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NONCONVEX PERTURBATION OF DIFFERENTIAL
INCLUSIONS WITH MEMORY

TRUONG XUAN DUC HA

1. Introduction

Nonconvex-valued differential inclusions have attracted much attention
in recent years. See the monographs [1j, [14] and the papers [4]—[8], [12], [13],
[15], [16] for an overview on this area of research. However, there are a few
results devoted to differential inclusions with memory [9}-{11], [13].

Let E be a Hilbert space, I an interval of R and 7 a positive scalar.
Denote by Cg(I) the Banach space of continuous functions from I into E. By
Co we mean the Banach space Cg(—7,0] with the norm lell, = sé?fjfoj (sl
For ¢y > 0,a > 0, « € Cg[to — 7,10 + a), and for any t € [tg,to + @] we define a
map T'(¢) from Cgty — 7,t0 + ¢} into Cp as follows

T(t)z(s) =z(t+s), s€[-70]

For an arbitrary nonempty set A C F, denote by m(A) the (unique) element of

A with the smallest norm. In this paper ‘we prove the following

THEOREM 1.1. Let E be a separable Hilbert space , @ C R x & an open
subset containg (to, o). Assume that '

1) wo is a Lipschitz function;

2) F is an upper semicontinuous map from § into non-empty closed convex
subsets of E and the map (t,z) — m(F(t, z)) is locally compact,

3) G is a uniformly continuous map from ) into non-empty compact subsets of

E whose image G(R) is relatively compact.
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Then there exist a positive scalar a and an absolutely continuous function z(-) €
Eglto — 7,%0 + a] such that
T(to)m = %0, (11)

#(t) € F(t,T(t)z) + G(¢, T(t)x) (1.2)
. for almost all t € [ty,1y + a].

Recall that a map @ is locally compact if for each point in Dom w there
exists a neighborhood which is mapped into a compact subset. The map G
is uniformly continuous on  if for any € > 0, there exists a positive scalar
§ such that if (t;,a1), (f2,22) € Q and ||(t1,21) — (t2,22)lgxc, < 6, then
h(G(tl,ml),G(t_g,:cg)) < ¢, where ||({,2)] ge, = It| + |lzll, and A(A4, B) is the
Hausdorff distance between the nonempty subsets A, B of E.

Note that in [8] Gamal developed the discretization method initiated by
Filippov, Moreau for studying evolution equations perturbed by non-convex-
valued maps in separable Hilbert spaces. This method and some techniques of
[1] will be used in the proof of Theorem 1.1. We shall also present an existence
theorem for global solutions to differential inclusions with memory (1.1)-(1.2).
The obtained results extend Theorems 2.1.3, 2.3.1, 2.1.4 of [1] and some results
of [8], [13].

2. Proof of Theorem 2.1

Let us first recall some compactness criterions that will be used in the

sequel.

PROPOSITION 2.1 ([3],[8]). Given a Banach space E, let H, be a family of
ds-measurable functions from [0,1] into the unit ball of E satisfying

1) For any compact set A C [0,1], H4 = {f f(s)ds|f € H} is relatively compact,

ii) For any € > 0, there exists a number /\ € (0,1) such that for aH 7 € (0,A)
and all f € 'H

[ 1t +m) = f(s)las < e
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Then H is relatively compact in L[0,1].

PROPOSITION 2.2 [2]. Let (2, A, 1) be a measured space with finite u and E
a separable Banach space. Assume that H is a bounded uniformly integrable
family of LL(Q, A, p) satisfying the following condition : For any n > 0 there
exist A, € A with u(Q\A,) < 7 and a map G, from A, into E with nonempty
compact values such that f(w) € Gy(w) for all f € H and w € A, . Then the
set M = {[ fdu|f € H} is relatively compact in E.

Q

ProoF oF THEOREM 1.1: We shall prove Theorem 1.1 by adapting the original
technique used by Gamal in [§].
Observe first that since (¢,z) — m(F(¢,z)) is locally compact, there

exist a compact convex subset Iy C E and positive scalars a, b such that
Q={t2)eQ: |t -t <a,flz —polly L8} CQ

and m(F(t,z)) € K, for all (¢t,z) € Q.
Let I{; C E be a compact convex set containing G(£2). Put

= max{||u| : v € K1},

po = max{||u| : v € K, }.

Let £ be the Lipschitz constant of ¢¢. Without loss of generality we may assume
that the scalar a satisfies the following condition

b

: 2.1
max{{, p1 + 2} &)

a <

Let ¢, = 27%,n > 1. By Assumption 3) and Lemma 1 in [8], there exists

a strictly decreasing sequence of positive scalars (e, )52, converging to 0 as

a €n-1 . €n—1
are mntegers and
€n—1 €En €n

Moreover, for every (t1,21), (t2, z2) €  with

> 2 for every n > 2.

