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§1. Introduction

In [4] the following problem has been considered : find (T,s,c,C) , T >
0,s(t) € C[0,T),C(t) € CH[0,T],¢e(z,t) € CHY(Dr) N CYO( D7), Dy = {(x,1) :
0 <x < s(t),0 <t < T} such that the following equation and conditions are
satisfied:

Cox— =0 in D, (1.1)
s(0) =0, (1.2)
e(0,t) = C(t), C(0) =1,0 <t < T, (1.3)
ez(0,8) = C(1),0 < t < T, (1.4)
5(t) = fle(s{t),1),0<t < T, | (1.5)
ca(5(t), 8) = —(g + e(s(t), £)$(t), 0 < t < T, (1)

where f € C[0,4+00) N C0,+00), f(0) =0, f'(y) > 0 for y > 0, ¢ is a positive
constant.

This problem arises from a model for sorption of swelling solvent in a
glassy polymer. This model has been described in [2]. Consider a slab of a glassy
polymer in contact with a solvent. We observe that if the solvent concentration
exceeds some threshold value ¢, then the solvent penetrates into the polymer.

The solvent is assumed to diffuse in the penetrated zone according to Fick’s
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law. Note that ¢(z,t) 4+ ¢ is the concentration of the swollen region and the
glassy region (a free boundary).

The condition (1.6) is the mass balance at the interface z = s(t) and
(1.5) is an empirical law connecting the speed of penetration of the solvent
with the jump of concentration at the free boundary. The boundary conditions
(1.3),(1.4) arise from the mass balance when the polymer is in perfect contact
with a (Well—stirred) bath in which the (excess of) concentration of the solvent
is given by C(t).

Some similar free boundary problems have been investigated e.g. in {1],
(5], {8].

In this paper, we consider the penetration of solvent in the nonhomo-
geneous polymer. So ¢ depends on the space argument, and the law of the

penetration of the solvent is given by the following;

5(t) = fle(s(1), 1), S(t))f

However, we shall restrict ourselves to the case s(0) = b > 0. Specifically, we

will study the following problem:

PrOBLEM I. Find (T,s,c,C), T > 0,s(t) € C*{0,T],C(t) € C[0,T),c(z,¢) €
C*Y D7) N CY(Dr),Dr = {(2,%) : 0 < = < s(¢),0 < ¢t < T}, such that the

following equation and conditions are satisfied:

€zz —c; =0 In Dp, (1.7)
s(0) =b> 0, (1.8)
c(z,0) = h(z),0 <z < b, (1.9)
¢(0,%) = C(t), C(0) = h(0),0< t < T, (1.10)
c(0,8) =C(),0< t < T, (1.11)
3(t) = fle(s(),t),s(t),0 <t < T, (1.12)

cx(8(2),t) = —(q(s(2)) + e(s(1),1))3(t),0 < t < T, (1.13)



FREE BOUNDARY PROBLEM 79

where f, ¢, h are given functions.:

We assume that f, g, b satisfy the following conditions:
FeCHN),Q={(c,z):0<c<R(0),z>0)
F(0,2) =0 V2> 0 fule,a) >0, fulcz) > 0,V(c,2) €Q Y (1.14)
f(R(0),z) £ F V& >0, F is a positive constant

g€ CYRY),q(z) >0Ve >0,¢'(z) >0 Vz >0 (1.15)
h e C*0,b], h(z) > 0,k'(z) <0 in [0,B], }

h'(0) = 1"(0), A'(b) = —(g(b) + h(8)) f(A(D), b).
From (1.14) it follows that there exists a function ® such that (1.12) can

(1.16)

be rewritten in the following equivalent form:
c(s(t),t) = ®(8(t), s(t)), 0 <t < T. (1.127)

, We notice that, if Problem I has a classical solution, then ¢, and ¢, are
continuous up to the boundary x = 0 for ¢ > 0. Differentiating (1.10), from
(1.11) we obtain

c:(0,1) = (0, ) = ¢,2(0,1),0 <t < T. (1.17)

§2. Auxiliary results

First, we prove some a prior estimates for the solution of Problem I

PRrOPOSITION 2.1. Let (T,s,c,C) be a solution of Problem 1. Then

) >0, 0<t<T, (2.1)
co(z,t) <0 in Drp, (2.2)
(z,8) >0 in Dr. o (23)

PROOF: It is clear that (2.1)-(2.3) are satisfied for ¢ = 0. So there exists > 0
such that $(t) > 0,0 < t < &. Since ¢(s(t),t) = ®(5(2),s(t)) > 0,0 <& < ¢, it
follows that ¢, (s(t),t) < 0,0 <t < £. If ¢,(2, t) attains its positive maximum on
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z =0 at t = g, from (1.17) we get ¢z2(0,%) = ¢-(0,%0) > 0, which contradicts
the strong maximum principle. Therefore (2.2) and (2.3) hold in Dj by the
maximum principle. )

~ Suppose that 5(f) = 0. Then ¢(s(f),f) = ®(5(2),s(?)) = 8(0,s(?)) = 0
so that ¢(z,t) attains its minimum at (s(),%) in Dj. Because of the strong
maximum principle we have ¢;(s(?),7) < 0, which contradicts the condition
c:(s(%),f) = 0. Then 5(f) > 0 and we can repeat the above argument for any
te 7).

