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ON THE ALMOST SURE CONVERGENCE OF TWO-
PARAMETER MARTINGALES AND THE STRONG LAW
OF LARGE NUMBERS IN BANACH SPACES
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Abstract. Let (2, F, P) be a probability space, N% = N x N denote the set of
parameters with the partial order defined by (m1,n1) < {ma2,n2) if and only if
m1 < mz and np < na(mi,ny, M — 2,12 € N). Let (Fms) be an increasing
family of sub-6- fields of F' satisfying the usual condition (F4) and (Mmn, Fmnr) a
two-parameter martingale taking values in a Banach space (B, ||-||}. In this paper
we investigate the interrelation between geometric properties of Banach spaces
and Martingale convergence theorems. Moreover we also study Marcinkiewicz-
Zygmund’s type strong law of large numbers for two-parameter Banach-valued
martingales and the integrability of two-parameter Banach-valued martingale
maximal functions.

1. Introduction

The interrelations between the L?-convergence Martingale Theorem (1<
p < 00) (cf. [20], Definition 1.6 for more informations) and the geometric prop-
erties of Banach spaces have been established by Chatterji [4], [5], Pisier [16],
Woyczynski [20], [21]. A natural question should be raised is how to check
these results for two-parameter martingales 7 In the second section of this pa-
per we prove similar results for two-parameter martingales which we also call
Chatterji’s theorem and Assouad-Pisier’s theorem. Our techniques are based
on classical results of [10], [16], [20], [22] for one-parameters and of {1], [3],
(6], [18] for two-parameter martingales. Further, in the third section, we deal
with the Marcinkiewicz-Zygmund’s type strong law of large numbers for two-
parameter Banach-valued martingales. The obtained results are extensions of
several results in [7], [10], [17],-[18]. Finally, the integrability of two-parameter

Banach-valued martingale maximal functions is discussed in the fourth section.
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2. Definition and Preliminaries '

The considered set of parameter will be N x N (N 2 for short) with the
partial ordering defined as (i,7) < (m,n) if and only if 2+ < m, j < n. Let
2 < 23,%1,%2 € NZ, then (21, #2) denotes the rectangle {z € N?:2z <z < z2}.
Suppose that f is a mapping from N? into a Banach space B with the norm
| - |- The increment of f on the rectangle (z1,22), 21 = (m1,m1), 22 = (Mg, Nn2)
will be f(z1,22) = f(22) — f(m1 + 1,n1) = f(mi,n2 + 1)+ f(z1). -

Let (€, F, P) be a probability space and {Fpns} an increasing family of

sub-o-fields of F such that f = .\/ Fmn. Throughout this paper, (Frn) 18
(m,n)EN?
assumed to satisfy the usual conditions (Fy), i.e. Fip and F;, are conditionally

independent for given Fp,,, where Fl = \/ Fun, FE = \ Fpnn. Note that
neN meEN
the condition (F4) means that for each z = (m, n) and each integrability element

X,
E(z | Fun) = E(X | FL, | F2y= E(X | F% | Fp,).

A sequence X;; in Lp(L* for short) is said to be adapted to (Finn) if each Xmn '
is Fi,n-measurable. ]

Suppose that M = (My,) is integrability ( in the sence of Bochner
integrale ) F, -adapted. Then

(1) M is a martingale (strong martingale ) if E(Mm | Fn) = Mm, for
any (my,n1) 2 (ma,n2), _ '

(2) M is a weak martingale if E(M((ma,n3), (m1,71)) | Fmna) = 0.

Let M,,» be a two-parameter B-valued martingale w.r.t. Fpn. For the

given My, let X;; be one of its increments, i.e.

Aan = an - Mm—l,n - m,n—1 + M:-'n—l,n-—l'

- In what follows we shall assume My, = 0 if m or n is zero. Néte that under

this assumption , a two-parameter martingale (Mmn, Fan) can be written as

(Mun = > XijrFmn).

i=1 j=1
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A sequence (X;;) is said to be domainated by a positive real random
variable Xo((Xi;) < Xo for short) if for all ¢ > 0, P(J| Xy;|| > t) £ P(Xo > 1).
A Banach space B is sald to be p-smoothable , 1 < p < 2, if (possibly

after equivalent renorming)

gu(t) = sup{ e + tyl ‘;”"’ — ty]

=0(tF) as t-—0,

=1, el = llvll =1}

and superreflexive if B is p-smoothable for some p > 1 (cf. [20] for more
information).

