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SEMI-CONTINUOUS ARBITRARILY VARYING CHANNELS
WITH GENERAL STATE CONSTRAINTS

BUI VAN THANH

Introduction

This paper is a continuation of our earlier paper [3], where the concept
of capacity of arbitrarily varying channels under ge.neral state constraints was
introduced. The state constraints were expressed in terms of types of state
sequences. The problem rose from earlier papers of Csiszdr -and Narayan 1],
(2], who considered the state constraints given in terms of a function. The mo-
tivation was the need of study of some communication situations which involve
several state constraints of such type. We also gave the exact formula for the
capacity of discrete AVC’s with finite state set.

The AVC’s having continuous alphabets and set of states are the most
important, but they are relatively less understood. In this paper we shall extend
the results of [3] to memoryless semi-continuous AVC’s, that is, the AVC’s with
finite alphabet X and general output alphabet ) and state set S.

Dropping the assumption on finiteness of § and Y presents no difficulties.
Dezﬂing with infinite X is more difficult and to get satisfactory results for that
case we shall need strong regularity assumptions. This is not suprising because
for infinite input alphabets, no general solution is known, even to the simpler
compound channel capacity problem.

Given the (memoryless) semi-continuous AV C{W} with finite input al-
phabet X, general output alphabet Y and the set of states S we shall adopt the
following hypotheses.
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(H.1) X is a finite set, while (Y, B),(8,C) are Polish spaces, l.e. sep-
arable, complete metric spaces, where B and C are the o- algebras of all Borel
subsets of Y and S, respectively. The distributions on these spaces are defined
on their o-algebras of Borel subsets. The topology for distributions will be
of weak convergence. Thus a sequence of distributions @, on § is said to be

convergent to the distribution @ if and only if

f £(5)Qn(ds) = [ 7()0(ds) (1)

for all continuous bounded real-valued funtions f defined on S.

(H.2) W(:|z,s), as a distribution-valued function of s, is continuous
for every fixed z € X, i.e., for every z € &X', 3, — s implies the convergence of
W(-lz,sn) to W(:|z,s) in the above sense.

We recall that the space M(S ) of all probability measures on a Polish
space (§,C) endowed with weak topology is separable and metrizable by the

Prohorov metric, i.e. the metric defined by

d(Q, Q") =inf{e: Q(B) S Q'(B) +¢Q'(B) < QB°) + ¢}, (2)

where B¢ = {s : mingep p(s,8') = p(s,B) < €} and p is the metric on &
(Billingsley [5]). Clearly, a sequence of distributions @, converges to Q in this
topology exactly when (1) is satisfied. .

Note that Hypothesis (H.2) is weaker than the continuity of W(A4|z, s)
as a function of s for every fixed z and Borel set A. For example, the sem:-
continuous noiseless adder AVC defined by Y = § = R, X C R being some
ﬁmie set of R and W(:|z, s) - the point mass at z + s, obviously satisfies (H.2),
while W{A|z,s) as a function of s has discontinuity for every non-trivial set
ACR. '

(H.3) State constraints are defined in terms of a convez, compact (in
weak topology) subset II of M (S ) which has non-empty interior in M(S). ‘A

state sequence s = (s1,...,3,) will be called an admissible state sequence if its
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empirical distribution defined by
‘ Lo
PJ(B)= - (B
P,(B) =~ ;xs,( $,BeC

belongs to II, where x,,;(-) denotes the point mass at s;.

The concept of codes, achievable rates and capacity under state con-
straint TI can be now extended to semi-continuous AVC’s in a straightfoward
manner. Namely, if a subset Il C M(S) is given, the average error probability
of the code- (f, #) under state constraint II is defined by

| M|

o) = &1L £,6) = max » WR({(Y) # mlf(m),s) (3)

A number R > 0 is called an achievable rate for the given AVC under state
constraint II if for every € > 0,8 > 0 and all sufficiently large n there exists an

n-length block code with N codewords and
llogN > R—§, e(Il) <. (4)
n

The supremum of such achievable rates is called the capacity of the AVC under
state constraint II and will be denoted by C(II).

