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ON ASSOCIATED PRIMES OF MODULES OVER
A NON-COMMUTATIVE GOREINSTEIN RING

HO DINH DUAN

Introduction

In (3], Bjork introduced the notion of non-commutative Goreinstein rings
and studied them in some details. This generalized many classical rings of
differential operators. By definition, a non-commutative Goreinstein ring is a
Noetherian ring R with finite injective dimension and satisfies the following
condition: For any finitely generated (left or right) R-module A7, any integer £,
and any submodule N of Ext% (M, R), we have grade(N) > k. Here grade(N) is
the smallest integer n such that Ext%{N, R) # 0. This is called the Auslander
condition. While the condition is trivially true for any commutative Géreinstein
ring, it is a basic tool to handle the non-cominutative case that we are going to

discuss here.

Let R be a non-commutative Gorenstein ring, and M a finitely generated
R-module. Then there exists a spectral sequence whose E term is the direct
sum of certain double Ext-modules and Eo, is isomorphic to a graded module
associated to some filtration on M. The construction of this spectral sequence
is due to Roos-Bjork-Ischebeck and is well-known. It is the Auslander condition
that essentially implies the convergence, and thus provides useful information
about the module M. Among other things, it induces on any R-module A a
filtration Bo(M) C ... C Bu(M), u = inj.dimR (the B-filtration). This filtration
can be characterized by Bj(M), the largest submodule of M whose grade is

greater than u — k and readily known in commutative algebra (see for example
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[4]). However, the approach here by means of spectral sequence has many
advantages. For example, it allows the use of many methods and techniques
fromrhomological a,Igebra..‘ When the B-filtration dégenérates, this leads to the
notion of modules having pure dimension, which play an important role in our

study.

When R is filtered such that the associated graded ring is commutative,
we consider R-modules M equipped with good filtrations and their related ob-
jects such as the characteristic ideals J(M), the sets of G(J(M)) of their prime
divisors. In particular, we stu-dy the set Ap(M) of associated primes of the
module gr FM , which in general depends on the filtration ' and is not easy
to handle. Here we have evaluated this set by means of filtration-free objects

derived from the module M.
In more detail, the contents of the present paper are arranged as follows.

Section 1 is for the study of the B-filtration on an R-module induced by
the Roos-Bjork-Ischebeck spectral sequence, R being a non-commutative Gore-
instein ring. We prove that Bi(M) is the unique largest submodule of M whose
grade is > p — k, pp = inj.dimR (Theorem 1.4). This implies that the filtration
is canonical in the sense: If N C M, then Biy(N) = N NBy(M) (Corollary 1.5).
From this we can recapture the ubiquitous description of modules having pure
dimension (Proposition 1.6} which is contained'in {3]. As a remark, we point
out that the map M — Bp(M), with k = u — grade(M) — 1, could be viewed -
as a kind of radical in the category of left (or right) R-modules with respect to

the class of modules having pure dimension (Remark 1.7).

In Section 2, we assume that R is filtered such that the associated graded
ring is commutative and study many objects defined on good filtrations on an
R-module M. In particular, we study the dependence of the associated primes

of the module grp M on the good filtration F. Qur result is that we always have

Ass(grpM) 2 ng(J(Eth}c‘I(EXt’;{(M’R)s R))),
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where the latter ob ject is filtration-free (Theorem 2.8). We also give a suffi-
cient condition so that the equality holds (Theorem 2.11). This condition is
satisfied in the special case when R itself is commutative, and we thus obtained
a decomposition formula for the set of associated primes of a module over a
commutative Goreinstein ring (Corollary 2.13), whigh generalizes a result of

Grothendieck in [6] for complete local rings.

Convention: In this paper, a module can either mean a left or a right

one, and is always finitely generated.

Acknowlédgement: I would like to thank Professor J. E. Bjork and Pro-

fessor N. V. Trung for their useful dicussions and many valuable suggestions.
1. The B-filtration

Let R be a non-commutative Goreinstein ring. Recall [3] that R is a
Noetherian ring with finite injective dimension and satisfies the following condi-
tion: For any R-module M, any integer k, and any submodule N of Ext% (M, R)
we have grade(N) > k. Here by definition

grade(N) = min{n|Extk(N, R) # 0}.