Throughout the present paper, C), will be a constant depending only on
p, which may be different from one formula to another. In the same way, C' will
denote an arbitrary constant.

We now present some results and some inequalities which are similar to
the corresponding results in the one-parameter case and which will be used very

often later on.

LEmMMA 2.1 (Kleskov, [10], Lemma 3). Let ay,...,ax be real numbers,

tH,y... otk > 0. Set o =m max o, T = max{a,,t} h = card{i : a;t; = ®}, r =
card{i : a; = 0}. Suppose that flz) = En“‘“l n%*~!. Then

(i) If a <0, then f(z) = 0((log™ z)7)

(ii) If @ > 0, then f(z) = 0(z"(log*t z)"*7~1), where logTz =logTz Vv 0,z €
R*.

LEMMA 2.2 (Doob’s inequalities, [3], {10}). Put M* = sﬁp | Mmnl|. Then
(m,n).
(1)P(M*>C)<C sup E || Mmn [IpforanyC>0andp>1
(m,n}
(i) P(M* > C) < C, %up E || My || for any p > 1.
) (m,m)

LEMMA 2.3 (Assouad-Pisier’s inequality). Let B be a p-smoothable Banach
space , 1 < p < 2,(M;;, Fi;) a two-parameter B-valued martingale with incre-
ments (X;j,1<i<n,1 <5< m). Then thelfe is a constant C, such that
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Ell M 7S Cp SN 1 X5 17

i=] j=1

n

PrROOF: Put D? = >’ X;;,7 = 1,2,... ,n. Notice that (D7, Fi,) is an one-
=1 -

parameter B-valued martingale difference sequence because '

D} = (Min — Mi—1,),m = 1,2,..., and by the condition (Fy). So we can
use Assouad-Pisier’s inequality (cf. Corollary 2.3 [20]) for the one-parameter

martingale difference sequence D, F}) :

m n . m
ENY > Xi;|P=E| > Dr
i=1

=1 j=1

=Cpy E| DF |
i=1
=G Y EIY Xy
i=1 7j=1
<G Y E| Xy |

t=1 j=1
The last inequality follows from Assouad-Pisier’s inequality once more because

for fixed 7, (X;;) is an one-parameter martingale difference sequence w.r.t. (Ff)

Using Lemma 2.2 and 2.3 we get the following

COROLLARY 2.1. Suppose that B is p-smoothable , 1 < p < 2, and M* =
(su.p) | Mo l]- '
(i) For C > 0, we have

o0 o0
PM*2C)<Cp ) 3 B | X |7
t=1 j=1
(ii) For 1 < p £ 2, we have

EM*)’<CY N B X7

i=]1 j=1
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Suppose now that (bmn) is a sequence of two-parameter constants satis-

fying bmn — 00 as (m,n) — o0 and
Abpmr = bmn — bm-—l,n - bm,n—l + bm-—l,n—l >0.

The following lemma is obtained by a result of Smythe (cf. Theorem 1.1 in [16],
also see [10]).

LEMMA 2.4 (Hajek-Renyi’sinequality). Let I he a p-smoothable Banach space,
1 < p <2, (bma) & sequence of two-parameter constants such that Abp, > 0
and bpn — 0 as (m,n) — co. Suppose that (Mmn) is a two-parameter B-
valued martingale with its increments (Xij)1 <1 <m, 1 < j < n. Then for
any ¢ >0

< E XU -

z.—l j=1

Mo
P(max
((m:n) Il bm

Remind that throughout this paper (m,n) — oo is understood as

min (m,n) — o0,

DEFINITION 2.1. We say that the Llogt L -Martingale Convergence Theorem
holds in a Banach space B (L logt L—MCT for short) if for each two-parameter
B-valued martingale (Mn, Fmy) satisfying the condition

sup E(||Mma]llogT | Mmnll) < oo, there exists an element Moo € .151 such

(m,n)

that My — Moooo @.5. . We say that the L,-Martingale Convergence The-
orem holds in a Banach space B (MCTp for short), p > 1, if for each two-
pdrameter B-valued martingale (Mpn, Fiun) satisfying the condition sup E ||

(m,n)

Mun |P< oo, there is an element Moooe € L? such that Mpn — Moooo 8.

and in LP.