For any distribution Q on S let Wo(-|z) denote the distribution on Y
defined by

Wolle) = [ W(le,9)Q(ds). 5)

Then, for any input distribution P on X we define I(P,Wq) as the mutual
information of random variables X and Y such that the distribution of X is P
and the conditional distribution of ¥ given X is Wyg. For finite input alphabet
X, I(P,Wg) is concave continuous in P and convex lower-semicontinuous in @,
For basic properties of the mutual information of random variables see e.g.
Pinsker [7].

As in the discrete case, we now define

I(P,T) = min I(P,Wg). (6)
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Here a lower-semicontinuous function is to be minimized over a compact set,
thus the minimum is always attained. Since I(P,1I) is the minimum of concave
functions I{(P, Wg), it is a concave upper semi-continuous function of P. For a
given semi-continuous AVC we define the symmetrization set U as the set of all

|X'|-tuples of distributions U(-]z) on & which satisfy the condition

/ W(Jz, s)U(dsla) = f W(le, 8)U (ds|) 7

for every z,z' € X. This equality of distributions is interpreted either as the
equality of both sides when replacing the dot by any Borel set in 8 or, equiva-
lently, as the equality of integrals

[ [owvsswiae.s = [ [awvemmias.o o

for every bounded, uniformly continvous function g defined on Y (Parthasarsthy
[6, Ch. 11, Theorem 5.9]). Also, for any a > 0 we define II(«) as the open a-
neighborhood of IT :

() = {Q : min d(Q.Q') = (@, TT) < a}. (9)

For every input distribution P on X" and any U € U, PU denotes the marginal

~ distribution on § :

PU()= )" P(x)U(]e).

zEeX

2. Semi-continuous AVC’s with general state constraints

First, we consider the case when Y is finite and only & is allowed to
be a Polish space. In this case Hypothesis (H.2) is reduced to a simpler form.
Namely, it means that for every fixed z € X YEVW (y[:c,é) is a continuous

function of s. Further, equation (8) means that

/W(y|:c,s)U(ds|$') = fW(y[:c’,.s)U(ds]:c) ' (10)

for every z,2' € X and y € ).
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We shall use the following key theorem proved in [3]. For any discrete
AVC {W}, let U denote its symmetrization set, i.e. the set of the channels
satisfying (10) with sums instead of integrals. Further, Il(a) denotes the open
c-neighborhood of IT with the usual Euclidean distance.

THEOREM KT. For any 8 > 0,a > 0, let P be a type of input sequences such
that mingex P(z) > 8 and PU ¢ I(a) for every U € U. Then for any § > 0,
there exist numbers v = 7(0:,;8,5) > 0 and ng = nol(e, 8,6) such that for all
n > ng, there exists a code with N codewords z1,%2,...,ZN, each of type P,
satisfying '

%logN > I{P, I} — 6, &(I1) < exp(—ny).

The existence of good cede in Theorem KT is guaranteed by the following
~“fact ([2, Lemma 3 ]): For any € > 0,n > no(€), N 2 exp(ne) and type P, there
exist N codewords z1,Z3,...,2n in A™, each of type P, such that for every
= X" s € 8™ and every joint type Pxxig with Px = Px» = P we have

@) i (@258) € xv} < expln(R - IX' AXS)F + )},

) NUHJ:(zj,s)€Txs} < exp(—ne/2) if (X AS) > ¢,

c) ilj:(zj zi,8) € Txx's for some: # 71} < exp(—ne/2)
if [(XAX'S) > |R—I(X'AS)|* +¢, where R = (1/n)log N and at = max(a,0).