'n — 400 such that

(1, 21) = (t2, 22) | p e, < en(max{l,pg + pa} + 1)

we have h(G(t1,21), G(t2,22)) < €n.
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For each n > 1 we consider the partition of I = [fo,?o + o] given by
n L , a
Pnz.{ti =t0-+zen:z——"0,l,...,vn-—--e—}.
. i

As shown in [8], the sequence (Pn)3%; satisfies the following two properties
(P1) P, C Py,
(P2) For every n > 2 and for every i € P,\P; there exists a unique
‘ couple (r, 7) of positive integers depending on t? such that |
(- r < n,
P& P, u=1,...,7
ﬁ t7 € Pu, u >r4+1,

OSjSVr—]-a

(1] <t <t

To every partition P, we assoclate an- absolutely continuous function z, st —
T,to+a] — E and step functions y, : [to,t0+0a) — E, zn:[te,to+a] — E
" such that the following relations are satisfied for all n 2> 1

(1) T(tO)m‘n = o0, . . .
(i) For every 2 = 0,1,... ,v, — 1 and for every ¢ € (Birtit1)s

yn(t) = m(F(t2, T(t})z,)) € Ky C i B,
za(t) € G(t7, T(t7)zn) C K2 C p2B,
En(t) = ya(t) + 2(t)
where B = {z € E, |jz|| £ 1},
(iii) For all ¢ € [to, to + ],
2u(t) € 7o + [0, al (K1 + Ko},

where zy = ©o(0),
(iv) For all ,t' € [t, o + @,

IT(#)zn ~ T(t)zally < -~ t'| max{f, g1 + pa},
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(v) For every i =1,2,... ,v, — 1,

f”zn(t? +5) — za(ti, + s)|ds < epe, if tP € Py,
0

f||zn(t? +8) — za(t] + s)||ds < eqe. i 7 & Py,
i

where (r,7) is the unique couple of integers satisfying property (P2) and de-
pending on 7.

Notice first that .properties (i) and (iv) imply
IT(2)2n = ool = IT(E)en = Tlto)zally < It ~ fol max{6, u + 2}
< emax{{, y; + po},
which togethef with (2.1) yields
| IT()zn — olly < 0.
Then for all ¢ € [tg,t0 + a] we have
m(F(t,T(t)z)) € K, C 1, B.
Further, from property (iv) it follows that
IT()2n — Ty )eally < enmax(t, s + o).
Then for every : = 0,1,... ,v, — 1 we have
R(G(T, Tt )2n), G(tl1, T(1)en)) < en.

Let us construct functions z,(-),y»(-) and z,(-) which satisfy properties (i)-
(v). Let n > 1 be fixed. Firstly, for t € [ty — 7,%] we set zn(t) = wolt — to).
Set g = wo(to), y§ = m(F(t3,T(t3)zn)) and let 2§ be an arbitrary point of
G(t5,T(t§ )z ). The functions 2,(-), yo(-) and z,(-) can be defined on [t9,¢7] as
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follows: .
za(t) = 2g + (¢ — 15 )(wo + 20),
yn(t) = 90> (22)
zn(t) = 2zg.-

It is obvious that the defined functions have properties (i) — (iii) on [to — 7, #7].
We shall verify property (iv) for t,# € [to,t}]. Let s € [—7,0] be given. If
t+ s € [tg,t}]) and ¢' + s € [to, 1], then

IT()aa(s) — T )zal(s)ll = lzn(t +8) — zalt’ + 5)
< Jt =t + p2)
< [t — ' max{f, uy + ra}.
Ft+s € [tg—7,t0) and t' + 5 € [tp,t]], then
IT(@)2a(s) = T(E)on() = lenlt + ) = oat! + )l
= |lpo(t + s — to) = ¢o(0) + walto) — @ (¥’ + s)|
< l(to —t —s) + (1 + p2)(t' + s —to)
<t —t'fmax{{, 1 + p2}-
Suppose that t+ s € [to — 7, 1), 2 + 5 € [to — 7, to]. Then we have
IT(1)an(s) = T(t)en(s)]| = llznlt + 8) — 2alt’ + )|
= [lpolt + s — to) — po(t' + s — o)l
<t -]
< |t = t'{max{l, g + p2}.
Thus property (iv) is satisfied for #,t' € [to, 7).