We now turn to the investigation of interrelations between the MC Tﬁ,
p > 1, and the Llogt L — MCT and the Random-Nikodym property (RN P)

of Banach spaces. The following result is also named Chatterji’s theorem.

THEOREM 2.1. For a Banach space B, the following properties are equivalent :
(RNP) B has the Random-Nikodym property;
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(MCTp) the MCTp holds in B;
(Llog™t L) the (Llogt L)—MCT holds in B.

PROOF: We shall prove the following implications
(MCTp)« (RNP) & (Llog™ L).
Note that (RNP) — (MCTp) can be proved like in the proof of Theorem
1.1, [20] for the one-parameter case (sce also [14], {19]). The case (RN P) —
(Llog™ L) is carried out by using the methods of [4], {8], [14] (which has been
proved in [19], Lemma. 1). o '
We now prove (MCTp) — (RN P). Suppose first that (@, F', F}}, P1)

and (Q!, G?, G2, P?) are two filtrations such that F' = \/ Fl,G*=V G
1EN JEN

and F},i € N), (G%,J € N) are mutually independent . E,E',E? denote
the expectations taking values on (Q! ® Q2, P! ® P?), (', P'),(Q?, P?) re-
spectively. Let us consider a fixed one-parameter (¥}, F}') on (Q, F1, P') such
that sup E'Y;|? is finite and has non-zero limit, say Yo a.s. and in L?, and
an arbltrary one-parameter B-valued martingale (M;,G%) on (9%,G?, P?). Put
M;; = Y;M;, i,j =1,2,...Then (M;;) defines a two-parameter B-valued mar-
tingale on (Ql ® 02, F! @ G?, P! ® P?) and adaptes to §-fields (F} ® G3).
Clearly, E || M;; ||P= E'|Y;|? x E* | M; ||? because of the mutual indepen-
dence of (F},i € N) and (G%,j € N). Suppose now that (M CTp) holds in B

and hence on the set

H = {(My;) = (YiM;)) : sup BMY3}? < 00,Y0 > 0
a.s. and sup E? || M; ||?< oo}
7

Suppose further H 3 M;; — ¢ € B as. and in L? . We easily see that
g = Yo, where M € B is G2, - measurable .

Clearly, .
" E(g|F}® G%) = E (Yoo | FHEX(MIGY),
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which implies that M, = E*(M|G%),— E*(M|G%) = m as. and in LP.
By Chatterji’s theorem {cf. Theorem 1.1 [18]), we get (M CTp) — (RNP).
Similar, we can also prove (Llogt L) — (RN P).

Now we are in a position to extend a famous result of Assouad-Pisier (cf.

[20]) for two-parameter Banach-valued martingales.

THEOREM 2.2. If B is a separable Banach space and 1 < p < 2, then the
following three assertions are equivalent:
(i) B is isomorphic to a p-smoothable Banach space .

(11) There exists a constant C, such that for any two-parameter B-valued mar-

tmga]e (an = Z Z Xz_;-;an)y

i=1 j=

sup E || Mn IP<C, Y Y E N X35 17

(m,m) i=1 j=1
(iii) For any two-parameter B-valued martingale (M],, = io: i %i Fian)
satisfying =
Z Z E || X!J [
i=1 j=1
M), converges a.s. as (m,n) — co.