It is worthy to observe that Lemma 3 of [2] was proved as follows. The
codewords 1, z3,...,2N were chosen randomly and independently according
to the uniform distribution on the set 7x, the set of all sequences x having type
P. The sequences = € X™ and s € S™ were first assumed to be fixed. .Then,
it was shown that the probability that a), b), ¢) do not simultaneously hold
tends to 0 doubly exponentially. As the number of all possible combinations
of sequences z € X", s € §" and joint types Pxx:s only grows exponentially
with n, it was ensured that the probability of the simultaneous validity of a), b)
and c) tends to 1 as n — co. Therefore any realization of the random choosing
satisfying all these inequalities is a proper choise for {z1,z2,...,2 N}
Now if we drop the assumpﬁion that S is fixed and allow that § = S(n)

depends on n, but its cardinality |S(n)| only polynomially grows with n, the
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number of all possible combinations of sequences and joint types still grows
slower than doubly exponentially. Thus the previous assertion remains valid.

After these preparations we can state the following theorem.

THEOREM 1. Let a discrete AVCW = {W(y|z,s)} be given with assumptions
that the set of states § is a Polish space and the set of state constraints I1 is
convex and compact in the weak topology. Further let P be any strictly pdsi tive
type on X for which o > 0 can be found such that PU ¢ II(«) for each U € U,
where U and II(«) are defined as in (10) and (9). Then for any § > 0 there
exists a number v > 0 such that for all sufficiently large n there exists a length
n bloc code (f, ¢) with N codewords z1,x3,..., 2N, each of type P, such that
%logN > I(P, 1) — 6, max e(s) < exp(—n7y).

a

Proor: The idea is to reduce the problem to the case of finite set of states by
an approximation argument. First, let D be any finite subset of S. Define the
set IIp as the subset of II who.se elements have support contained in D. It is
easy to show that Ilp is compact, and hence closed in the topology generated
by the usual Euclidean metric.

Next, let Zp be the set of channels U : X — D which satisfy

> Wyle, s)U(sle’) = > W(yle',s)U(sla) (11)

SED - 3E€D

for every z,2' € & and y € Y. From (7) and (11) we see that Ip(a) C II{a).
Thus PU ¢ Ilp(«) for every U, € U, therefore IIp(e) also means the open
a-neighborhood of IIp with the Euclidean metric.

We now follow the approximation argument in Csiszdr and Korner [4].
For fixed n we subdivide the [.¥||)|-dimensional unit cube into sub-cubes of
edge of length n™* and pick a matrix W in such a way that each sub-cube
contains at least one of such matrices. Let S(ny be the set of indices of the
matrices picked in this way. The set S(n) has size |Spy| < XY Thus for
6 > 0 and for n large enough, we apply Theorem KT with the chosen set Sn)
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playing the role of the set D above to get a code (f,, ¢,) with N codewords,
each of type P, such that

1
—log N > I(P,Ils,) =6, s;FfIé%’i(n) €(s) < exp(—n~v), (12)

where 7 is a positive number. Since IIs ) CII, we have (1/n)log N > I(P,1I) -
8.
For the code (f,,d,) and for every s € 8™ , there exists an ' € Sy

satisfying
em(sifasbn) = D W'(lfa(m)s) < ) W”(ylfn(m),S’)Jr%)'l'
yé(y)#Em y:d(y)#Em
Therefore
max €(s) <2 max E(s')-]—m. (13)

s:P, €Il 3P, Ellgn
(n)

From (12) and (13) we obtain that for n > ni(e), maxsp,ene(s) < e. This
proves our Theorem. '

We now turn to the general case when both ) and & are Polish spaces.
Consider a partition 4 = (Ay,..., Ax) of Y into disjoint Borel sets. By WA we
denote the quantized AVC defined by replacing YV by the set V' = {1,2,...,k}

and setting
WA |z, s) = W(4;/z,8), j=1,...,k (14)

Further, for any distribution ( on & , let WQA : X = V' be the discrete channel
defined by

W (ile) = W(Ajle) = f W(4;l2,8)Q(ds) j=1,....k  (15)
and set

AP 1) = min I(P, W2 16
I(,)glelg(,q) (16)

