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I. Introduction.

The problem of convection in viscous fluid contained in a rigid vessel has
received much attention in recent years. For the works on this topic we refer to
Gershuni G.Z., Zhukhovitskii E.M. [4] and Busse. F.N., N. Riahi [2,3].

Mathematical study of motion of viscous fluid contained in either a rigid
or elastic vessel was done by several authors [5, ‘9, 12, 13, 14, 15}.

In this paper we consider the convective motion of incompressible viscous
fluid contained in an elastic cylindrical shell.

Let us have a cylindricél shell with the elastic cylindrical part %, the
lower rigid base Sy and the rigid upper base S;. The small motion of the
system of elastic shell with heated fluid is described by the following equations
(see [5, 12, 13, 15]):

—vAv+Vp— v —gBTk; =0, dive =0 in 2, (1.1)
—%xAT — bvg — AT = 0 nQ, (1.2)
ER(1 — p?)™'Lu + phX?u+ 3r(vin + 4Ty + T2 =0 on3, (1.3)
REANTY — Ty — T + %2/\T1 =-%(,u1 — p2 )72 T on, (1.4)
R2ALT, — 3(u1 + )Ty — 3u° Ty + 20Ty = —3(uy — pa)ysT  on 3, (1.5)
T=0, v=0 on SUS;, (1.6)
&L = Ty /%h on, (1.7)
T; =005 = 1,2) on 0%, (1.8)

Received January 31, 1991; in revised form December 9, 1991



10 NGO HUY CAN, TRAN THU HA

Au=v on , (1.9)
u=0,2=0 on X. (1.10)

Here the following notations are used'

Y- |
A= 3112 + 3322 + axsz’Al 30,2 + Rz azpz"T(U) (T:k)i,k=1,

Tik = —pbix + v(GE 4+ Gur),

LTy = El—h('gav '11?%: R)TI:’Y2T TIE:

12T2 (0} 3R afP’ 3A1)T2,

Lu= Zj=1(12n,J +lij,i=1,3
~ where

lipuy = — Sz,zul 12—;{'253—;%1 -1 -5k,
aus = —“lg aizaﬂuz + fj{*‘g%%guz,

haus = 38 — 75

s = — 5 5c8% + S-S5

loauz = — 7 aaaﬁ - 15* %2;22’

laaus = RLB—JB&, ‘

layuy = — 54 + 15£ 00,

l3oug = —%%—?,

l33us = Fzus,

nssus = (fo7 + B2 55 357 (& + %%)”%

n;; =0if ¢4 7 <B6.

Here v = (1, vz, v3) is the fluid velocity, p — the pressure, T - the temper-
ature in the fluid, v — the coefficient of kinematic viscosity, k3 — the unit vector of
vertical upward axis Oz3 in the Carteéian sysfem coordinates X = (z1,z2,73),
B — the coefficient _of volum expansion, bks — the gradient of equilibrium state

- temperature in the fluid, » — the coefficient of heat conductivity of the fluid,
E - the modul of elasticity, u — the Poisson coefficient 0 < p< )2k -
the thickness of elastic cylindrical part X, (@, ¢) orthogonal cur.x_rilinea,r- coor-
dinate system on X, R - the radius of cylinder, T} and Ty — the characteristic
temperatures of the shell, g ~ the accelerate of gravity, u = (u1,uq,u3) — the
displacement of the shell, 3 — the coefficient of heat conductivity of the shell,
p1 — the coeficient of thermal expansion of the shell, y* - the coefficient of

heat transfer between the surface of the elastic shell and the exterior medium,
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p~ — the coefficient of heat transfer between the surface of the elastic shell and
the fluid , p12 = £2(pt — p7), 0% = p2 — 5%, a — the coefficient of thermal
conductivity of the shell, p — the density of the shell.

We will study the spectrum structure of the problem (1.1)-(1.10).