PROOF: Note that () ~— (iz) is the conclusion of Lemma 2.3, and (i) —
(ii1) is a consequence of Theorem 2.1. To prove (ii) — (¢) we again use the
symbols and the arguments of Theorem 2.1. Suppose that (3, F}) is a fixed
one-parameter such that i E'|AY;|P is finite, AY; = ¥; — Y;_; and ¥y = 0 and
(M;, G?) is an arbitrary ozr:;pammeter B-valued martingale with its increments
AM; = M; — M;_;, My = 0. The two-sequences of o- fields (F},i € N) and
(G?, j € N) are also assumed to be mutually independent. Suppose further
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that (74) holds for the two-parameter B-valued martingale (Y; M;, F!  G3), ie
there exists a constant C) such that

sup E | Yo M, [P = supEllY i supE2 | M ||P

(m,n)
<G, (z E |AY,-|”) A EraMl )
i=1 ' =1
This inequality implies
sup B* || Ma |'< G ZE? | AM; |7
j=1
Hence in view of Assouad-Pisier’s inequality (cf. {19]) we get the proof for
The proof of the implication (4i) — (¢) is analogous to that of
(MCTp) — (RN P) in Theorem 2.1. We quote it here for the sake of com-
pleteness Suppose that a fixed one-parameter real-valued (Y;, 1) satisfying

EliAY] . .
supz oo and E ——1 converges a.s. to a non-zero limit. It is

easy to see that

E || AM;; AY—z P 2 EY || AM; P
ZZ AL (Z” n) (Z K n)m,

=1 j=1 J=1

oo .

which implies that (3 IA—JA%J—'—) is finite. On thé other hand, like in the proof
i=1

of Theorem 2.1, we have

ZZAMU (ZAY (Z ,)__)g .

i=1 j=1

Hence the martingale (Z «-%/Il) converges a.s. in B. So ( ) E AM; con-
j=1 :
verges to zero by Kronecker’s lemma. The conclusion follows by a.pplymg again

Assouad-Pisier's theorem.
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3. Marcinkiewicz-Zygmund’s type strong law of large numbers

for two-parameter Banach-valued martingales

In this section we extend Marcinkiewicz-Zygmund’s type strong law of
large numbers to two-parameter martingales in Banach spaces. For special
results on the line, see Smythe ([17], [18]), Klesov ([91, {10]), Gut ([7]), Moricz
([15}). ‘

Let us now begin with some auxiliary lemmas

LEMMA 3.1. Let 1 < p < 2 and (Y;) be two-parameter real-valued sequence of
random variables such that (Yi;) < Xo € LP. Then, if Y}; = Yi;I(|Y;;| < (i)7)
and r > p, we have
Z Z ARE!
i=1 J 1 (3‘7).'0
where I(A) denotes the indicator function of the set A.

PROOF: The proof can be obtained by a straightforward computation as fol-
lows:

1
P

(if)

D) BELCIN o ] " dP(|Yi| < )

=1 j=1 (”)p i=1 ;=1

1

ZZ"’"/ "1P(Xq > y(if)? )dy

i=1 j3=1

1

e 1
| =r/y" Pay(> =) EX{

0

XEXg < 00,
r—p
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LEMMA 3.2. Let (Yi;) be a two-parameter real-valued sequence of random vari-
ables such that (Y;;) < Xo.
(a) If Xo € L(log™ L)? and Y]] = Yi;I(|Y;] > ij), then

I

i=1 j=1

Y”

(b) If Xo € LP(log* L),1 < q < p < 2, and Y{} = Y;;I(|Yi;| > (i§)?), then

>3 T <o

where L{log™ L2 = {f : E|f|log? | f| < oo},
L*(log* L) = {f : E|f|Plog™ |f| < oo}.

H'Mg

PRrROOF: We first observe that

oo 0o E|Y;!|p os oo o <0 _
YT =@ [ ertapl <o)
i=1 =1 (7)” i=1 j=1 5 '
GHF
[»#] o g oo
DN L (AR
i=1 j=1 1 :
()7
o 6o . ©o
<¢} S )7 /:cq_lP(X0>9:)d:c
i=1 j=1 1
(i)

(i/)¥ <2
The assertion (a)} is proved if we take p = ¢ = 1 and apply Lemma 2.1 (i1}

to the last inequality. To obtain the assertion (b) we use Lemma 2.1 (22) with
T=g¢q, h=2,r=0. '