COROLLARY 2.1. Let (T,s,¢,C) bhe a; solution of Problem I. Then
c(z,t) < h{0) in Dr, (2.4)

§(t)<F, 0<t<T. (2.5)

PrOOF: From C(t) = c,(0,t) < 0 it follows that ¢(0,£) < C(0) = h(0). Since
¢(x,0) = h(z) < h(0) and because of (2.2), we get '(2.4) by using the maximum
principle. (2.5) follows from (1.12) and (1.14). |

Now we show that s € C?[0,7] if Problem 1 has a solution. We consider
the following

ProBLEM II. Let r € CY0,T],#7(0) = b > 0,7(¢t) > 0,0 <t < T,np €
C[0,8] if b > 0,% € C{0,T],n(0) = ¥(0), g € CH{RT)?, g4(y,2) < 0,9:(y,z) <
0,9(z,y) < 0 for y > 0,z > 0. Find a triple (Ty, Z,v) such that Ty > 0,2 €
C*Y Dr,(r)) N C(Dqy(r)),7 € C0,To], D1, (r) = {(z,8) : 0 <z < r(£),0 < £ <

To} and the following equation and conditions are satisfied:

Zy2—2Z:=0 in Dp(r), ' (2.6)
Z(z,0)=mn(z), 0<z <, (2.7)
7(0,t) = ¥(t), 0<t< T, (2.8)

Z5(r(?),1) + #(1)2(r(2), £) = g2(v(2), r(}))F () +

+gy(v(®), r(O)F ()9 (7(2), (1)) + Z(r(2), 2)],
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0<t<T, - 29
— ot / F(Pg((r), (7))
+4(r(r),Tdr,0 < t < Ty, (2.10)

where 7, 1s a given positive constant.

PROPOSITION 2.2. Problem II has at lea.st‘ one solution with Ty depending on
~o and sup |#|. Moreover v € C1[0,Ty].

PrRoOOF: For any T > 0, we put
B(T) = {y € CI0,T): |y =l < 5}

and define F on B(T) as follows:
(F)(E) = 70 + / (1) r (1)) + Z(r(r), 7},

where Z(z,t) is the unique continuous solution of (2.6)-(2.9) corresponding to
the given function ¥ ( the existence and uniqueness of Z can be proved as in
[6]). We shall prove that 7(B(T)) C B(T) for a convenient T.

Pix T > 0 and let |

370
Q) = {{y,z): —<y<7 0<$<b+R1T1}

¥, = sup |¥(2),
0<t<T)

Ry = sup |r(t)]
0<t<Ty

ms = sup |n(z)l
0<z<h

G= sup |g(y,2)l,
(3,2 €@

9:(y,7)|

G, = sup
' gy(yam)

(y,x)es
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In any Dy(r),t < T1, we have

12(08)] < max{¥a,m, sup |2(r(7), 7)) (2.11)
) <r<t ’

In order to estimate sup |Z(r(7), 7)| we assume that Z attains its positive max-

imum on z = r(t) for some f3. Then
0 < Za(r(to), to) < gx(v(t0), r(t0))7(to)+

g+(7(to), T(to))[f(to)g(7(to), r(to)) + Z(r(to) t0)]- (2.12)

Hence 0 < Z(r(tn),t0) < GRy.
In the same way, supposing that Z attains its negative minimum on

z = r(t) for some t;, we show that
0> Z(r(t:1), 1) > ~G1R: — GR;.
In both cases we have
0<|Z2(r(7),7)| < (G1 + G)Ry (2.13)
in Dy(r). 'Coming back to (2.11), we see that
0 < |Z(z,7)| < max{¥;,m,(Gy +G)R;} = Z*

in Dy(r) for any t < T;.

Therefore, we get
[(FY)E) — vol S H{R1G + Z7}.

If we choose Ty = min{T},v0/2(R,G + Z*)}, then F(B(T)) C B(T) for any
T < Tp. :

Because B(T') is a closed convex subset of C[0,T) and F(B(T)) c B(T)
is precompact, using Schauder’s Theorem (see [7], p. 189) we only need to show

that F is continuous in € norm.
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Split F into the sum of F; and F» , where

t

(F1)E) =70 + / Hr)g(y(7), r(r))dr,

0

t

(Fay)(t) = / Z(r(r), )dr.