This condition was first proposed by Auslander, and for the definition of
a non-commutative ring here we follow Bjork [3]. Observe that in the commu-

tative case, the last requirement is not necessary.

Examples of non-commutative Goreinstein rings can be seen in abun-
dance: quasi- Frobenius rings, Weyl algebras, stalks of the rings Dx, £x of
differential operators and microdifferential operators. In fact, it was a general-
ization of these rings that leads to the notion of non-commutative Goreinstein

rings.

The basic property of a non-commutative Goreinstein ring R is that for

every R-module M, there is a convergent spectral sequence with

E} 7 = Exth(Exth(M, R), R).
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The term E% = @p_g=n Bl vanishes for all n # 0, while E?_ is isomorphic
to some associated graded module of the module M. If p = inj.dim£, all the
indexes range in {0,1,...;u}, and we can interprete the above phenomenon as

that M has a filtration
(1.1) Bo(M)C Bi(M)C ... CB,(M)=M

with By_x(M)/By—r—1(M)=EL* for k=0,1,..., .
We refer to (1.1) as the B-filtration of M (conventionally, B_; (M) = 0).

The convergence of the above spectral sequence has many consequences,

among them we wish to recall two important facts in the following

PrOPOSITION 1.2. [3,§1]. Let M be an R-module and let {E,},>2 be the
spectral sequence as above. Then for any integer k > 0,
(i) grade(Egrade(MHkH‘_gde(M)) > grade(M) k4 2;

(ii) There is an exact sequence
0 — Bu_p(M)/By_j—1(M) = Ey ™" — S — 0,
where Sy is some R-module with grade(Sy) = k + 2.

PROOF: The B-filtration can be used to study modules over a non-commutative
Goreinstein ring. For example, it is closely related to the Ext-modules, and for
fltered modules, to certain associated primes as we shall see in §2. It turns out
that this filtration can be described in another way which we are going to discuss
here. First of all we mention some elementary properties of grade. Recall that

R denotes a fixed non-commutative Goreinstein ring with inj.dimR = p.

PROPOSITION 1.3. (i) If0 — M' — M — M" — 0 is an exact sequence of
R-modules, then grade(M) = min{grade(M'), grade(M")}.

(ii) I Ny, N, are submodules of an R-module M and suppose that grade(N) >
k,grade(N,) > k for some integer k, then grade(N, + Np) 2 k.

(iii) grade(B,_i(M)) > k for any R-module M and any integer k.

PROOF: (i) follows from the long exact Ext-sequence and the definition of grade.
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(ii) follows from (i) and the exactness of the following sequences
0— N, = N+ Ny —» (Ny+Ny)/N; — 0

60— Nl ﬂNQ — Ng — Ng/(N] ﬂNg) boed (NI +N2)/N1 — 0.

(iii) is obtained by induction on k, using (i) and Proposition 1.2 (ii).

By Proposition 1.3.(ii), given an R-module M and an integer %, the set
of all submodules of M whose grade > k contains a unique largest element, and

we denote this submodule by G, _r(M). Clearly we have

Co(M) C ... C G(M) = M.

THEOREM 1.4. B (M) = G (M) for k=0,1,..., 1.

ProoOF: Having B,(M) = G,(M)(= M), we use descending induction on k&
and assume that Bp(M) = Ge(M). If By_1(M) = By(M), we have By_1(M) =
Gr(M) 2D Gr1 (M), ie. By (M) = Gx_1(M) since we always have By_,(M)
C Gi_1(M). Suppose that By_i(M) # B(M). If O # P := Gy_1{M)/
Bio1(M) C Be(M)/Br—1(M) C M' = Ext *(Ext% (M, R), R), consider the
exact sequence |

0—-P->M - M/P—0.

Put grade(P) = h, the long Ext-sequence for this contains
Exth(M', R) — Ext’(P, R) — Ext&t'(M'/P, R).

