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HOLOMORPHIC EXTENSION SPACES AND FINITE PROPER
HOLOMORPHIC SURJECTIONS

LE MAU HAL’

Introduction

The extension of holomorphic maps has been investigated by several au-
thors. Recent results can be found in the works of B. Shiffman, A. Hirschowitz,
G. Dloussky, S. M. Ivashkovich,.... In the present paper, based on ideas of G.

- Dloussky [1], we shall prove the invariance of holomorphic extendibility under

finite proper holomorphic projections (Theorem 2.1).

1. Holomorphic extension spaces

1.1. Let X be a complex space. We say that X is a holomorphic extension
space (shortly, HES) if the following two conditions are satisfied :

(H) Every holomorphic map from a spreaded domain D over a Stein manifold
to X can be holomorphically extended to * D, the envelope of holomorphy
of D.

(R) Every holomorphic map from Z\S5, where Z is a normal complex space
and 5 is an analytic set in Z of codimension > 2, to X can be holomor-
phically extended to Z.

The case where (H) (resp. (R)) is satisfied is called a Hartogs (Riemann)
holomorphic extension space.

By the Docquier-Grauert theorem [2] as in [13] we have

1.2. PROPOSITION. Let X be a complex space . Then the following are equiv-
alent:
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(i) X is a Hartogs holomorphic extension space .
(ii) Every holomorphic map from a Hartogs domain H,(r),n > 2,0<7 <1
can be extended holomorphically to A™.
(iii} The spreaded domain associated to the sheaf of germs of holomorphic

maps on a Stein manifold with values in X is Stein.

Here, by H,(r) we denote
Ho(r) ={z € A™: |z] <1, 1 i S n— 1]zl <1

{zEA“:|zn|>1—~r;lzi|<1,1§i§n—1}.

1.3. EXAMPLES.

1) The following are Hartogs holomorphic extension spaces:

(a) Every Stein space [4].

(b) Every locally pseudoconvex spreaded domain not containing a
compact analytic set of positive dimension over a homogeneous
projective manifold [6].

(¢) Every complex space satisfying the disc condition , in particular,
every complex manifold whose universal cover manifold has a com-
plete Hermitian metric with non-positive holomorphic curvature
and every complete hyperbolic space [13].

{d) Every holomorphic convex Kahler manifold not containing & ra-
tional curve [7).

2) Every Stein space is a Riemann holomorphic extension space {3], whereas
every hyperbolic projective manifold is not a Riemann holomorphic
extension space [11].

3) We now construct a Riemann holomorphic extension space where every

holomorphlc function is constant.

Consider the three vectors e; = (1,0),e2 = (0, 1) and e3 = (a +¢,b) in
C? , where ¢ € R and b = ¢+ id, ¢,d € R, d is irrational. Then ey, €g,€3 are
linearly independent over R. Let G denote the subgroup of C? generated by

€1,€2,€3. Then X = Cz/ G 1s a non-compact complex manifold .



HOLOMORPHIC EXTENSION SPACES 147

(i) First we check that X is a (H, C)-group,i.e., every holomorphic func-

tion on X is constant . For m = (my, me, m3) € 23, put
-Km = ml((l + 2) + mg(c + id) — ms.

Then

|Km|? = (mia 4+ mae —m3)? + (my + mod)?.

We have to prove that
| K| >0 for m#0.

For the contrary suppose that there exists m € Z®,m # 0 such that K, = 0.
This yields the following equalities

mia+maec—mz =10
m1'+ mgd = 0

Since d is irrational, from the second equality we have m; = my = 0. Hence,
‘from the first equality we get my = 0. This is impossible because of the relation
m % 0.