Then F; is a Lipschitz continuous function because

Fm = Frrell STG R — 7,

83

where G’ = sup |gy(y,z)|. Now we prove that F; is continuous. For this it

(y,z}€E

suffices to show that the application v € B (T) — Z € C{Dy(r)) is continuous.
Let v1,v2 € B(T) and Z1,Z: be the corressponding solutions of (2.6)-

(2.9). Put W = Z; — Z,, then

Wee =Wy =0 in Dp(r),
wW(0,t)=0, 0<t<T,
W(z,0)=0, 0<z<b(ifd>0),

We(r(8),8) + {#(8) — gy(na (), ()} W (r(t), t) =
?‘(t){gy('n_(t), (1)) — gy12(t), r())g(v2 (1), 7(¢)) }

+Z_2(7"(t), ), {gx(71(), 7(2)) — gy (72(t), r(1))}
() {g=(n(E), () — g2 (2(2), r(EN}, 0 < £ < To.

From the latter equation we get

W] < g U (D, rE)a(n(®), ()

—gy(72(t), T(#))g(r2(£), 7 (1)) + lge(m(B), 7(£)) — g2(72(), (D)1} +

gy (1) r(8)) — gy (2 (8), r(E))], 0 < £ < To,

T
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0 < Hy = inof s, z)l, R = inf 7(t) > 0. Now the continuit
where o. o lgy(y, =)}, Re ot (¢) ny
of the application v — Z follows from the uniform continuity of the functions

Gy 9z 9y9 in £;.

COROLLARY 2.2. Let (T, s, ¢, C) be a solution of Problem I. Then s € C*{0,T].

PROOF: We consider Problem II and let ¥(t) = C(t), n(z) = h"(2),v =
h(b), g(y,x) = —(g(z) + y)f(y, =), r(t) = s(t). It is clear that this choice of data
verifies all assumptions of Problem II. By Proposition 2.2 there exists a solution
(To, Z,v) with Tp > 0.

Define v(a: t) as follows

o(z, t) = h(0) + :c[/ Z,(0,7)dr +1'(0)]
0

t z £
+ 0/ Z(0,7)dr + 0/ dé 0/ Z(y, t)dy. (2.14)
Then v satisfies the following conditions:
vez —v¢ =0 in Dg, . ' (2.15)
0(0,8) =C(t), 0<t<To, . (2:16)
o(2,0) = h(z), 0<z<b (2.17)
va(s(t),1) = g(v(s(t), 1), 8(2)), 0<i<Th, (2.18) .
Lo(s(t), 1) =3(0), 0<1<T, (2.19)
va(s(2) 1) = g(o(s(2), ), 5(1), 0<E<0. T (2.20)

( To get (2.18) we use Stoke’s theorem by ‘integrating the heat equation for
Z in Dr,). Since the solution of (2.15)-(2.17), (2.20) is unique (see e.g. [6]),
v(z,t) = ¢(z,t) in Dg, . The continuity of s in {0, T3] follows from (2.19) and

8(t) = fele(s(t), f):S(f))“C(S(t) t) + frle(s(®), ) s(t))s(2)-
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Finally. if Ty < T, using Proposition 2.1 and Corollary 2.1 we can repeat
the above argument, starting at 7y with v9 = ¢(s(7y). Ty) > 0 to reach a time
T\ and so on . A careful analysis of the bounds for Z{x.f}. (sce (2.13)) along
with the fact that e{s(#).¢) is stri(‘tl}"positi{'r‘ in [0. 7] shows that the sequence

T cannot converge hefore T

$3. Local existence

Now we shall prove that Problemn I has a unigue local solution in a
suitable functional class. We define
s{1)
v(r,t) =" f(C(y-f) + q(y))dy. (3.1)
.

If (T.s,0,(") is a solution of Problem 1, then

v 20, o —vi=c ¢ (#) in Dy, (3.2)

s(0) = b, ‘ (3.3)
s(1)

e 0) = —e " /(h(y) +qly))dy.0 < x < b, (3.4)

I}
e (0,4) = a = h(0) + ¢(0) + /(h(y)-}—q{ yNdy. 0 <t <T.  (3.5)

Q

cis(t)t)=0,0<t < T, : (3.6}
M) = feos(t), 1) — g(s(1),s(1).0 <t < T (3.7)

Note that (3.2)-(3.7) is a Stefan-type free boundary problemn with nonlin-
ear Stefan condition. In 3], a general theorem for local existence and uniqueness
of such a problem has heen proved with s € H 4 3(0.7]. 4 < % However, our
problem does not fit completely the assumptions of [3] because f may be not

Lipschitz continuous at the origin.
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We can bypass this difficulty by replacing f by f as follows:
- fy,z), 0<y < h(0),2 >0,
fly,z) =9 .
fly,2), y € (~00,0) U (R(0), +o0),z > 0,

where f is any C! function such that f(0,2) =0 VYo >0, Fis uniformly
Lipschitz continuous in R with respect to y for z > 0,and fis a C! continuation
of f outside {0, 2(0)] x [0, +00).