LEMMA 1. I(P,1I) = supI“YP,1I), where the supremum is taken over all
partitions A of Y .
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PROOF: First we observe that by definition, I(P, Wg) is the supremum of dis-
crete approximations I(P, Wé‘) for all finite partitions A of Y into disjoint
Borel sets. It may be not possible, however, to find partitions .4 that make
I(P, W{;) uniformly close to I(P, Wg) for all @ in II. To circumvent this diffi-
culty we notice that by the Dobrushin theorem ([7. Theorem 2.1.1]), for a fixed
Q, I (P,Wg) = sup4 I(P, Wé") holds even when the supremum is restricted to
those partitions whose atoms A; are Wg(.|x)- continuity sets for every j and
r € X. For fixed Q and any n there exists a partition of the latter kind such
that

I(P,Wg) > I(P,Wg) — /2 > I(P,1I) — /2. - (1)

As Wy(.|z) depends continuously on @, every @ € IT has a neighborhood such
that if ' is in it, we have

I(P,W4) > I(P,TI) = 1, | (18)

Since II is compact, it follows that a finite number of these neighborhoods
with "centers” (Qq,Qs.,...,Q, say, exist, whose union still covers TI. Then,

by letting A to be a common refinement of the partitions corresponding to
G, .., Qu,(18) will hold for every @' € II. This proves that

I(P,TI) < sup IY(P,TI).
A

Since the opposite inequality is obvious, our lemma is proved.
Now for any partition A = (4;,...,A;) of Y, let 4 denote the set of
all | X |-tuples of distributions U(-|z) on S such that for all atoms A; of A and

every z,z' in X,
/W(Aj|x,s)U(ds[a:') = /W(AJ-|m',s)U(d.s|a:). (19)

Clearly, U C U for every partition A of ). We can now state our main theorem

for semicontinuous AVC’s.

THEOREM 2. Let a semi-continuous AVC{W(-|z,s)} be given with the state

constraint set Il which is convex and compact. Suppose that Y = R™, the



SEMI-CONTINUOUS ARBITRARILY VARYING CHANNELS 39

m-dimensional Euclidian space. Further, let P be a strictly positive type on
A for which PU ¢ Il(a) for every U € U and for some a > 0. Then for any
6 > 0 there is a number v > 0 such that for all sufficiently large n there exists
a length n block code with N codewords, each of type P, such that

1
oo N — ce(s) < (— \
- log N > I{P,II) — &, JRax e(s) < (-nv)

ProOF: We will reduce the problem to the finite output alphabet case. For
any 6 > 0, let Ap be a partition for which

IA(PTI) > I(P,TI) — 5/2.

We claim that there exists o' > 0 and a partition .4; of Y which is a refinement
of Ag such that PU ¢ II(a’) for every U € U1, Proceeding indirectly, suppose
that for every n and every partition A of Y which is a refinement of Ay, there
is U € UA satisfying PU € II(1/n).

First, let M,, C R™,n = 1,2,..., be the closed spheres of center 0 and
radius n. By A, we denote the partition (Ano, Ang,..., Anx) of R™ , where
Apo=RM_M, U§=1Anj = M, and eachof 4,; ,j=1,2,...,k, has diameter
less than 1/n. Making the common refinement from A4, and A, if necessary,
we can suppose that A, is a refinement of A4y. By indirect assumption we can
choose a subsequence of U, € U*» such that Q, = P, € II(1/n). Since IT is
compact, we can choose a subsequence of @, which converges to some @ € II.
Without loss of generality we can assume that @, converges to Q. Then the
sequence PU, converges to @, too. Now, since Q and PU, are individually
tight anid PU, is convergent, the sequence PU,, is uniformly tight, (Billingsley,
[5]). Thus, for any € > 0, a compact set K € C can be found such that
PU.(K) > 1 — ¢ for every n. Denoting # = min{P(z),z € X} > 0, we have

Un(S — Klz) < % D P(2)Un(S — Klz) < ¢/

This means that the family U,(.|2),z € X, is also tight. Then we can choose

a subsequence U,; of U, converging to some channel Uy and PUy = @ € II.
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Again, without loss of generality we can assume that U, — Uy = Q. Therefore
PU, — PU; = Q). We shall show U € U by ver1fy1ng (8).

