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LEFT SF-RINGS
WHOSE COMPLEMENT LEFT IDEALS ARE IDEALS

ZHANG JULE AND DU XIANNENG

Abstract. A ring R is called a left (right) SF-ring if every simple left (right)
R-module is flat. [t is known that von Neumann regular rings are left and right
SF-rings. In this note, we prove that if R is a left SF-ring whose complement
left ideals are ideals, then R is strongly regular.

All rings considered in this paper are associative with identity, and all
modules are unital. A ring R is (von Neumann) regular provided that for every
a € R there exists b € R such that a = aba. R is called a strongly regular ring
if for each a € R, a € a®?R. Following 1}, call a ring R a left (right) SF-ring if
every simple left (right) R-module is flat. It is known that every von Neumann
regular ring is a left and right SF-ring. Ramamurthi {1} initiated the study
of SF-rings and the question whether a SF-ring is necessarily regular. Since
several years, S F-rings have been studied by many authors and the regularity of
SF —fings satisfying certain additional conditions are obtained (cf. for example,
[2] to {5]). In [2], M.B. Rege proved that a ring R is strongly regular if R is a left
S F-ring whose maximal right ideals are ideals . R.Yue Chi Ming [5, Theorem 4]
proved the strong regularity of left SF-ring whose maximal left 1deals are ideals,
which answers a question raised in [6, p.441]. Using complement one-sided ideals
instead of maximal one -sided ideals, R.Yue Chi Ming [3, Prop.3] showed that if
R is a right SF-ring whose complement left ideals are ideals, then R is strongly
regular, and he proposed the following question: Is R strongly regular if R is a
left SF-ring whose complement left ideals are ideals? In this note, we gives a

positive answer to the question.
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We first prove some important lemmas.
A ring without nonzero nilpotent elements is called a reduced ring. We

use Z to denote the left singular ideal of a ring R.

LEMMA 1. Let R be a ring. If every complement left ideal of R is an idea],
then R/Z is reduced.

PROOF: Suppose there exists € R,a ¢ Z such that a? € Z, then /(a) is not
left essential in I{a®) and hence there exists a nonzero left ideal I such that
{a) @ I is left essential in /(a?). Let C' be a complement of {(e) in R such that
I C C. By hypothesis, C is an ideal of R. Since Ja € Ca € C and Ia C la),
then Ta C C'N(a) = 0 which implies I C I(a). Therefore I = I'N {a) =0, a
contradiction to I # 0. This proves that R/Z is reduced.

LEMMA 2. Let R be a left SF-ring. If every complement left ideal of R is an

ideal, then R/Z is a stroﬁgly regular ring.

PROOF: By Lemma 1, R/Z is reduced. Since R is a left SF-ring, then R/Z
is a left SF-ring by (2, Prop. 3.2, and hence R/Z is strongly regular by (2,
Remark 3.13].

LEMMA 3. Let R be a left SF-ring. If every complement left ideal of R is an
ideal, then Z = ().

PROOF: Let Z # 0. For every 0 # a € Z, consider
T=2+r(a).

If T # R, then there is a maximal right ideal K of R such that 7 C K. Because
of the known fact that stronly regular rings are right and left duo, it follows
from Lemma 2 that K/Z is an ideal of R/Z. Then K is an ideal of R. Thus

there is a maximal left ideal L such that
TCKCLCR.

Since R 1s a left SF-ring and @ € L we have & = ab for some b € L which
implies 1 — b € r{a) C L, whence 1 = (1-5)+b € L, contradicting L # R.
Thus T = Z 4 r(a) = R. This implies that there exist some u € Z and
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d € r{a) such that v + d = 1 and hence au = a. Since I(u) is left essential in
R,l{(u)N Ra # 0 and hence there is 2 € R such that za # 0 and z¢ € {(u). This
gives zau = 0, that is za = 0 since au = a, this contradicts za # 0. Therefore
Z =0.

Now we state our main result which gives a positive answer to the ques-

tion raised in [3].

THEOREM. If R is a left SF-ring whose complement left ideals are ideals, then

R is strongly regular.

PROOF: It follows from Lemmas 2 and 3 that R is strongly regular.
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