If h > p — k, Proposition 1.2.(i) implies grade(Ext%(M', R)) > h + 1, also
grade(Extht (M'/P,R) > h + 1, which show that grade(Ext%(P,R)) =2 h+ 1
by Proposition 1.3.(i). This is impossible, since we can easily show that if
grade(P) = h, then grade(Ext%(P, R)) = h. Hence grade(P) = p — k. Now the
sequence

0— Bi1(M)— Gy (M)—=P—0
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implies grade(G—_1(M)) = p — k by Proposition 1.3.(i) again. This contradicts
the definition of G—1(M). Therefore P = 0, i.e. Bi_1(M) = Gp-1(M) and
Theorem 1.4 follows.

The following corollary is immediate from Theorem 1.4.

COROLLARY 1.5. The B-filtration is canonical, i.e. if N is any submodule of
M, then for all k,
Br(N) = NnNBp(M).

Now we describe a class of R-modules for which the B-filtration degen-
erates. Precisely, we say that a module M has pure dimension if each term
B (M) is either 0 or M. (For example, simple modules satisfy this condition).

This property can be characterized in several ways.

PROPOSITION 1.6. For an R-module M, the following conditions are equivalent:

(i) M has pure dimension. 4
(ii) grade(N) = grade(M) for every 0 2 N C M.

PROOF: Observe that G,(M) = ... = Gy_grage(an)(M) = M and if M # 0,
Gegrade(any-1(M) # M. So by Corollary 1.5, M haslpure dimension iff
Bu—grade(M)—l(M) =0.

(i) = (i1). If M has pure dimension, then by Proposition 1.5, so has N and
By _grade(ay—1{N) = 0. Hence p — grade(M) — 1 < p — grade(N) — 1, ie.
grade(N) < grade(M), and this means grade(N) = grade(M).

(ii) = (). If grade(N) = grade(M) for every 0 N C M, then M = GH(M) =
.= G,u—gra.de(M)(M) and G,u-—grade(M)—l(M) = e = GO(M) =0, so by COI‘Q].—

lary 1.5, M has pure dimension.

We can easily see from Proposition 1.6 that if M has pure dimension, so
does any of its submodules. Also, every R-module M with grade(M) = p must
have pure dimension. This class of modules is called holonomic, and has nice
properties closely related to duality theory. For example, each of the functors

M — M* = Exth(M,R) from the category of left (resp., right) holonomic
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R-modules to the category of right (resp., left) holonomic ones is exact and
satisfies M** = M. See [3] for a discussion about this.

In fact, using Propositions 1.2, 1.3, and 1.6 we can construct new modules
that have pure dimension from a given R-module M. Among these are the mod-

ules
Ext&* DAy, Exth (Exth (M, R), R), and By(M)/Br_1(M),k = 0,1,2, ...

REMMARK 1.7: Put R(M) = B,_grade(a)—1{M), we always have that
M/R(M} is an R-module having pure dimension. Furthermore,
R(M/R(M)y = 0. So the map M — R(M) could be thought of as a radical
in the category of R-modules with respect to the purity property. The object
R(M) is characterized as follows. It is the smallest submodule of M such that
M/R(M) has pure dimension and has grade = grade(}).

2. Filtered modules and associated primes

In this section, we consider a filtered ring (R, FR), ie. a non-
commutative ring R together with a family of additive subgroups FR = {R,, |
n € Z} such that R, € R,41, Rn-Rm € Rpym for all m,n. Furthermore, we
assume that the filtration FR is Artin-Rees, i.e. for any R-module M and any
good filtration FM on M, F'M is separated and the induced filtration on every

submodule of M is again good.

First we recall a well-known fact concerning the Gorensteinness men-

tioned in §1.

THEOREM 2.1 (Roos-Bjork). Under the assumption that FR is Artin-Rees,
if the associated graded ring grrR is Gorehstein, then R is Gorenstein and
for any R-module M and any good filtration F on M, we have grade(M) =
grade(grpM). '

Suppose ¢grr R is commutative. Then every R-module M is associated
to an ideal J(M) of grrR, called the characteristic ideal of M. Indeed, take
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any good filtration F' on M and take J(M) = /Ann(grpM), and this does

not depend on the chosen good filtration F. For any ideal I in grrR, denote
by G(I) the set of minimal prime divisors of I. Recall that a radical ideal I 18
called equidimensional if for every p € G(I), we have htp = htl.