Let g be any bounded, uniformly continuous function on Y and let € > 0
be arbitrary. Since U, — U, it follows that the family {Us,Un,...} is tight.
Thus, for e > 0 we can find a compact set K, C & such that

Un(S — K |z) < ¢ | (20)

for each n and z € X . Then, as K, is compact, the family {W(-|x,s),x €
X,s € K.} is tight. Thus, we can choose a compact set M C R™ such that

W(R™ — M,|z,s) < e (21)

for every z € X,s € K..
Choose n so large that |g(y) — ¢(y')| < e for all y,y' € R™ satisfying

ly —y'| < 1/n. Then for n > ng, where ng = ng(e) is sufficiently large, we have

€
<§,

k
; fs W(dyle, s)Ua(dsle’) = g5 / W{ Ao, 8)Un(ds]2)
n j=1

t\Dlm

/| NECLCTER AR zg, [ W Cusle 0atdsla")] <

for all z,2' € X, where g; = g(y;) for some y; € Anj,] = 1,..,k. Since
U, € L(A", we obtain

I

o)W (dylz, s)Un(ds]a’) ]M ]S o)W (dyle', s)Un(dslo)| < € (22)

if n > ng. From (20) and (21) we have

/ _— / 'Un_(dslw’)W(dylwas)Jr fR . /S Un(ds|z)W (dylz',s)| <

I/;Q .[m W(dylz, s)Ua(ds[a") +/ / W(dy|m',s)Un(ds|:c) +

¥ fs*xe J ooy, Yyl 8)Un(dsla’) + / ., e, U (dsle)

JSE-K,
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< + 2¢ < 4e. (23 )

/ Un(ds|z") —!—] Un(ds|z)
SZK, S—K,

Further, we observe that every compact set in R™ is bounded, hence for

sufficiently large n, M, C M,,. From (23), letting |g| < L, we obtain

j [ [ewuntasi W - [ [ sua@sawe, )| <
Rm—M, JS - Rm—-M, /8
soif [ ol Wiagla,s) + | [ vatastawale’,s)| < ae.
Rm_M., JS Rm-M_JS .
(24)
Combining (22) and (24), it follows that
- ’ [ [ sowuatastaywiane,s) - [ [ stwvatastwiate’, )| <
< (4L + 1)e, (25)
for all n sufficiently large.
Now, since U,, — Uy by Hypothesis (H.2), we get
| [ [ swpvatasiomavies) - [ [ stvntastewidste, )| < o
[ [stwwatasiewiaie' s - [ [swuasmmie,s| < o)

for all n larger than, say, n1(e) > no(e). Finally, combining (25) and (26) we

obtain

[ [ swustastewaia,s) - / [ swUataslom @le', )| < (41+3)e
yJs m Jg

Since € is arbitrarily small, we conclude that

] o)W, (dyle, ') = / o) Wor(dyl=', )

for every bounded, uniformly continuous function g € Cy(Y) and z,2’ € X, or
U € U, which proves our claim.

Take into account the fact that if A,is finer than Ag, then I(P, WS") >
I(P, Wg“), we have got a partition A; = (44, ..., A} ) satisfying

(i) I*v(P,I0) > I(P,II) — §/2,
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(ii) PU ¢ H(a') for all U € U and for some a' > 0.

Consider now the discrete AVCW* : X — V' = {1,...,k} defined by
(14). Applying Theorem 1, we see that for §/2 there exists v > 0 such that for all
sufficiently large n, there is an n-length block code (f;,, ¢,) with N codewords,
each of type P, such that

1 log N > I‘Al(P,I'I) ~§/2 > I(P,II) =6, €(II)<exp(—nvy), (27)
n

where €'(II) denotes the average probability of error of (f', ¢').

Next, we construct a new code (fn, ¢n) for the given semi-continuous
AVC from (f},,¢5,). Let fn = f,. Further, for each y € Y™,y € 4; x - x 45
for some j = (J1,...,Jn) € V'™ In this case we set ¢,(y) = ¢, (j). For this

code,
em(s)= D W ylfalm)s)= > W(ylfa(m),s) =
¢n(y)?£m yeA}'lx“'XA.fn
S WA, x - x Ailfesy = Y (WA)(Ifa(m),5) = en(s).
P () #Em & (F)#Em '

Therefore, by (27), €(II) < exp —nv). Thus Theorem 2 is proved.