We can define a new problem with f instead of file.

i) = (e Duy(s(t), 1) — qls(), 8(8). (3.7)

From Theorem 1 of [3] we get the following

PROPOSITION 3.1. Problem (3.2)-(3.6), (3.7) has a unique solution (T,s,v)
with s € Hi4,[0,T) and v € Cyy2a( D) for any all <a< 5).

PROPOSITION 3.2. Problem I with f instead of f has a unique solution which

coincides with the solution of the original Problem I.

PROOF: Define &(z,t) = ¢"® (v, (2, b) + v(,1) — ¢(z)). Then (1.7)-(1.13) are
satisfied with C(¢) = v,(0,%) + v(0,2) ~ ¢(0). Notice that we also have the

following estimates for f:
0= 7(0,7) < f(&x,t),7) < f(h(0),r), Vr >0

The uniqueness of the solution implies that ¢ = ¢ in Dy. Finally the regular-

isation result of Corollary 2.2 implies that the solution is unique in the class
s € C*0,T]. '

Now we can summarize the obtained results as follows.

THEOREM 3.1. Probhlem I admits a unique solution (T,s,c,C) with s € C?[0, T).

§4. Uniqueness

First we shall prove the following;:
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LEMMA 4.1. Let (T3, s1,v1),(T3, s2, ve) be two solutions of the following equa-

tions
Vizz — Vit = ¢'(z) In D, (4.1)
5;(0) = b;, B | (4.2)
vi(z,0) = hi(z), O0<z<by, (4.3)
vie(0,8) = 0:(0,1) + au(t), O<t< T (4.4)
vi(si(t),t) =0, O<t<T, (4.5)
vie(8i(1), 1) = 1;(3;(4), s:(1), 0 < t < T, (4.6)

where Dy, = {(z,1) : 0 <z < 5;(1),0 < t < T}}. Suppose. that by > by,
as(t) > ag.(t), e1(t) 2 0,0 <t < min{Ty, T3},
hi(z) £0,0 <z < by, hy(2) < ha(z),0 < T < by,
where at least one of the above inequalities is not the identity and
p(yr, @) — po(y,2) <0 if y; < yo,Vz > 0.
Then s1(t) > s5(2), OlS t <min{Ty, T, }.
PROOF: Suppose that there exists I = min{t|s,(¢) = s2(t)}. Of course, t > 0.

Put W((z,t) = vi(z,t) —va(z,t) in D = {(2,8) : 0 < z < s9(1),0 <t < t}. We

have

Wee—W,=0 in D,
Wo(0,8) — W(0,) = as(t) — an(t) > 0,0 < £ < 7,

W(sa2(t), 1) = vi(s2(),1) < 0,0 < t < ¢,

 W(2,0) = hy(s) — ha(z) < 0,0 < z < by,

Hence W cannot attain its positive maximum on z = 0. This implies that

(s2(2), %) is a maximum point of Win D . Using the strong maximum principle
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we got Wa(s2(08) > 0. But Wy(sa(B), ) = i (@) 52(0) = 2 (52D, 52(0) < 0
(because s1(2) = s2(2) and $1(t) < $2(¢)), a contradiction.

THEOREM 4.1. Problem I has at most one solution,

Proor: Let (T3,s1,¢1,C1) and (T3, 89,¢9,C3) be two maximal solutions of
Problem I, T; £ T < 400, We define

a(t)
wlet) == [(@w ) +awy, =12

Then (T}, 8i, u;) solves (4.1)-(4.6) with b; = 0,a; = h(0) + ¢(0), and y;(y,2) =
$(y,z) + ¢(z). For any € > 0, we define

se(t) = s2(t —€),  ulz,t) = ug(z,t —¢),

s_e(t) =s2(t +¢), u_z,t) =us(z,t+¢).

Notice that (T3 + €, 3, u¢) and (To — €, 8_,, u_) are solutions corresponding to
the initial data s.(¢) = 0 and s_.(—¢) = 0. Since @ is a monotone increasing
function, we can apply Lemma 3.1 to (s1,u1),(Se, ue) and (s1,u1), (5—¢, U—c)
and get

se(t) < s1(t), et < Ty,

Sl(t) < S...E(t), 0 S t S Tg — €.

Letting € tend to 0 , from the uniform continuity of s; ( remember that 0 <
5(t) < F) we obtain s{(t) = s3(t),0 < t < Ty. Because of the hypothesis on

maximality it follows that T} = T5.
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