(i) Since X is ana.lytica‘llly homeomorphic to (R/Z)® xR [8], H2(X,Q) =
Q® and it is generated by Si; = n(Re; + Re;),1 < ¢ < j < 3, where  is the
canonical map from C? onto X. |

We prove that X does not contain a compact curve. Indeed, suppose that
there is a compact curve C in X ; and let v : ¢ —s C be the normalization of
C. Then
C= Z aijSij, @i € Q.
1<i<j<3

Consider the differential form 1/2i(dz )\dfl + dzg A dZz) on C%. Obviously,
this form is an invariant of G. It induces a differential form w on X. If we
consider 23, z; as functions in a neighbourhood of a point z € C, then in a
neighbourhood of v~1(z) , the form v*w is equal to

2

v (z1) Ydt A dE > 0,

dt

1
21

? L |G

( dt

where ¢ is a local coordinate at v~ (z).
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Thus f; w > 0 and C is not homologous to zero. This yields Y. laij| > 0.
Now consider the differential form on C inducing by dz; A dza,n. By Stoke’s

/CFD,,/SUW.

It is easy to see that if e; = (a;, 5;), then

/“ =il ~ a;p;.

Sij

formula,

On the other hand, fc 7 = 0. Indeed, similarly as above, we can show that

= (202) () g p o

Hence
{a12 + cay3 — aasg =0

dayz — agz = 0.

Since d is irrational and aj3, to3 € Q, it follows that a;3 = az3 = 0 and hence
a2 = 0, a contradiction. |

(iii) Finally, we show that X is a Riemann holomorphic extension space.
Given f: Z\S — X a holomorphic map , where Z is a normal complex space
and .S an analytic set in Z of codimension 2 2. By Kéhlerian property of X
[14], ff, where I'y denotes the graph of f, is an analytic set in Z x X. Let
¢ be a plurisubharmonic exhaustion function on X (Such a function exists by
the pseudoconvexity of X [9]). Then of is plurisubharmonic on Z [6) and
hence it is semicontinuous on Z. This implies that the canonical projection
p:T 5 — X is proper. Thus T # defines a mermorphic extension * f of f. Since
X' is not compact dim "f(z) < 1 for z € Z. By (i), dim A f(z) = 0. Thus, by
the normality of Z; it follows that * f is holomorphic .

2. Finite proper holomorphic surjections
and holomorphic extension spaces

The aim of this section is to prove the invariance of holomorphic ex-

tendibility under finite proper holomorphic surjections.
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2.1. THEOREM. Let 8 be a finite proper holomorphic surjective map from a
complex space X onto a complex space Y . Then X is a HES if and only if so
isY. '

For the proof we need the following lemmas.
2.2. LEMMA([5] and [15]). Let Z and W be complex manifolds and A an

analytic set in Z of codimension > 1. Assume that w: W — Z\A is an

unbranched covering map. Then there exists a commutative diagram:

W
al E
NA —— Z

where (W, 3, Z) is a branched covering map and & is an open embedding.

2.3. LEMMA. Let ¢ : G — D be a branched covering map , where GG is a
normal complex space and D is a spreaded domain over a Stein manifold , such
that the points of D are separated by holomorphic functions on D. Assume

that H is the branch locus of ¢ and
Dy = D\H,Gy = G\¢™'(H), 9o = ¢|g,-
Then there exist an analytic set H' in D contained in H with ~(D\H') =D

and a commutative diagram of normal complex spaces

\f )

t

€ o

G AGy —— W

%l/b\H' l,\w l#,

Dg — ADO —_— A.D
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where Mpg is an unbranched covering map , ¥,8 : G\e™'(H') — Imf are
branched covering maps , « is an open embedding, and 87! (ae(Go)) = Go.

PROOF: Since G and D are normal, either H is a hypersurface in D or H =
. The case where H = f is trivial, thercfore we may assume that H is a
hypersurface in D. Then there exists an analytic set "H in "D such that
ADy = *D\"H [1]. Observe that "H N D C H. We write H = ("HND)U H',
where H' is an analytic set in D such that ~(D\H') = *D. By [10], the map
Moo 1 "Gy — *Dy is an unbranched covering map , and using Lemma 3.2 to

Ao we can construct a commutative diagram

/ "Go ey

‘ e l /D' o o

‘ Dy —— "Dy —— "D
of normal complex spaces, where D' = D\H’, G'=G\p " (H') and ¢’ = L,9|’G
Moreover, 3 is a branched covering map and « is a.ﬁ open embedding. Put
Ae = . e. We shall prove that “« can be extended to a holomorphic map
8 from G' to W. Since the Stein property is invariant under finite proper

holomorphic surjections {2], W is a Stein space.