Using the above observation we can establish the main result of this

paper.
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THEOREM 3.1. Let B be p-smoothable, 1 < p < 2, and (Mun 5 5 Xii, Foum)
=1 j=1

a two-parameter B-valued martingale such that (X;;) < Xo. Then

(a) If X¢ € L(log;+ L)?, then Mmﬂj%zﬂ — 0 a.s. as (m,n) — oo,

(b)IfX, € LP(logT L),1 < ¢<p <2, tben(—Mﬂl)’f——>Oas as(m,n) — oo.
m,n)e

PROOF: Let Y;'j = XijI(HXI'J'” <), Z,‘j =X -Yy, 61=12,., and

m i

N =Y [Yij— B(Yy; | Fimy jo1))-

i=1 j=1

.Note that (N, n, Finn) is also a two-paré.meter B-valued martingale. Then we

have

ElYi; = E(Yy | Fioyj))”
(¢5)”

>

=1

i)

.

S E| Yy P
<G 22 TGy
i=1 j=1
% A
=6, > 267 [ PUX) > e

...
il
=

1=1 0

if

Z /:cp_lP(Xg > x)de

J= n

I/
o
™8

.a
Il

—

—

1

-~

!
K
L

L
[
o

1
/y" 'P(Xo > y(27))dy
[¢]

1
< CyEXolog* Xo [y < o0
0
because Xo € L(log™ L)?. From Hajeck-Renny’s inequality, Lemma 2.4, it fol-
lows that for every C > Q,

| E| Yy |?
P Non,n >C)<C, o kL
. ((mlgazj) e ™mn | mz_:mz_; (nm)?
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as (ij) — oo. This means that the assumption Xo € L(log™ L)? implies the

following condition
— Npn — 0 as. as (m,n) — oo. : (3.1)
Ne){t, put K(j) = card{(m,n) : mn = 7}, j € N. It is known that X, €
Llog™ L if and only if

o0

> T K(G)P(Xo > j) < 0

i=1
(see [7], [10}, {17]). It follows by a routine application of Borel-Cantelli’s lemma
that (Mmn) and (Nmn) are equivalent. By (3.1) to show (a) we have to prove

that

——ZZE(||Z,,|||F, 1Ljo1) — 0 as.as (m,n)— co. (3.2)

=1 j=1

But, if Xo € L(log™ L), we have, by Lemma 3.2 (a),
i=1 j=1

which together with Kronecker’s lemma (for p051t1ve double series) yieds (3.2).

Similarly to the proof of (a), we define
Yij = XgI(I1 X1 £ (85)7),
- - L o
Zij = XiI(Xi; > (45)7) = Xij — Yij-

Note that in view of Lemma 3.1,

SSEILIE 539

S

and, by Lemma 3.2 (b), if Xo € LP(log" L),¢ > 1, then

Z Z EI’IY‘;“ < 0. (3.4)
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Notice again that

>Ry A Yy = 3 P > (64))

i=1 j=1 i=1 j=

Z (Xo > (45)%)

||E%g

=1
= EXS(Z ) < oo, (3.5)
=1 i

because Xy € L7log™ L and 1 < ¢ < 2. Then using (3.3), (3.4) and (3.5) and

reépeating the arguments in the proof for (a) we obtain (b).

COROLLARY 3 1. Let B be p-smoothable, 1 < p < 2 and

(Mmn Z E Xqumn) a two-parameter B-valued martingale such that X;; <
=1 j=1
- Xo. Let g1, g2 be two real mumbers and g =max(q1,q2). If1 < ¢ < p < 2, then

Mn%”- — 0 a.s. as (m,n) — oo, provided Xy € L¢(log™ L).

COROLLARY 3 2. let B be isomorphic to a Hilbert space and

(Mpmn = Z E Xij, Finn) a two-parameter B-valued martingale such that
i=1 j=1

( 13) < XU Theﬂ
(a) If Xo € L(logt L)?, then My 045 as (m,n) — o0 ;

™
(b) If Xy € LP(log™ L), '1 < p <2, then '("M"m‘;ff — 0 a.s. as (m,n) — oco.
AmnlrF

PROOF: Since B is isomorphic to a Hilbert space, there is a positive é such that
B is (p + 6)- smoothable for any 1 < p < 2. Therefore, the conclusions follow

from Theorem 3.1.