2. Function spaces and auxiliary problems

The following Hilbert spaces are used throughout

Ly(%) = Hy(T) X Hy(Z) x Hy(X).
The scalar product and the norm are given by

(%, V)L, = ZR/ u;v;dL,

i=1

1
||“||L2(2) (ORI ER

The Sobolev spaces H(Z), W3 (L) are defined as follows:
Hy(D) ={T € Hy(%),VT € Ly(¥)},
W;(Z) = Hy () x Hy(Z) x Hy (%),

(T, B)myey = K’ / gradTigradTzd® +R] T T,d0%,”
= a5

171l gy = (T T me)®-

We define H 3 o() as the closure of the set of smooth functions vanishing outside
some compact subsets of & with respect to ||.|] Hi(E) and W3 (E) as the closure
of the set of smooth vector fields vanishing outside some compact subsets of &
with respect to ||'”W21(2)- | :

The Sobolev space HZ(Z) is the space of functions in H,(X) with deriva-
tives of order less than or equal to 2 in H,(Z). o

The Hilbert space Ly({2) is defined as follows:

Ly(Q) = Hz(Q) X Hyp($2) x Hy(Q),

(4, 0)La(@) = Lgmn Jo 4050l 1y0) = (¥, 0)La@] 7
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It is known that (8, 10, 19]
Ly(T) = L(Q) @ G(R),

where Ly(Q) = {v € Lz(Q),divv=0 inQu,=0 onS,US}

GQ)={veL(2),v=Vp in p=0 on X}
The Sobolev spaces H3(2), W({2) are defined as follows
(e Dmgeey = [ VoVaa+ [ pad(Ssusy),
) Q SolUS

1
||P||H;(n) = [(P,P)H;(n)] %

3
(v, w)wi(e) = Zv/ Vg, Vwg,dQ +f vwd(Se U S1),
=1 &

S,U5;

||U||w21(9) = [(”,v)wg(n)]%-
The space H; () is the closure of the set of smooth functions vanishing outside
some compact subsets of £ with respect to ||.|| Hi(e) and the space Wy o(82) is
the closure of the set of smooth solenoidal vector fields vanishing outside some
compact subsets of Q with respect to |. [|W1 (@
Let H, 2(E) be the dual space of Hz(Z) We define the spaces Hy, H .,
H_,K as follows:

Hy = Hy(%) 6 {1}, H, = Hy N B} (S), H_ = By, n Hy (%),
K = Ly(Z) x Ly(Q) x Hy(Q) x Hy(E) x Hy(%).

The operator P is the projedtion from the space K into the space Ly(%)
and P, = I5 — P, where -

I5

il
O O S
O OO~
I I = I
I I = T I
~ o o o o
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We consider the following auxilliary problems:

PROBLEM 1. Given a vector-function f € L4(X), is there a vector-funciion u

so that the following equation and conditions are satisfied :

Eh(l—-p* ) 'Lut+u=f in I,

u=0,a—u=0 on 0L 7
on

PROBLEM 2. Given a vector-function g € f;g(ﬂ), are there a vector function v

and a function p(!) so that the following equations and conditions are satisfied:

At + VP =g diveM =0 in Q,
T('U(l))E-n =0 on oM =0 on SoUS ?

PROBLEM 3. Given a function %, € H_(X), are there a vector function (2

and a function p(?) so that the following equations and conditions are satisfied:
—vAV? 4 me =0,divo® =0 I Q,

T(v(2))g.n =1 on E,v(2) =0 on SpUS ?
PROBLEM 4. Given a function ® € H,(Q), is there a function T} so that the
following equation and conditions are satisfied:
—xATM =& in Q,

T
on

—0 on B, 7MW =0 on S,US; 7

-1
PROBLEM 5. Given a function Uy € H, 2(X) is there a function T™® so that
the following equation and conditions are satisfied:
—%AT® =0 in Q

@)
agn ¥, on 5, T®=0 on SUS?
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PROBLEM 6. Given a function h; € Hy(Z)(i = 1,2), is there a function T} so

that the foﬂowing equation and condition are satisfied:
R*AT;=h; in I,
T;=0 on 0%L7
In[1, 8,9, 12, 13] we ﬁnd the following lemmas.

LEMMA 1. For a vector-function f € Ly(X) there exists a unique generalized
solution of Problem 1. This solution is the vector-function u satisfying the.
equality ‘
(u,S)W;,1,2(E) = (f, 3)L2(S)1 Vs € WZI’I’Z(E),
W, (5) = H;o(2) % H%,o(z) x Hy o(Z).