For any R-module M and any good filtration F on M, put
Ap(M) = AssgrfR(grpM),

the set of associated primes of grrM, which is a (graded, finitely generated)
gr7R-module. The aim of this section is to study the family Ap(M ), where F
ranges over all good filtrations on M. In order to handle the case, we need to

impose more hypothesis on the filtered ring (R, FR) as follows:

STANDING HYPOTHESIS 2.2. From now on, R denotes a filtered ring such that
the filtration FR is Artin-Rees and the associated graded ring grx R 1s commu-

tative Gorenstein.

By Theorem 2.1, R is then a non-commutative Gorenstein ring in the

sense of §1.

EXAMPLES 2.3.: The Weyl Algebra An(k) (k1s a field of characteristic zero),
the stalks of sheaves Dx, Ex of rings of diffenrential operators on a { complex)

variety X, have filtrations satisfying Hypothesis 2.2.

Let M be an R-module. From the Gorensteinness of grR and the last,
part of Theorem 2.1, we sce that grade(M) = htJ(M), and this equality will

be used frequently hereafter.

Our study of the family Ag(M) bases on the following theorem, due to
Gabber [5] and Bjork [3].
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PROPOSITION 2.4. Let F be a good filtration on the R-module M. Then there
1sa spectral sequence realized by a sequence of complexes of modules over gr xR
with

E} = Ext),_plgrr M, grFR) = Extp(M, R).

If p is a minimal prime over J(M), let us consider the localized spec-
tral sequence (E;),. Since grade(grM,)=htp=dim(gr R),= inj.dim(grR),, we
see that all the modules (ET ) == EhtgrR(ng grR), & Exty, g (grMp,grR,)
= 0 for all n # htp, while (E tp)P # 0. Passing to the limit we find that
there exists a good filtration on Exthtp(]\/f R) such that gr Ext(htp(l\/f R), =
(ERte),, = (BX*?), # 0, hence Exth?(M, R) # 0. Since grade(grExt?(M, R))
= gra,de(Extht"(M R)} > htgp, this also means that p € G(J(Ext®®(M, R))).

So we obtain the following
PROPOSITION 2.5. If p € G(J(M)), then p € G(J(Ext'y¥(M, R))).
" Proposition 2.5 has many useful consequences.

COROLLARY 2.6. If p € G(J(M)), then Exthtp(Exthtp(M, R)) #0.

~ PROOF: Apply Proposition 2.5 twice, first for the module M, and then for
Ext2(M, R), and observe that an R-module N = 0 iff G(J(N)) = 0.

Clearly, for any good filtration F on the R-module M, we have G(J(M))
C Ap(M). We shall see that this can be refined. First we use the notation

Lip(M) = BExth (Exth (M, R), R),
and define a subset of Spec(gr=R)
E(M) = UrG(J(Lr(M)))).

(If k < grade(M) or k > jz, we have Li(M) = 0, so the union can be taken over
grade(M) < k < p1).
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Obviously, £(M) does not depend on F, and we have the following im-

mediate consequence of Proposition 2.5.
COROLLARY 2.7. G{(J(M)) C E(M).

At this stage, we can announce the main result of this section. Recall

that we have put Ap(M) := Assg . r(grrM).

THEOREM 2.8. Let M be an R-module, then for any good filtration F,
E(M) C Ap(M).

PrOOF: Let p € E(M), so p € G(Ly(M)) for some k. Put N = Ext%(M, R), we
have p € Q(Extlgp(Ext’ﬁ?(N, R), R)) by Proposition 2.5. If htp > k, Proposition
1.2.(i) of Section 1 implies grade(Ext}y®(Ext%(N, R), R)) > htp, a contradic-
tion, since htp > grade(Extlg'p(Ext’f{(N, R), R)). Thus we must have htp = k.

Consider the exact sequence in Proposition 1.2.(ii)
0— B,,_k(M)/B#_.k._l(M) — Lg(M) — Sk — 0.

Take any good filtration on Li(M) and endow the first and the last terms of
the above sequence with the induced and the quotient filtration, respectively.