REMARK: Setting B = R, the real line. From Corollary 3.2 we get the

Marcinkiewicz-Zygmund’s type strong law of large numbers for two-parameter
martingales. In the case 1 < p < 2, the sufficient conditions of Theorem 3.2 [7]
( Gut, 1976), Theorem 2 [17] (Smythe, 1973), Theorem 2(a) {9] ( Klesov, 1980)

are consequences of this result.
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4. The integrability of maximal functions

Minn :

Let M®)(w) = sup H——lll-, 1 < p < 2. The result below is an exten-
(mn) (mn)?»

tion of Theorem 3 [23] ( Woyeczynski, 1981) for two-parameter Banach-valued

martingales.

mh n
THEOREM 4.1. Let (Mmun = 2, 2 Xi;, Fmn) be a two-parameter martingale
=1 j=1
with values in Banach space B . Then

(a) If (X.,-j < Xo € L{log™ L)?) and B is superreflexive, then M(1)ye L.
(b) If (X;; < Xo € Li(logt L)), 1<gqg<p<2 andBis r-smoothable for
r > p, then M(p) € LY.

To prove this theorem we need the following lemma (see [9] or [16]).

LEMMA 4.1. Let {bmn) be a two-parameter real-valued sequence of constants

satisfying the conditions of Lemma 2.4 and (X,un) a two-parameter B-valued
m n
sequence . Suppose that Smn = S Y. X;;. Then there exists a constant C

i=1j3=1
(=4) satisfying

max Smn <C 11iax i i Xij
(m) || bmn ||~ (u2)€0m,n) =1 = b,‘j
m n ‘Y. .
PROOF: Put Thp = 2. TU- then
i=1j=1 "%
m T X m n m n
Smn = Z b” = Z (bI]) Z Z(Tuv)
i=1 j=1 =1 j=1 u=i v=j
m n m n Tuv
= Z Z(bij) b
i=1j=1 u=iv=j ¢
Since >3 %’— = 1, we have
i=1j =1 mn ’
Hsmn < max f: Zn: Tuy,
bmn - (i7)<(m,n) buv

u=1iv=j
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Thus,
] m T T
max [1Smnbmn|] £ max max =2
(m,n)H Ih= (i) <Gm,n) (m,n) ;; buy

Now the sum in the right hand side is equal to the two-dimensional difference of

partial sums ( ) taken over four vertices of the rectrangle (z,7) <

(u,v) < (m,n). Therefore we have

=1 j=1

Smn

mn

u v
Xij

max <4

(m,n)

(uv)<(mn) o1 =1

PROOF OF THEOREM 4.1: From the conclusion of Lemma 4.1 we get

v v AL ro v AL
MP < sup ZZ 2 + sup BRI
(ulv)s(min) i=1 J=1 z‘? (u,v)g(m,n) i=1 J=1 ?’J

where
Al =Y — E(Yy; | Fioa,5-1),

Af; =Y — B(Yi; | Fi1,i-1)s

and (Y;;) and (Z;;) are defined as in the proof of Theorem 3.1 (b).
In case (a), B is superreflexive and hence is r-smoothable for r > 1.
So by Davis’ type inequality for two-parameter Banach-valued martingales (see

Corollary 2.1 (ii)), we get

EIIALH

Sup Z U <CZZ (33)"
j=1

(u v)<(m,n) 1521 i=1 j=1

The latter series is finite by Lemma 3.1. Further,

u v i

Al
Boow 2Tl <o

i=1 j=1
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by Lemma 3.2 (a) because

E  sup ZZ <cZZE”Zv“

(w,0)<(m,n) | 1i=1 j=1 i=1 j=1

Thus, EM1) < oo.
In case (b), with 1 < ¢ < p < r £ 2 and B being r-smoothable, again by
Corollary 2.1 (i1), we have
™ T A!'"
E sup Z Z —
= ()7

(m,n)

o o IIYijIV
gg (i)%

which is finite by Lemma 3.1. Since r-smoothability implies q-smoothability for

i=1

g < r and by Corollary 2.1 we again have

P> ZZ ZZ E”ZU”q ,

(6 <l im1 =1 (U)” o )

q

where the latter series converges a.s. in view of Lemma 3.2. (b).
Thus, E(M®)? < co.
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