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ON THE UNIQUENESS OF GLOBAL CLASSICAL
SOLUTIONS OF THE CAUCHY PROBLEM
FOR HAMILTON-JACOBI EQUATIONS

TrAN DUC VAN AND NGUYEN DUy THAI SoN

Abstract. We consider the Cauchy problem for Hamilton-Jacobi equations in
n-dimensional space (n > 1) and prove some uniqueness results for classical
global solutions. Our method is based on the theory of multivalued mappings
and of differential inclusions.
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The theory of nonlinear partial differential equations of first order in
general and of Hamilton-Jacobi equations in particular has attracted much in-
terest, during the past decades, partly due to its applications in some fields.
such as classical mechanics, the theory of waves, optimal control, and so on.
Through the works of S. H. Benton, J. D. Cole, E. D. Conway, M.G. Crandall,
A. Douglis, L. C. Evans, W. H. Fleming, J. Glimm, E. Hopf, S. N. Kruzkov, P.
D. Lax, P. L. Lions, V. P. Maslov, O. A. Oleinhik, L. Rozdestvenskii, M. Tsuji
and others many fundamental results on global (classical and generalized) solu-
tions of Cauchy problems have been obtained and various kinds of generalized
solutions have been introduced. Recently, A. I. Subbotin and others [1] (see the
references cited therein} studied global generalized solutions by methods of the
theory of differential games.

In this paper we consider the Cauchy problems for Hamilton-Jacobi equa-

tions in n-dimensional space (n > 1) and prove some uniqueness theorems for -
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classical global solutions. Our method is based on the theory of multivalued

mappings and of differential inclusions.

§1. The uniqueness of classical global solutions

Let T be a positive number, Qp = (0,T) x R" = {(t,z) e R*'0 <t <
T}. We consider the Cauchy problem for Hamilton-Jacobi equations:

é_?u_gt,_x)_ + H(t,w,eru(t,:c)) =0 in Qr, (1.1)
u(0,z) = wo(z). on {t=0,z¢€ R"}, (1.2)

where H(t,z,p) is a function of (t,z,p) € (0,T) x R x R". The vector p =
(p*, p?, ..., p") corresponds to Vzu = (Ou/Bz1,...,0u/0zy) and ug(z) is a known
function. We are interested in the uniqueness of global classical solutions for

Cauchy problem (1.1),(1.2).

DEFINITION 1.1. A function u(t,«) in C1{(Qr)NC([0, T)xR") is called a global
classical solution of the problem (1.1),(1:2) if and only if u(t,z) satisfies (1.1)
in Qp and (1.2) on {t = 0,2 € R"} everywhere.

Further, let us denote by || - [| and < -+ > the norm and the scalar
product in R™, respectively.

THEOREM 1.1. Suppose that there exists a number N > 0 such that for all
P1,P2 € Rn;

\H(t, 2, p1) — H(t, 2, p2)] < N1+ zlDllpr = pell - (13)
If uy(t, z) and us(t,z) are global classical solutions of the problem (1.1),(1.2),
then ui(t,z) = ug(t,z) in 7. '

REMARK 1.1. The condition (1.3) is fulfilled if, for example, Hamiltonian
H(t,z,p) is differentiable with respect to p and
V,H(t
IV Ht el

u
woenr L+l
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THEOREM 1.2. Suppose that H(t,z,p)/(1+|z||) is locally Lipschitz continuous
with respect to p. If ui(t,z) and us(t,z) are global classical solutions of the
problem (1.1),(1.2) and

sup |[Vrui(t,z)]| <00, 21=1,2,
(tvz)GQT

then u;(t,2) = ua(t,z) in Qr.
From Theorem 1.2 we get the following
COROLLARY 1.1. Suppose that H(t,z,p) is locally Lipschitz continuous with

respect to p and it is independent of x. Ifu,(t,x) and uy(t, ) are global classical
solutions of the problem (1.1),(1.2} and

sup ||Vaus(t,z)|} < o00,i=1,2,
(t,z)€Qy :
then ui(t, x) = ua(t, ;r)'in Qr.
"REMARK 1.2. The condition of Corollary 1.1 is satisfied if, for example, Hamil-
tonian H(t,p) is differentiable with respect to p.

We will give the proof of Theorems 1.1 and 1.2 in §3. Our proof is based

on the main lemma in §2.

§2. The main lemma

LEMMA 2.1 (Main Lemma). Let w(t,z) be a function in C*(Qr) N C([0,T) x
R™), w(0,z) = 0 on {t = 0,z € R"}. Suppose that there exists a nonegative
constant N such that for any (t,z) € Qr:

2u.0)

2 < N el V(s )l (2.1)

Then w(t,z) =0 in Qr.

PROOF: Let (%o, o) be an arbitrary point in Qr. We have to show that

w(to, zo) = 0. For this we define a multivalued function F(t, z) : {27 — comp
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(R™) in the following way:

Ft,o) = {f €R"| fll < N+ |ell),
Ow(t, )
at

We now consider the differential inclusion

< FVaw(ta) >=0). (22)

i(t) € F(t,z(t)), | (2.3)

2(to) = zo. | (2.4)

Let X (to, o) be the set of absolutely continuous functions z(-) : [0, T]-——R"
which satisfy almost everywhere in [0, T] the differential inclusion (2.-3) and the-
condition (2. 4) We are going to show that X (to, o) is a non-empty compact
subset in C([0, T] R"). To prove this we need the following result.