The above Theorem 2 is rather general with only the assumption that
the output alphabet is a finite dimensional Euclidean space. However, this is
satisfactory to model several communication situations of most practical impor-
tance. In order to prove the same result for general output alphabetrwe must
impose a rather strong condition on the set of states or on the constraint set.
Namely, we shall suppose that S is a compact space. It is suitable, however,
to model such real situations when the state se:t is a bounded, compact set in

Euclidean space. Using the idea of Theorem 2, we can prove the following

THEOREM 3. Suppose that the set of states § is compéct, while ) is an arbi-

trary Polish space. Then the statement of Theorem 2 remains true.

REMARK. If one of the following conditions is satisfied, then the statement of

Theorem 2 remains valid for general ) and S:
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1. Compactness Condition: There exists a small number £ > 0 such that
the closed £-neighborhood cl(II(£)) of II is compact, (cl(A) denotes the closure
of the set A).

2. Vis o-compact, i.e. there are compact sets I{,; such that Y = UX K,
and Y possesses the following property:

(P) For every compact subset I of Y there is an n such that K, O K.

For the semi-continuous case, we set again
Lo =1{P:PU ¢ Il(a) for every U € U},
LY = {P:PU ¢ intIl for every U € U},
L™ ={P:PU ¢ forevery U € U},
where I'ntIl denotes the interior of II, and let

Co = max I(P,TI), Co=lim Cs, C~ = sup I(PI).
PecC, : a—0 PeL-

We have the following theorem, whose proof will be omitted.

THEOREM 4. i) If LT =0, then C(II) = 0,

ii) Suppose either § is compact or Y = R™. Then C(II) > C~ if one of
the following conditions is satisfied :

a) Lo # O for some o >0,

b)L™ # 0 and L™ is an open set in M(X'),

c) L™ # 0 and the sets {PU : U € U} are closed for each P.

The above theorem only gives a lower bound on the capacity. For proving
the converse part we must impose further conditions. Under rather strong
conditions we cannot get the exact formula for the capacity. Only a lower and
upper bound can be obtained for it (see Section 4). In the following section we
will consider the most important case when the state constraints are expressed

in term of a continuous function.
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3. Semi-continuous AV(C’s with constraints set

given by a continuous function

Instead of (H.3) we now adopt the following hypothesis :

(H.3") Let £ be a real-valued continuous function defined on & whose
level sets {s : £(s) < K} are compact for every K . A state sequence s =
(515,85} € 8™ will be called an admissible state sequence if (1/n) 3" _; 4(s;)
< A, where A is a fixed number. Here, the state sequence s is admissible if

P, € 115, where )
Iy ={Q: / £(5)Q(ds) < A}. (28)

Note that unless S is compact, (H.3) requires that £ is unbounded. The following

lemma will show that T, is compact, hence the previous results can be applied.

LEMMA 2. Forevery A 2 0, Il is compact in M(S).

PROOF: The proof is standard, therefore it is omitted.

For every P we define

I(P,A) = I(P,TI,), (29)

Ao(Py= il 3 P(a) f #(s)U (ds]z). (30) -

zEX
We also denote the capacity under state constraint II, by C(A). The function
Ao(P) is concave, hence it is lower semi-continuous in P and continuous in the
set of all strictly positive P. We also define

Ao = sup A(P). (31)
PeM(X)

Now suppose that P is a strictly positive distribution on the input al-
phabet X and Ao(P) > A. I for every n there is an U, € U satisfying
PU, € Hp(1/n), then by the same reasoning as in the proof of Theorem
2, there is a subsequence Unj of Up such that U,; — Up for some Uy and
PUnj — PUy = Q € II5. Therefore, 3 o P(z) [£(s)Up(ds|z) < A. On

the other hand, since U is closed, Uy € /. This contradicts our assumption
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Ao(P) > A. This means that if Ag(P) > A, then there is a positive number
a > 0 such that PU gé o) for every U € U.