We see that
J(Li(M)) = J(Bu-r(M)/By—i—1(M)) N J(Sk).
Therefore
p 2 J(Bu~i(M)/Bu—r—1(M)),

or

o 2 J(Sp)-

The latter inclusion is impossible, since grade(Sy) > k.
Thus

p 2 J(By—i(M)/Bimik—1(M)).
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Now

gxade(Byx(M)/B,_i1(M))) 2 grade(B,_(M)) 2 k = hig,
and so g is a minimal prime over J(B,_x(M)/B,_;_1(M)). In particular,

p € Supp(gr(B,—+(M)/Bu—r—1(M))),

where on each Br(M) the good filtration is the one induced from that of M.
Then we get

(97Buer(M)o/(g7Bu—t-1(M)p = gr(Bu—i(M)}/By—s-1(M))p # 0.

This implies in particular
(8B, (M)), # 0.
Together with the inequality
grade(grB,_x(M)) = k = htp,
this shows that p is minimal over J(B,_1(M)), hence

P E ASS(grBﬂ_k(ﬂ/f)) C ASS(ngM) = AF(M)

We have actually shown in the proof of Theorem 2.8 that J(Lx(M))
is equidimensional, and G(J(Lx(M))) C G(J(Bu—r(M)/B,—r—1(M)) for all £.
So if M has pure dimension, i.e. each quotient (B,_p(M)/Bu_x—1(M)), k #
grade(M), is zero, then £(M) reduces to a single term G(J(Lgrage(ar)(M)))-
Combined with Corollary 2.7, this gives

COROLLARY 2.9 (Kashiwafa—Gabber—Bjﬁrk). If the R-module M has pure di-

mension, then J(M) is equidimensional.

Concerning the inclusion £(M) C Ap(M), we notice that this is in
.general strict. For example, when M is filtered with a filtration F.M such that
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M has pure dimension but gr £ M has not, then £(M) # Ar(M ). Indeed, in this
case £(M) only contains primes of height grade(M), while the latter does not.
This can be seen using the following characterization of purity in commutative

case (see [4])-

PROPOSITION 2.10. Let M be a module over a commutative ring R. Then M

has pure dimension iff all its associated primes have the same height

PROOF: Suppose M has pure dimension and let p € Assp(M). Then there is
an N C M such that N & R/p, and we have htp = grade(N} = grade(M) by
Proposition 1.6. | :

Conversely, if all associated primes of M have the same height, say h,
then for every submodule N € M we have grade(N) = ht Ann(N) =inf{htp|p

€ Ass(N)} = h, since Ass(N) C Ass(M). Now by Proposition 1.6 again, M has

pure dimension.

It is natural to ask when equality holds in Theorem 92.8. In the remain-
der of this paper, we will give a sufficient condition for this. So let us fix an
R-module M and consider a good filtration F on it. Put M = grpM, the

associated graded gr  R-module.

THEOREM 2.11. Suppose that the good filtration F satisfies the following con-
dition: ¥ N # 0 is any homogeneous cyclic submodule of M, there exists a
submodule 0 # N € M such that with the induced filtration we have grN CN.
Then

E(M) = Ap(M).

PROOF: The proof of Theorem 2.11 bases on Proposition 1.4, Theorem 2.10

and the following lemma whose proof 1s easy.
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LEMMA 2.12. Let R be as in Theorem 2.10. Given an exact sequence of R-

modules
0—-M-M-M'—D0,

with M having pure dimension and with grade(M") > grade(M) + 1, then

G(J(M)) = G(J(N))-

When the ring R is commutative, we consider the trivial filtration 7 R:
F.R = 0 with n < 0 and F,R = R otherwise. In this case, gryR = R (as
nongraded rings) and for any R-module M we can take a good filtration F on
M such that greM = M. For example, take F,M = 3, FnR.u;, where {ux}
is a finite set of generators for M. Clearly the assumption of Theorem 2.11 is
satisfied, hence £(M) = Ap(M), i.e.

UrG(Lr(M)) = Ass(grpM) = Ass(M).

Note that G(Lx(M)) = Ass(Lx(M)). Then we obtain the following corollary,
which was first proved by A. Grothendieck for a complete local ring (see [6,
Proposition 6.6]). '

COROLLARY 2.13. Let R be a commutative Gorenstein ring. Then for any
R-module M, we have

Uy Ass(Ly(M)) = Ass(M),

where each term Ass(Li(M)) contains only primes of height k.
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