THEOREM 2.1 (Theorem M.3, p. 206 in [1]). Suppose that the multivalued
function F(t,z) : Qr— comp (R") satisfies the conditions:
(1') F(t,m) is a non-empty convex set in R™ for (t,z) € Qr.
(ii} The function F(t,z) is upper semicontinuous in {r.
(iii) There exists a number N > 0 such that for all (t,z) € Qr,

sup{[{fll | f € F(t,2)} < N(1 +[z})-

Then the set X(to,zo) of solutions of (2.3),(2.4) is a non-empty compact set
in C([0, T],R™).

We now show that the function F(t,z) defined by (2.2) satisfies all con-
ditions of Theorem 2.1. Indeed we have to verify only (i} and (ii). |

First we check that for any (¢,z) € Qr, F(t,x) is a.non—empty and convex
set in R™. If V,w(t,z) = 0, then by (2.1) it follows that dw(t,z)/dt = 0 and
0€ F(t,z). I V,w(t, z) 0, we put

;o Ou(t,2)/t

YV, w(t, ).
WP e
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By virtue of (2.1) we obtain

[0w(t, 2}/ 0t
= -——=—— < N(1+ [iz|])-
W= ey <A+l
On the other hand,
__awgtt,m)+ < f,Vaw(t,z) > =

= aw(t’ (E) —_— 3w(t, m)/atg < vxw(t; -'C)7 vzw(ta 3:) >=0.
ot [Vaw(t, o)

Thus we have shown that f € F(t,z), ie. F(t,x) is non-empty. Since the
set {f||f]l < N(1 + ||z|])} is convex and the expression dw(t,z)/0t + <
f,Vow(t,z) >= 0 is affine with respect to f, F(t,x) is a convex, closed and
bounded subset in R". Hence F(t,x) is a nonempty compact set in R".

To verify (ii) we observe that the multivalued function F(t,x) is bounded

in a neighborhood of (¢,z) € Qr, i.e. there exist numbers I > 0,r >0 such that
sup{{|fll|f € F(7,y),(m,y) € Bi(t) x Br(z) C Qr} <oo ¥(t.z) € {ir,

where Bj(t)( resp. By(z)) is a ball in R'( resp. R™) centered in t (resp. x) with
radius 1 (resp. r). In addition, it is easy to see that the function F(t,x) is closed
because for any sequence (fy,zx) € Qr (b = 1,2, .y (ki )— (%0, 20), and
for any sequence fx € F(ty,z1) (k= 1,2,...), fy— fo, we have fo € F(tg, o).
Then F(t.x) is upper semicontinuous in Q7.

Thus, we have shown that the function F(£, ) defined by (2.2) satisfies
all conditions of Theorem 2.1 . By virtue of this theorem the set X (to,20) of
solutions of (2.3),(2.4) is non-empty and compact in C([0,T], R").

Now let z(.) € X(to,zo). We consider the function () = w(t, z(t)).
Since w(t,z) € C*(Slr) and z(#) is absolutely continuous on [0,T], we conclude
that (%) is absolutely continuous on [¢, T —¢] for any € € (0, T/2). On the other

hand,

G(t) = aw(tav:(t))

almost everywhere on {¢, T — ¢]. Then ¢(t) is constant on [e,T — ¢]. Since € is an

+ < #(1), Vow(t, () >=0

arbitrary number and @(t) is continuous at t = 0, we obtain that o(t) = ¢(0) =



166 T.D. VAN , N. D, T. SON

w(0, 2(0)) = 0 for ¢ € [0, T). In particular, o(tg) = w(to, 2(te)) = w(to, o) = 0.

The proof of Lemma 2.1 is complete.

§3. Proof of Theorems 1.1 and 1.2

PROOF OF THEOREM 1.1: Assume that the problem (1.1),(1.2) has two global
classical solutions u1(#, z) and us(t, 2) in C*(Qr)NC([0,T) x R™). We consider
the function u(¢,z) = ui(t, =) — ua(¢,@). Then v(0,2) =0,z € R". Moreover ,
from condition (1.3) we get

Ju(t, z)

&

S |H(t,:n,V$u1(t, .’L)) — H(t, x,VIUQ(tu 3;))‘

< N1+ o) Vst (t, 2) = Voua(t, 2)]
= N(L + DIV su(t, 2]

Hence u(t,z) = 0 in 7 by Lemma 2.1 . This proves Theorem 1.1.

PROOF OF THEOREM 1.2: Let uy(t,2) and uy(#, &) be global classical solutions
of the problem (1.1) and (1.2). We consider the function u(t,z) = u1(t,z) -
ug(t,z), u(0,z) =0,z € R". Let ‘

kE=max{ sup |[V.u(t,z){|}.
=12 (¢x)eQr

Denote by By the ball By = {f € R*| ||f|| < k}. Since H(t,z,p)/(1 + ||z|]) is

locally Lipschitz continuous with respect to p , we have

H(tam:pl) _ H(t‘}a:)pZ)
1+ [ 1+ ||

S L”Pl _p2”) V(t,:t) € QT??I&Z)Z € -B—k-

Then
Ju(t, )

ot

< |H(t, 2, Veui(t,z) — H(t, z, Vaua(t, o)

< LA+ =IDIVaul, 2)I-

Applying Lemma 2.1 to u(¢, ) we obtain that u(f,2) = 0 in Q, which proves
Theorem 1.2.
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The uniqueness of global classical solutions of the Cauchy problems for
general partial differential equations of first order will be considered in a forth-

coming paper by the method used here.
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