From the assumption Ag > A, the concavity and the continuity of Ao(P)
on the set of strictly positive P , we see that there exists a strictly positive P’
satisfying A¢(P') > A. Therefore, by the above observation , P’ € L(«) for
some a > 0. Applying Theorem 4 we get

COROLLARY. Suppose that either £ is bounded or Y = R™.
If Ag > A, then C(A) > Cy.

In order to prove the converse part of Coding Theorem for this case,
we need the following two lemmas. For discrete AV(C’s, these are Lemma 2
and Lemma 3 of Csiszér and Narayan in [2], where they are proved by using
Chebyshev’s inequality. Here, we will use the weak law of lafge numbers rather
than Chebyshev’s inequality. From now on let 7p, denote the set of all P-typical

sequences x with constant 7.

LEMMA 3. For any A > 0,8 > 0 and € < 1 there exist numbers n > 0 and ng
such that, for any P € M(X'), any code of blocklength n > n, with codewords
€; € T\p),»t =1,2,...,N,if Llog N > I(P,A) + 6, then maxy,)<p €(s) > €.

PROOF: First, we observe that G(A) = mingyg)<a I(P, Wg) as a function of
A, is convex and hence it is continuous. It is due to the fact that I{P, Wy) is
convex in Q while £(Q) = [ £(s)Q(ds) is linear. Thus, we can choose y > 0 such
that I(P,A — v) < I(P,A) T -g—. Let @ be the probability measure satisfying
I(P,Wo)=, min I(P,Wq)=I(PA-1)

with £(Q) = [£(s)Q(ds) < A — . Consider the semi-continuous memoryless
channel Wy defined by (5). Further, consider any code with words z;,...,2xN
with decoder ¢, and let § = (51, ..., S, ) be the random vector with statistically

independent components, each has distribution Q . For any set B € B™,z € X",
we have EW™(B|z, ) = Wj(Blz). Thus

1 & 1 &
Ee(S) =5 Y em(8) =5 > EW™({y: $(y) #i}ls;,5) =
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N

=+ YWy s 4w # i}le:) = Fwe,

i=1
where ewg denotes the average probability of error of the above code used on

the channel Wg. Hence

s 7(s) 2 FE(S) = Pr{#(S) > A} = W - Pr{;lg ;E(Si) > A} (32)

Since £(S;) are independent and identically distributed with expectation

EL(S;) = 4Q) < A—, it follows from the law of large numbers that Pr{£(S) >
A} — 0 whenever n — oo. On the other hand, using the semi-continuous
analogue of Lemma SC in [3] (which is clearly valid), we see that there is
n > 0 such that if all codewords are in T|p|,» then wgq is arbitrary close to 1 if
(1/n)log N > I(P,A)+ 6 > I(P,Wq) + % and n is large enough. This and (32)

complete the proof.

LEMMA 4. For any ¢ > 0 there is n > 0 such that for any strictly positive
distribution P with Ao(P) < A, any block code of length n block with codewords
z; €Tpl,,t=1,...,N,N > 2, has maxys<p €(s) > (1/4) —e.

PROOF: Consider any code with decoder ¢ and codewords z;, ... ,zn such that

T; € 7p),, where 7 is a positive number to be chosen later independently on P.
Since Ag(P) < A, there is a 7-> 0 such that Ag(P) < A— 7. Let U € U be the _

channel which satisfies
S P(a) ] €YU (dsfo) < Ao(P) +.2 < A - gf. C(39)
TeX

Consider $™-valued random variables S; = (5;1,552,-- -, Sjn )i = 1,2,...,N
with statistically independent components, where pr{S;; € C} = U(C|z &) for

’

every C € C. Since S is separable, we see that for each pair (1,j) and every
Cec,

EW™(Clzs, ;) = EW™(Clz;, S;).
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Thus, for ¢ # 7, we have