Thus, by the normality of G' it suffices to check that "« is locally compact
on G, i.e. for each z € ', there exists a neighbourhood U of z such that
AU NGy) is relatively compact in W. Assume that zo € p~!(H') and {z,} C

Gy converging to zg. Then
limy a(z,) = lim@'(2,) = ¢'(20) € D' — "D.

Thus, from the property of % it follows that {"a(z,)} is relatively compact in
W. This yields the local compactness of “a on G'.

Let 8: G' — W be a holomorphic extension of *a. Smce @' and 3 are
finite proper maps and D' is contained in D as open subset, it is easy to see
that 8 i G' — Im}f is finite proper . Hence, by the normality of W and by the
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equality dim G’ = dim W, Imf is open in W and §: G' — Imf is a branched
covering map {3|. Finally, if “a(z) = 8(z1) , where z; € Gy and 21 € G', then

©'(z1) = ¥B(z1) =¥ a(z0) = wolz0).

This implies that z; € Gy. Hence 871 {("a(Gy)) = Gy. The proof of Lemma 2.3

is now complete..

2.4. LEMMA. Let X be a holomorphic extension space and Z a normal Stein
space. Assume that H is a hypersurface in Z and G is an open subset of Z

meeting every irreducible branch of H . Then every holomorphic map f from
(Z\H)UG to X can be extended holomorphically to Z.

PROOF: Since Z is normal, codim S(Z) > 2 [3], where S(Z) denotes the sin-
gular locus of z. We write, by the Steiness of Z, S(Z) in the form

S(Z)= n{Z(h) : h is holomorphic on Z, h‘|§(z) =0
and h # const on every irreducible branch of H}.

It suffices to show that for every such function h, the map fr, = f | DAV where
Zy, = Z\Z(h), can be holomorphically extended to Z,. Put G4 = G\Z(h)
and Hy = H N Z. Then G} also meets every irreducible branch of Hy . Con-
|z o, - Since “(Zu\Hi) U Gr) = 2 [1],

can be extended to a holomorphic A f, on Z,.

sider the holomorphic map fp

fhlzh y\Hn)UGh

2.5. LEMMA. Let M, N and X be complex spaces and 8 : M — N a branched
covering map with N normal. Assume that f is a holomorphic map from M to

X which can be factorized holomorphically through a non-empty open subset
U of N. Then f is factorized holomorphically through 8 .

PROOF: Since the map § x id : M x X — N x X is proper, (8 x id)[y
is an analytic set in N x X [4]. Observe that the canonical projection p :

(8 x id)['; — N is finite proper and hence a branched covering map [3]. From
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the hypothesis it follows that p~!(z) = 1 for z € U. Hence (8 x ¢d)['f defines a -
hoIon:lorphic g from N to X such that g8 = f.

Proof of Theorem 2.1.
a) Sufficiency.
(1) Given f a holomorphic map from a spreaded domain I over a Stein

manifold to X. Consider the following commutative diagram

D—f+X

N b
| o0 o]

o)
“i g

AD —— Y _
where g is a holomorphic extension of 8. f, D(f} is the domain of the existence -
of f, and f is the canonical extension of f . Let z € "D . Take two Stein
neighbourhoods U and V of z and g(z) respectively such that ¢(U) C V and
6~ V) is Stein. Then, as in [13] we can check that y~(U) is pr-convex,
i.e. every holomorphic embedding » : H,(r) — 4v~YU),n = dimD, can be
extended holomorphically to A™. This yields, by the Docquier-Grauert theorem
[2], the Stein property of v~!(U/). Hence D(f) is Stein, too. Thus § can be
extended to a holomorphic map *f : I — D(f) and f’\ﬁ-is a holomorphic
extension of f to *D. ' ' '

(ii) Let f : Z\S — X be a holomorphic map , where Z is a normal
complex space and S is an analytic set in Z of codimension > 2. For each z € §
take two neighbourhoods U7 and V' of z and ¢(z) respectively as in (i), where
¢ is a holomorphic extension of 8f. Then f(U\S) C 87!(V). By Steiness of
8=HV), f |U\ 18 holomorphically extended to U.

b) Necessity.