The solving operator A~! of the problem (u = A™1f) is positive and compact,
it maps Ly(Z) into wyh3Q). '

LEMMA 2. For a vector-function g € Ly(Q) there exists a unique generalized
solution of Problem 2. This solution is the vector-function v\!) satisfying the
equality _ ' o

(’U(l); U)WL}'O(Q) = (Q,U)f,g(n)a Vv € Wzl,o(Q)-
The solving operator A~ of the problem (v(*} = Agg) is positive and compact,

it maps Ly(Q) into W3 4(Q2).

LEMMA 3. For a function ¥y € H_ there exists a unique generalized solution

of Problem 3. This is the vector-function v?) satisfying the equality

(U(z)as)w;'e = (Y1, M8)H, (), 718 = Sz

The solving operator A~} of the problem Q;(v® = Q,¥) is compact and it
maps H_(X) into W3 (). - |

LEMMA 4. For a function @ € H,(Q) there exists a unique generalized solution
of Problem 4. This solution is the function T() satisfying the equality'

(T, Ty (o) = (8, Daye), YT € Hy ().
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The solving operator A™! of the problem ATHTO = AT'®) is positive and
compact, it maps H, () into Hj 4(92).
LEMMA 5. For a function ¥y € HZ—%(E) there exists a unique generalized
solution of Problem 5, this solution is the function T(2) satisfying the following
equality

(T(z)aT)Hé,o(E) = (qlg,‘TQT)Hz(E), VT € H%.U(Q)'
The solving operator A~! of the problem Q3 (T = Q,¥,) is compact, it maps
Hy¥(T) into Hi o(Q).
LEMMA 6. For a function h; € H,(T) there exists a unique generalized solution
of Problem 6, this solution is the function T} satisfying the following equality :

(TiaT)H%'O(E) =_(hi,T)H2(E): vT ¢ Hzl,o(z)-

The Solvfng operator A~ of the problem A, YT, = A;'h;) is positive and
compact. It maps H,(Z) into Hj o(Z).

3. Spectrum theorems

We seek the solution of the equation (1.1), (1.2) with the- conditions
(1.6), (1.7) in the form

v = ’U(l) + 'U(z), p= p(l) + p(2)’ T = T(l) + T('Z)

Using lemmas 2-5 we can prove that the equations (1.1}, (1.2) with the

conditions (1.6). (1.7) are equivalent to the following equations:

_ o P
o) = AAT (o) + Ql(T(v(2))(z).n) + Ag INTW + -x_;v.Q?TZ);
7 ' (3.1)
T = X A7/ (TW 4 ;%Qsz) + AT MWD + Qi (r(vP )z n);
| (3.2)
NT = gBTks, Mv = b(v.ks).
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Using Lemma 6 we can prove that the equations(1.4), (1.5) with the

condition (1.8) are equivalent to the following equations:

_ h2 _ _ . 4 — _ M
T = ?)\AZ lTl—ﬂlAg 1T1—# Az 1T2_#1 9 = A2 172(T(1)+x_;1Q2T2)’ (33)

h2
Tz = ?)\AEITQ — 3#*A2_1T1 - 3(#1 + 1)A;1T2+

8 — AT (T + Qe T). (34)

It has been'proved in [9] that the operator C; = 71 Q1 is self-adjoint, positive and
compact in H,(Z). In the same way we can prove that the operator C; = Yo Q2
is self-adjont, positive and compact in H,(X).

Using the following transformation of variables:
¢l = Aév(l),f(v@))(g).n = C'_%nl, 8= A:"T(l), T, = A;lﬂi,
from the equations (3.1)-(3.4) we obtain
§ = MGNE +AFQCT I + ATIN(AT O+ 2 uay ), (36)

-1 M4z, 41 -3 —3 g1 -3 1
§= A7 (6+ ;,';A1 Q247 02)+ A; P M(A, 78 + 1€y ' ); (3.7)

h? _ . a— - —t r: _
0 = —2Ay 01— Ay 6 —p Ayte, - & . 2 (4 F0+22Q:47762), (3.8)

2
6 = %AA;‘BZ — 3" A7 61 — 3(p1 + 1)A7 b2~

3 — p)1a(4; 20+ Q2437 6). (39)