Next, put 27 = z,(t7),y] = m(F(t7,T(t7)z,)) and let
2} € G(t7,T(¢})zn) be a point such that

27 = 2]l < A(G(HT, T(1)zn), GG, T(85)20))-
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Then for ¢ € (t7,t%] we put

Tn(t) =2t + (-9l + 27),
ya(t) =yl o (2.3)

za(2) = z7.

It is easy to see that z,(-), yn(') and z,(:) defined on [tg,t{f]l by (2.2) and
(2.3) satisfy conditions (i) - (iv). We now verify (v) for t]. Since ||T(¢])z, —
T2V za|| < enmax{l, p1+p2}, we have h(G(tT, T(E7)zn ), G5, T(15)%n)) < €n

and by our construction ||z} — z#|| € €,. Therefore,

€n -

/Hzn(t’f 1 5) = 2t + 5)|ds < ent.

J . ,
If t* ¢ Py, we denote by (r,j) the unique couple satisfying property (P2) and
depending on t7. Since ‘

th =jer <IT =en < i = (7 +Der
and r < n, it follows that en < e,. Hence we obtain that j = 0, that 1s

ty =ty =17

Therefore, using the above inequality, we derive that

f lza(E? 4+ 5) — 2a(t] + 5)|lds = f Lza(t} + 8) — za(t8 + )| ds
0 0

< €n€n
< ‘ener.
We now assume that z,(-), yn(-) and z,(-) are defined on [t7,1]] in such a way

that
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a) For every k =0,1,... ,7 — 1 and for every ¢ € (t2,thy1)s
yn(t) = m(F (%, T(t7)zn)) € IG C B,
2alt) = 2F € G, T()2a) € Ka C B,
En(t) = yn(t) + za(t),

b) For all t € [tg,17],

zn(t) € o + [0, 17 [{ K1 + K2},
¢) For all £,#' € [t5,17],
|1 T()zx - T(t'.)_mn”[) S _|t- — 1| m@x{ﬁ, pt #2}a .

d) For every k=1,2,...,i—1,

/[|zn(tg + 8} — za(th_y + 8)|lds < enen, if tf € Py,
0

j l2a(£2 + 5) — 2a(t] + $)|ds < eae, i £ & Py,

where (r,7) is the unique couple determined by ¢} in the property (P2).

In order to define z,,(+), ya{:) and z,(-) on (%,t%,,] we put 2 = z,(I}),
y? = m(F(t}, T(t?)z,)) and choose the value zf of z,(-) on (tF,¢%] in the
following way. If t* € Pi, then we take 27 € G(i7,T(t},,)xn) with

28 = ziog | < M(GET, T(E )en), G-, T(Ho1)2a))-
Assume that t* ¢ P;. Because of property (P2), there exists a unique couple
(r,7) depending on {2 such that
( r<n
tTE Py, u=1,...,r
{ttely, uzr+l,

0<7<v, -1,

(1] <17 <4
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Since r < n, then t] € Pn, that is t] = ¢ for a unique integer ¢ with 0 < ¢ <
t — 1. Hence we have ‘

(¢ —glen = 1] —t] <er.
From property c) it follows that
1T )20 — T(41)2nll < en max{l, py + p2}
for every £ =0,1,... ,7 — 1. Therefore,
ITCE2 )0 = T Yoall < IT(E)n — Tt )enl+
TG )en — T(E )2l
< (¢ — q)enmax{l, ur + pa}

< e max{e,,ul + #2}

and we obtain

MG, T )xn), Gty , T(t )zn) < €r.
Let 2z € G(t7,T(t")zy,) such that
128 — zg | < A(G(F, T(#)wn ), Gltg, T(g)zn))-
Now, for ¢ € (7,12, ] we put
ealt) = o7 4 (E = )] + 27),

yalt) =y

zn{t) = 21

It is easy to show that the functions z.(-),¥n(-) and z,(-) satisfy conditions

(1)-(iv) on [tg,t},,] . We now verify (v) for k =4. If t7 € Py, we have

€n €n
[l +9) = sattiy + ollds = [ 17 = 22-slds < ener
0 0
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If t? ¢ P, we obtain

[ henttr +6) =265+ )lds = [ henlt? +6) = 2ty + 9l
0 ‘ 0

. Epn
= /”zt" —_z;‘“ds < en€,.
0

Thus, the functions z,(+), ¥»(-) and z,(-) with the desired properties can be
defined on the whole interval [tg, o + a].

