =0 in Gy )

we obtain E, * v|¢, € H.
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'(ii) Let v € A**(G'p)_ with
vz, t) = vo() X St —-T)+un(2)xé(t—-T),0<T, Ty <T,vs € 5,0, € 5.
From Remark 2 (ii) it follows that |
E,xv(z,T) € 5y,
-Ba_tE"' *v(x,T) €57,
By definition we have B, * v(iz,t)|g, e Ha=HnNS({t>T).

(iii) Let » € Y(Gr). Since E, € S{R"+1), the convolution E,, * 1/ exists in
6a1 (see [G], p. 98). Therefore Ey, * v|g, € Ha. Hence the theorem ix provedd.

COROLLARY. (Sweeping-Out Principle)

(i) Vv € AN(Gy) 3 € L'(v) N A™(R" x (t = T)),
(i) Vo € 4 (Gr) W' € I'(v) N A™(R" x (t = T)),
(i) Vv € (Gr) A € L'(w) nA*(R™ x (t = T)),

where L'(1) := L(E,, * v|g, ).
Proor: (i) Let v € A*(G7), i.e. there exist vg, 11 € ‘D’(R"‘) and 77, Ty with
(_) <T,,T, < T such that

v =uvg(x) x §'(t —Ti)+ v (x) x 6(t — Ty).

" By Theorem 2 we Lave E, *v|¢, € Hy. By Theorem 1 therc exists i tniguely
determined distribution ' € L(Ey 5 v|a, )N ANR® x (t = T)) or /' € L'(i1) 1
A* R x (t = T)).

(11), (i1). The proof of these parts is analogous to that of (i).
2.2. Structure of the solution set L(v)

As in the case of the heat conduction operator (see [4]) we introduce the sct

E(Gr) = {r e D'(R"',Gy) : B, + v exists in D'(R"1)}.



36 LE TRONG LUC
We have E(Gr) = D'(R™+1,Gr) (see Section 1). Let us consider the mapping

r: B(Gr) — D'(G1)

v v = E, * Vg,
and denote Im 7 := n(E(G7)). It is obvious that

=(E(GT)) Q H c D'(Gy),
.DI(Rn-i-l"G'g'l) C fDI(Rn+1) C 'D’(Gl)-

From, this we obtain

w(E(Gr))N D(R"T,G1) S Ho=HnN D'(R™,Gy) C DR € D'(Gh)-
(48)
Let vy € Ho. Then by Theorem 1(1) there exists an element v € E(@T) =
D'(R™1,Gr) such that mv = Ey * vlg, = vo.“ This means vy = 7 €
=(E(Gq)) N D'(R™1, G;). Consequently, Ho € x(E(Gr)) N ’D"(R”"‘"1 Gy).
This together Wlth (48) implies

Hy = Im = nD'(R"™,Gr).

Using this we consider the chain H, ¢ H, C Hy C H and the corresponding
so-called multivalued mappings L, Lo, L1, La:

H, C H, - H@ C H
1Ly VL 1 Lo _ 1L
213"(R"+1,ET) 219'(R"+‘,6T) . 21)'(R"+1,6T) 2@’(R"+1,'c$g-)

where L;(v) := L{v),1 = 0,1,2

For each element v € H it is not known whether the solution set L(v) is
enipty or not. As we have shown (see Theorem 1 (1)), for each element v € Ho

there exists at least an element veE Lo (v). So it is reasonable to study the set

Im Lo = {L(]('U) v e Ho}
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We introduce in Im Lo the additive operation & and the multiplication with
real number X as follows:
Lo(o1) ® La(w) = {v € D'(R™,Br) : By xv(w,t) = (o1 +v2)(w 101 3 1,
(49)
ALg(v) = {r € ‘D'(RnH,ET) : E, *v(z,t) = dv(z, t),t >.T},
(50)

where v,,v2,v € Hy. It is casy to verify that the following properties hold: -

- Commutativity: Lo(vy) & Lo(ve) = Lo(vs) ® LO(UI),.- (51)
- Associativity: [Lo(v1) @ Lo(vz)] o Lo(vs) = Lo(v1) @ [Lo(ve) @ Lalvs)], (52)
- Homogencity: ALg(v) = Lo(Av), 7 ' (53)
- Distributivity: aLg(v;) @ BLo(ve) = Lo(av, + Pvg). (%)

There is the zero element
Lo(0) = {v e D'(R**,Gp) : Ep % v(x,t) =0, t > T},
with the properties ' '
Lo(v) & Lo(0) = Lo(v) . Vv € Hy,
ALg(0) = Lo(0) VA ER.