Using the conditions (1.9),(3.5) and Lemmas 2,3 we can write the equation (1.3)

in the form:

_1 1 _1 1
Eh(1 = p*) ' LimA, 28 + O Cy 2771) + phX* (A 2 §1 +7111Cy n')—
_ %,\c;%nl _ AL A0, — Ay Ay, =0,

The operators l;A; ", l; A5 are bounded because of Lemma 6.
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From the latter equation it follows that
1 1
F(K1 8 + ") + phA2C1(Eq €' +0') — 5}\(1{151 +0') + §)~K1§1

~ACFLATY6 — ACELATY6, =0, (3.10)

-k
2

where Ky = C im A7 3 F = Eb(1 — u?)'CZ LC}.

Using Lemma 1 Orazov [13] has proved that the operator V=I+F is
unbounded positive, its inverse operatbr‘ is compact and maps Ly(Z) into
WhiR(s),

Putting K1 £ + 7' =4 in the equation (3.10) we get
=V + ph NV TIC i — %AV”lﬁ + -;—AV“lKlgl

- %AV-ICI% 11A7'6, —-Av-lc}‘ [bA; 16, =0,

or

. 1 1
n—V iy + phAVTIC,V i — -2-AV—177 + %AV—%KIAO -

—AVTEChLAT 0 - AV G LA 8 = 0. (3.10)

Here n = Vif,6 = AZ¢L,

'In [8] it has been proved that the operator K§ = Aé Qi C, Yisan adjoint
of the operator K. It is easy to see that the operator K5 = A% Q2C, % s an
adjoint of the operator K3 = Cy %’YQAI%.

We rewrite the equations (3.6)-(3.9) in the form:

£ o MATHE K ) + Ay PNAT O+ =45 PNQ.ATY6,  (312)

9 = MATYO + A%A;"K;C’;M;leg + A;%MAO_%(E + Kqh, (3.13)

6 = %IAA;lel —plAgl_al;u*Agleﬁ“l—;ﬁ(cé K26+-%02A2‘192j, (3.14)
h2

6y = -E-)\Az_lﬁg —3(u1 + 1)A7 6, — 3p* A 01+

+3(n — 12)(CF Kab + -2 CpA7"62). (3.15)
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Putting & = Ao%fl,n = V(K€ + 7') = V27 in the equations (3.12),
(3.13) we get

1 -l . -1 -1
€ =M, TKTV T int 04y F(I-K1 Ky ) Ay T+ NA Yo :—;Nng;wg, (3.16)

0= AATI0+ A AR CF A7 0y + AT MAT KVt

+ AT MAT (I - ki KA e (317)

The system of the equations (3.11), (3.14)—(3.17) can now be written-in

the form
LNZ=1Z-DyZ - AD,Z +)\'D,Z =0,

where Z = (1,£,6,61,6,)

vy 0 ' 0 0 0
0 0 NA? 0 K,
-1 —1
Dy=| A °MD* A *MB-? 0 0 0 |,
by
‘ 0 %#120212 Ky —mA;7' Ky
0 0 3p12CF Ky —3p*4A;Y K

VU -iD 0 voicinar'  v-bcinap

2

D* Bl 0 0
D,=| 0 o a7 0 s ATRRCT AT 1
0 B g5 0
0 0 B 451
C 000 0
0 000O0
D,=|0 00 00
0000 0]
0 0.0 0 0
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Here the following notations are used:
-1 -1 " -1 _1 it 1 t
Bl = A (I - K1K)A, *,C=phV2C1V77,D=V72K1 A, *,

-1 1 '
.D* = AO 2K’1"V“'§,“12 = 1 —#2”(1,'1" =i _|_..1,
1 -
Ky = 2LNQ 47",

b4
I{4 = —“U.*Ag—l + 21;"::;;'2 CzAz_l}

3
Ks = —3uf A7 + 22045

1 —1
In [14] it has been proved that the operator B~! = A, * (I -~ K{K1)A, * is posi-
1
tive, compact and D(B1) = D(A?). So it is clear that the operators Dy, Dy, D,
are also compact and D, is self-adjoint non-negative.