Eei(S;) + Ee;(S) = ) W"({eb(y)%z}lmn )+ Y Wr{$(y) # i}ley, S

sES™ s€S™
> EW™(Y|z;, $;) > 1.
As in the proof of Lemma 4 in [2], we see that for some j € {1,..., N}
Be(;)> 7 (34)
On the other hand, since P is strictly positive and Y, oo [€(s)U(ds|z) < A,

letting 8 = min{P(z),z € X'}, we have

BUSw) = [ UV (slen) < 5,

i.e. the expectation of each Sji is finite. Thus for any € > 0 , by the weak law

(35)

of large numbers we get

Pr { TETrsT {rz_:x}f Sik) > /E(S)U(ds]:(:jk) + Z} < m, (36)

whenever |{z;; = z}| > ng, no is large enough. In any case, from (36) we get

{;Px;(i" [{:c " _.l.}l {lzx}e JL) > I%/E(S U(d3|$)+ _} <e

provided n > no.. Since z; € 7(p),, it follows that

Pr {;ij( I{w — w}l Z USi) > > Pla) /E(S)U(d.s|:c)+

k= :z:} IEX

7y / Us)U(dslz) + }<e | (37)

X

Now, if we choose 1 < 4—}% , from (33) and (35) we get

" P(a) f () U(dslz) +1 Y / U (dsle) + T < A= T (39)

rzeX zEX
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Then (37) and (38) imply
Pr{£(S;) > A} = Pr {% if(sjk) > A} <
k=1

< Pr{ Z Ppz)c———

- 1=p: 4 ’{:BJ’C

""I}l Z f Jk)>A——}<6

zjp=z}
for n sufficiently large. From this fact and (35) we get

1
> — . - JENNA
. in(s&)f/\ €(s) = Ee(S;) — Pr{f(S;) > A} > 17 ©

which proves the assertion of the lemma.

THEOREM 5. Suppose that either £ is bounded or ¥ = R™. Then the capacity
C(A) of the AVC under state constraint A is
() C(A)=0 if Ag<A,

(i2) C(A) = sup I(P,A) if A¢>A.
Ao(P)

PROOF: To prove this theorem we can repeat the arguments used in the proof
of Theorems 3 and 4 in [3]. For example, to prove (i) it suffices to observe that
if Ag < A, then Ag(P) < A for all P € M(X). Thus, using Lemma 4, the
argument used in the proof of Theorem 3 of [3] shows that C(A) = 0. Using
the same partition technique and Lemma 3 we get C(A) < supp,>a [(P,A) if
Ao > A. On the other hand, if Ay > A, then

C(A) > sup I(P,A).
Ao (P}

This fact can be proved exactly as in the proof of Theorem 3 in (2].

REMARK: As in the discrete case, Theorem § still left an undecided case Ag =
A.
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4. Concluding remarks

Theorem 5 gives the exact formula for the capacity of semi-continuous
AVC under state constraints defined by terms of a continuous function whose
level sets are compact. When the state constraints are expressed by empirical
distributions of state sequences, we only get a lower bound on the capacity.
We also have a condition under which the capacity is zero. The proof for
this is based on the fact that if Q is in IntIl (in the weak topology), then
Q"(P, ¢ II) — 0 as n — oo. In [8] Csiszdr introduced the 7- topologj (which
is finer than the weak topology) and proved that even if Q is in the r-interior
of IT , then the above probability tends to 0 exponentially. From this we obtain
a stronger result than Part (i) of Theorem 4, namely, C(II) = 0 if CT = 0.
Here, in .the definition of the set £7T,Int,.II stands instead of IntIl. On the
other hand, concerning the upper bound on the .capacity, we can introduce a
rather strong condition : the strong convexity of the set II with respect to
the weak topology. Note that the set II is said to be strongly convex if the
segment joining any point with an interior point is in the interic;r of II, except
perhaps for the endpoint. A similar condition with respect to the 79-topology
was introduced by P.Groeneboouw., J.Oosterhoff and F.H.Ruymgaart in [9]. We
also note that the strong convexity condition is clearly satisfied in the discrete

case. If the constraint set II is strongly convex and has nonempty iuterior, then

C(I) < Ct = maxpe,+ I(P,1I).
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