In view of [1, Theorem 1.3.4], there is a function ¢(-) € Li[t, %0 + q]
such that z,(-) converges uniformly.to 2(-) on compact subsets of [tg,f; + 4]

and Z,(-) = yn(-) + za(-) converges weakly to g¢(-) in Li[tg,to + a], where
¢

x(t) = zo + [ g(s)ds. We claim that there is a function z(:) € L [to, to + a] such
to

that z,(-) converges strongly to z(-) in Li{to, o + a]. Indeed, by an argument
analogous to that of the proof for [ 8, Theorem 4] one can verify that for the
sequence {zn(-)}52,; the following condition holds: For any positive scalar e,
there are a positive integer ny and a scalar o, € (0, @) such that for all n > ng

and 7 € (0, o),
fo-+a—n

|zn(t + n) — za(t)||dt < €.
ip
Using the definition of z,(-) one can now show.that for any positive scalar e,
there is a scalar «, € (0,a) such that for all 5 € (0, @) and n > 1
' tota—g
lzn(t +7) — za(®lldt < e
to .
Consequently, by virtue of Proposition 2.1, for proving the relative compactness
of {zx(-)}32, we only need to verify the fact that for any compact measurable

subset A of {to, %o + a], the subset { [ z,(t)dt min > 1} is relatively compact in
. 4 1
E. Setting 6,(t) = 1} for ¢ € (¢7,1},,] and 6,(0) = 0 we define

(I)n(t) = G(én(t): T(‘Sn(t))xn):
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It is clear that @x(-), a(-) and B (-), B(-) are measurable functions from [to, tp-+a]
into [to, 10 +a] x Cp and E, respectively . Furthermore, by the results obtained
above we get ' '
(i) an(-) — a(-) converges for all ¢ € [ty, ¢, +
(ii) Bn(-) — B(-) weakly converges in LL[to, o + al,
(iii) For all [tg,ty + a), (aa(t), Bn(t)) € graph F.

So all assumptions of [1,Theorem 1.4.1] hold. Hence for almost all ¢ €
[to, o + al, |
(a(t), B(2)) € graph F,

or

o(t) — () € F(t, T(t)3).

Taking into account (2.4) we obtain
z(t) € F(t, T(t)z) + G(t,T(t)x)

for almost all ¢ € [#g,to + a]. The proof is now complete.

3. Existence of global solutions

Observe that the interval on which the solution is defined depends upon
the size of Q} and upon the neighborhdod which is mapped in a compact set.
In the case where §2 = [t5, 0] x Cy and when m(F(t,z)) remains in a compact
set, we can take a = oo and b = co. Therefore we can take a arbitrarily in the

proof of Theorem 1.1, and, consequently, obtain global results.

THEOREM 3.1. Let E be a separable Hilbert space, Q = [tg,00) x Cy and
wo € Cy a Lipschitz function. Assume that

1) F is an upper semicontinuous map from  into non-empty closed convex
subsets of E and m(F(t,z)) remains in a compact subset of E;

2) G is a uniformly continuous map from § into non-empty compact subsets of

E whose image is rélatively compact.
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Then there exists an absolutely continuous function z(-) : [to — 7,00) — E

such that
T(t(})m = o,

() € F(t,T(t)x) + G{(t,T(t)x)

for almost all t € [ty, o).

REMARKS: 1. The main difficulty we meet here is the nonconvexity of the right-
hand side of the differential inclusion (1.2). Therefore, the fixed point approach,
a widely used tool in the theory of convex-valued differential inclusions, cannot
be employed.

2. When G = {0} or F = {0} we obtain an extension of Theorems 2.1.3, 2.3.1,
2.1.4 of [1] and of some results of [8], [13].

3. In [16] Valadier proposed a new approach for solving the following non-
convex evolution problem in R%. Let C(t) = R\intK(¢), K : [0,1] — Re.
be an 1-Lipschitz closed convex valued map with intK(¢) # § for all ¢ e [0,1].

Define _
- —Newé  # (e (),
Fi U(t: ‘E) = .
) otherwise,
where N4z is Clarke’s normal cone to the set A at x € A, and let
F :[0,1] x R* — R? be the smallest closed convex valued map which has a
closed graph and contains the map Fy N B, where (Fy N B)(1,{) = Fo(t, )N
B(0,1). He proved that F' = FyNB, and that F is an upper semicontinuous map
with compact convex values and obtained existence theorems for the following

differential inclusion
z(t) € F(t, z(t)),
1!2(0) = Zyg,
z(t) € C(¢).
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Adapting Valadier’s technique and following the proof of Theorem 1.1 one can

establish the existence of solutions of the differential inclusion

a(t) € F(t,z(2)) + G(t, T(t)z),
T(O) = Y0,
z(t) € C(¢)

with nonconvex-valued maps C and G .
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