Using Lemma 1 and the results of [14] we can prove that the operator

—1 1
C;*V~1C; * is compact. Therefore, the operator T}, = V~!C ~% is compact.

By [14] the operator T = C~3V=3K, 47 is bounded.
12 0

Putting

| TL 0 0 0 0 0T, 0 0 0
0 00 00 0 0 00 0
Th=|0 0000], Tu=|0 0 00 0],
0 0000 o 0o 000
0O 00 00 6 0 0 0 0

0 0 00 0

1457 0 0 0 0

Ty = 0 000 0f,

AlECEV-3C-F 0 0 0 O

ASMBCEV-O-E 0 0 0 0
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0 0 0 0 0
0 B! 0 0 0
Ci=|0 0 4! 0 0 )
0 0 0 247 9
0 0 0 0 R4
0000 0 0 0 0 00
0 00 0 0 0 0 0 00
Cr=10 00 0 mAT'K3c? |, Go=]0 0 0 0 0
0000 0 0 0 0 00
000 0 0 0 0 %A7'CPK;, 0 O
we can check that the following equalities are satisfied ‘
P,Dy Py = (Is 4+ C2)Ch, P, Di Py = (Is 4 C3)C1 = Dy, (3.19)
P.D*P, =Ty,D} = b,,, | (320
PD*P, = D3Ty,04% = D, (3.21)
PDYPy = Ty D} = Dy, (3:22)

THEOREM 1. The spectrum of the problem (1.1)-(1.10) consists of discrete
characteristic values A, which have a finite algebraic multiplicity and unique
Iimit at oo. Except a finite number of pointé, the characteristic values Ay are
contained in the small angles, which contain the imaginary axis and positive

one.

ProoOF: We denote by A, g the dorﬁain:

Acr={reCie< |arg)| < g— € |largA| > g +¢|Al > R,
—m < argh < w, € is sufficiently small and R = R(e) sufficiently big 1.

In the domain A‘E, r we can find an analytic function-operator X () which

satisfies the following equation:

[LO*X(N) = Is. (3.23)
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Indeed, after operating two sides of the equation (3.23) by Pi and P2 we
get '

(Is— Py Dt — APy D} +X2P, D,)PLX(A) = (P D3+ AP DY)Pa X(N) + Py, (3.24)
(Is — PoD{P, — APy DI P)Po X(A) = Po(Dg + ADP)P X (M) + P (3.25)
From (3.25), (3.19) we obtain
R(APX(\) = Po(Dg + ADT)PLX(X) + P, (3.26)
where
=I5y — B,D;P, — MIs +C3)C1
= (I +‘C_3)(Is + R (A\)(Is — ACh), (3.27)
Ri(A) = {87 — (Is + S2)P. D{ P }(Is — AC1) ™.

The operator Sy = —Is + (Is + C3)™! = —(Is + C;3)"1C; is compact.
Using results of [16, Lemma 8, pp. 13 | we get

1R (M) = Sz — (Is + S2)Pa Dy Po)(Is — AC1) ™Y = 0

with |A| = co and XA € A r. So the operator Is + R1(1) is reversible in Acr.
Tt is clear that the operators Iy + Cs and Is — AC; are reversible in A¢ p.

" So the operator R()) is reversible in A, r. From the equation (3.26).we obtain
PX(N) = BRI NB(BDLP + ADy)PX() + B (3.28)
o follows from (3.24) and (3.28) that

NPLX() = F(A),

where

F(A) = Py + [PLDyPy + AD )R (V) Py, (3.29)
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AP DiP.R™Y(\)Dy; — ADpRTH (NP DG P - 22D, RN Dy
" (3.30)