Note that the zero clement Lo(0) is usually called the null effect. We have Ker
m = Lo(0). A multivalued mapping

F:X - 2P(R".6r)
is said to be weakly closed and convex (cf. [3]) if the set F() is convex and
closed with respect to the weak topology of D'(R™!) for every » € X,
THEOREM 3. The mappings Lo, L1, Ly are convex and weally closed.

PROOF: The convexity of Lo, Ly, Lo is easy to verify. It remains to show their -

weak closedness. Let © be an arbitrary element of Hy and {wv;},7 = 1,2...., any
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sequence of Lo(v) which weakly converges to v in D(R"T!). We shadl verify

that vo € Lo(v)- Indeed, by the definition of v; € 'D’(R"“,—G—T) we ubf_.nily
(vo,p) = lim (vir0) =0 Vo € DR\ Gr). )
Hence vo € D'(1 '*_+£,Z“;T). On the other hand, from the.assumpth M)
E, * viz, 1) = v(z,t},t >0, in-’D'(R““"l),z-' =12,..,
and the continuity of the .convolution it follows that
E. v vola,t) = v(z; 1)t > 0, in D(R™H),
This together with (55) implies vo € Lo(v)- Analogously, from the fact that
Li(v) = Lo(v) = L(v) Vv e Hi,i = 1,2,
it follows that L;, L, are weakly closed. The proof is .c01n1)1cttt3.
'2.5’. Stability .
THEOREM 4. The following transformations

T, Hi = ImT € AR x (t=T),

0= Ty(v):=v € L(v)N A¥(R" x (t=T)),
T,:Hy, — Im 2} c A" (R % (t =T)), |

v Ta(v) :=v € L{v)N A™(R* x (t=T))

are isomorphic and homeomorphic.

ProOOF: By Tlcorem 1, for each v € Hi = HN Ci(t > T)* there exists
a uniquely determined distribution v € L(v) N A*(R" X (t =1)). So the
transformation T is well-defined. Conversely, let v € Im Ty, 1.c. there is an

element v € H, such that Ti(v) = v. That means there exists the inverse

T]_] M Inl Tl — Hl,
v Tl_l(v) = En * i’lGl =vin D'(G| )
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The transformation Ty is therefore an isomorphism. Becanse of the weak con-
tinuity of the couvolution it is also an homeomorphism. The similar statement

about Ts is proved analogously.

There is a problem of coupling several fields such as Newtonian polentials

and wave potentials (see [1], [2]), which we will discuss in other separate paper.

ACKNOWLEDGEMENT: The author would like to thank Prof. "G. Auger of the
University of Halle, Germany, for critical remarks and Prof. an Viur Lnoe of

Imtztut(‘ of Mdthe‘nmh(s Hano1 for useful d1scussmnq

REFERENCES

[1] A.S. Alckceev and B.A. Bubnov B.A., On a combined statement of inverse scismucs and
gravimelry problems, Dokl. Akad, Nauk, SSSR 261(1981), 5, 1086-1090 (in Nussian).

[2] A.S. Alekceev and B.A. Bubnov, Stabilily of the solution of an inverse problem of coupled
seismology and gravimeiry, Dokl. Akad. Nauk. SSSR 275(19841), 2, 332-335 (in Russian).

{3] G. Anger, Inverse problems in differential equations, Akademic-Verlag, Berlin. '

{4] Le Trong Luc, On the inverse source problem for the heat conduclion operelor, Preprint
90.12. Institute of Mathematics, Hanoi, 1990.

[5] V.8. Wladimirov, Bquations of Mathematical Physics, Moscow, 1967 {in Russian).

[6] V.S. Wladimirov, Generalized Functions in Mathematical Physics, Moscow, 1976 (in Rus-
sian).

INSTITUTIS OF MA’I‘HEMATICS
P,0. BOX 631 BO HO, 10000 HANOGI, VIETNAM