(i) Let f be a holoﬁmrphic map from a spreaded domain D over a Stein

manifold . By Proposition 1.2 it suffices to consider the case where D is Hartogs
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domain. Consider the commutative diagram

GL»X

1

f

D — y
where G = D xy X, g and ¢ are canonical projections. We may assume that
G is normal. Observe that ¢ is a branched covering map [3]. Let H denote the
branch locus of ¢ . With the notations of Lemma 2.3 we have the following
commutative diagram of normal complex spaces:
Gl

/ *I\

e o
G[] Go — W

Qol /D AQOJ,

|

Dy —— "Dy —— D
where g, Mg are unbranched covering maps ', %, 8 : G' — Imp are branched
covering maps, and Gy = 7Y ae(Gy)). Thus g| ¢ can be factorized holomor-
phically through 8 : G — Img. Let "“¢g be a holomorphic extension of g\GU
on "Gy and § a holomorphic map from Iinf to X such that §3 = gl o Define a

holomorphic map ¢; from "Gy U Imp to X by
g="g0 on "Gy and g, =§ on Imp.

Since # is finite proper and every irreducible branch of *H meets D', every
irreducible branch of = (" H) also meets ImB. Thus, by Lemma 2.4 we have
a holomorphic extension g, of ¢y on W . By Lemma 2.5, 8¢, is factorized
holomorphically through +. Hence f is extended to a holomorphic map to D.

(i1) Finally, we show that ¥ is a Riemann holomorphic extension space .
Given f : Z\S — Y a holomorphic map , where Z is a normal complex space
and S is an analytic set of codimension > 2. Since the problem is local, we may

assume that there exists a branched covering map v : Z — A™. Consider the
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commutative diagram of normal complex spaces

G—?—>X

I
S — ¥

where G is the normalization of (Z\S) xy X. Since ¢ is finite proper and Z
1s normal, ¢ is a branched covering map [3]. Let H be the branch locus of ©.
From the inequality dimH >dimS ( without loss of generality we may assume
that H is a hypersurface in Z\S) it follows from the Remmert-Stein theorem
[4] that H is an analytic set in Z. Take a hypersurface H in A" containing the
branch locus of 7y and 4(S'U H). Applying Lemma 2.3 to the branched covering

map n = vp 1 G — A"\y(S) we can construct the following commutative

N

G\n™'(H )"-—’—> w
n]{ ) /!A \?)-\S) ¥ l
AMNH —— 4"
where 7,%, 8 : G -— Impf are branched covering maps. Obviously,
ﬁ‘l(a(G\n"I(ﬁ))) = G\n~'(H). Thus ¢ can be factorized holomorphically
through # : G — Imf. Since Wf'\w';l(;y(S)) Imj, a holomorphlc map §

from Imf to X with gl = g can be extended to a holomorphic map g from

diagram

W to X. From Lemma 2.5 it follows that 687G is factorized holomorphically
through . Thus f is extended to a holomorphic map to Z. The proof of the

‘Theorem 2.1 is now complete .

2.6. REMARK: :

(i) From the proof of Theorem 2.1 it follows that Riemann holomorphic
extendibility is invariant under finite proper holomorphic surjections.

(ii) Let X be a projective hyperbolic manifold . Then X is a Hartogs

holomorphic extension space . By the projectivity of X there exists a finite
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holomorphic map from X onto a projective space. Since every projective space

doe

s not have the Hartogs holomorphic extension property, we deduce that the

Hartogs holomorphic extendibility is not invariant under finite proper holomor-

phic surjections.
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