In the domain A g the operators Iy - z'AD;i and I5 + iADE are reversible and

we can write (3.30)-in the form:
() = (I — iAD})s + T(N)(Ts +iAD5), (3.31)
where
T(A) = (I — iADE) " {PD§ Py —ADy; — PID§RRR™ (NP D5 Pi—
AP, DP,R7Y(A)Dy; — ADp RTI(M P D P
_ A2D, R (\)Dy }(Is +iADF) L. (3.32)
Using (3.21),(3.22), (3.27) and [16, lemma 7,pp.13] we obtain an estimation for
the last term in (3.32)
. l —_— | —_— . l p—
IEOI(Ts — iAD3) A D1y R (M) Dy (I +4ADS) i<
AT S =1 —— -
< AP Is — iAD2) T D I Ta2 I * (s — AC) M IINTs + BN
(s + Ty 1T 1 DF (Is + iAD3) I = O(I_)\IZ_H%_%)
= o ]ATH¥E).
In the same Waj we prove that the other terms in (3.32) are small if € 1s suffi-
ciently small. Therefore, the operator I4+T()\) is reversible in A r. This implies

that the operator I{}) is reversible in the domain A g.
From (3.29),(3.31) it follows that

P = 1 +ADE) (I + TN (s — ADE)
(P, + [PDiP; + ADyg]RT (NP} (3.33)
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Using (3.21), (3.27) and [16, lemmas 7,8,pp.13] we obtain an estimation
for the last term in (3.33):

LEOO = M5 + 53D (I + T
(s —iADF )™ Dy, PRI ()Pl <
< eI — iADE) T DENITuallCr* (s — XTI ).
N (Ts + RyH(A) ™ (Is + Ca) 2| = o(JAI3+).
Therefore, if A € Acp and € < }
that the other terms in (3.33) tend to 0 as |A| = oo if € is sufficiently small and
X € A g- So we obtain

, then [[F1(})]| = 0. In the same way we prove

PLX(O) =1"Y (N f(A) =o(1) when [A] = o0,X€ AR (3.34)

This implies that P; X () is an analytic function in the domain A g.
In the same way we prove that P,X()\) is an analytic function in the

domain A, g and
[P X (M) = o(]A°), |A] = 00, A € A, (8.35)
Therefore, the operator function X () is analytic in the domain A, g and
XM = o(|Al) as |A| = 00, A € AR, (3.36)

This implies that the operator (L(}))* has a right hand reversible oper-
ator in the domain A p.

Similarly, the operator L(A) has a right hand reversible operator. This
implies that there exists an analytic operator X 1(5.) in A, g so that |

LNX;(N) = Is. (3.37)

Because of the symmetry of the domain A, g from (3.23) and (3.37) it
follows that the operator L()) is reversible in the domain A, g . Using results
of [6,pp. 325] we obtain that the spectrum of the operator L{A) consists of

discrete characteristic values A; with finite algebraic multiplicity.
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Now we will prove that in the domain

Acr={)€ C,largl] < g — ¢, larg] > g +el|N >R,
— 7 < argh <, ¢ is sufficiently small and R = R(e) sufficiently big }

the characteristic values Ay of the operator L(\) have a limit at infinity.

We rewrite (3.24) in the form |
Ra(NPLX(A) = [PLD; + APy D} PaX (N) + A, (3.38)
where
Ra(A) = Is = PLDLPy — \PD}{ Py + A2P,D, Py = (I + To(\)}(Js + 2 D,).
Because of (3.20),
Ty()) = —(PLDLPy + ATy D )(Is + X Dy) 7.
Using [16, lemmas 7,8] we get
IO =0 as [A=o00, A€Aqr.
Therefore Ra()A) is reversible in the domain Al ; and we obtain from (3.38)
PiX()) = Ry (N[PD; + AP, DYIP2X (N) + Ry 1 (M) Py (3.39)
We rewrite the operator Rz(A) in the form
Ro(N) = (Is — iQ\Dé J(Is + To(A)(Is +iAD}). (340)
Heré the operator
| Ty(\) = (Is — XD T\ (Is — iAD)

is bounded in A gr.
From (3.39), (3.25) it follows that

(AP X(A) = f2(A),

F2(N) = Py + Po(Dy + ADH)R; (M) Py,
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where
I(A) = I; = PyD; P, — AP D' P,— -
— Py(D} + ADY)PLR; (AN P D} + AP, DHP, =
= (I + C3)[(Is + C3) ' — (Is + C3) ' R, DYy Py -
— Bi(OATTY - Se(0) = XTI,
and

So(A) = (Is + C3) [P, Dy Py R; (NP, D Py +
| + AP, D§P R, (\)P\Di{P, + AP, D} P,R; Y (\)P, D} P),
— L
Bi(A) = (Is + C3) '\ P, D; PLR; ' (A)D; T

By [16, lemma 7,8] from (3.38) and (3.40) we see So(A) and B;()\) are
analytic operator functions and ||So(A)|} = 0,|[B1(N)]| = 0 as [A] = oo, A €
Acr.

Using [17, Theorem 1, pp.399] we get

, N(r(\) ~ N(r,TY),

where N(r,12())), N(r,C,} are the distribution functions of the operators Iy(\)
and C; with characteristic values Ax(|Ax] < r).

Since the characteristic values of the operator C; have a limit at infinity,
the characteristic values of either l3(A) or L()) have a limit at infinity.

The proof of Theorem 1 is now complete.

Let Ax be an eigenvalue, Z; an eigenfunction of the bundle L(X) and
Zy (s = 1,my) the associated eigenfunctions of .
We denote by M? the closure of the variety which consists of all the

vector functions:
fk,s = (Zk,a, )\k Zk,s -+ Z_k,a-—l)-

It is easy to see that

((Zr,s, AeZr,s + Zr,s—1), [(Is — D) Pot, — D Py¢]) =
(PgL()\k)Zk,s + PzLA(')\@)Zk,s,f) =0 V¢e K.
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So the orthogonal.subspace to M2 in K? = K x K is the subspace N?

consisting of all vector-functions:
{(Is — Dy)P2€, — DI Pag}, VE € K.
THEOREM 2. K2 =N2g M?.

PROOF: In the domain A, g we construct the function
Z(N) = [L* )7 (A1 + 90), | (3.41)

‘where f = (g0,91) € K*.
After operating two sides of the equation (3.41) by P L*()) and Pz L*(X)

we get

(I—P.D; P = )\D11+A2D2)P12(A)—(P1D0P2+)\D12)P2Z(,\)+AP1g1+Plgo,
(3.42)
(Is — PyDs Py — ADyp) By Z(A) = (Po Dy + D1 )P1Z(N) + APag1 + Pago. (3:43)

" As in the proof of Theorem 1 we can prove that if |A| = 00, € Acr,
then ' :
IPLZ(V]| = o(IAD, 1P Z(W)]] = of]AF). (3.44)

Let us assume that there exists a.vector-function f = (g0,91) € K? and
f L N2, f L M? Using [16,Lemma 2, pp.9] we obtain that the vector-function
' (3.41) is entire. From (3.42), (3.43) it follows that

PZ(N) =1 (AR, A € Aer,
where
fl(A) = P1go + APg + [PlDE;Pg 4+ ADm]R—l(/\)Pg(gg + )\gl).

Suppose that the operdtor (Is — P DOP) is reversible. We rewrite the

operator {(A) in the form:

I =5MRG), (345)
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where

Si(X) = (Is — PyDsP))(Is — (Is — PL.DyP1) " P, Dy PR~ (\)P, D§ Py), (3.46)

L(N) = Is = AST (AT3: DF — ASTY (AP D3 PR (\)T3: D} +
+ 225U (ND, — ASTH(NDE T, T *R™Y(A)P, DY Py~
X STYNDEITLC TRV (AT, DS (3.47)
Because D, € §,,(p1 < 00) [14] (here §, is the class of compact operators
with order less than or equal to ¢), using results of [11,18] we c.an show that

L Inin M{r) _

=00 ln r

g < oo, (3.48)
where

M(r) = max(e, |[E1(A)]),
L E () = P2V, 2Y) = (T AR, 2), 2 € Ly(T).

According to the Fragmen-Lindelof Theorem this implies that (3.44) is
satisfied in the whole plane [7].

Using the Liouville theorem we get
P, Z(X\) =n"= const.
Similarly, from the condition C; € 8,,(p; < o) we obtain
P Z(A\) = A&t +£°. (3.50)
Putting (3.49), (3.50) into (3.42), (3.43) we get
n° =0,¢ =0,
do = (.1'5 — D3Pyt g1 = —D1 PoE°.

This implies that f = (go,01) € N? and f L N?. But this is possible
only when f = 0. '
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According to the method of M. G. Krien [6,pp.318], in the case when
the operator (Is — P;D§ P;) is not reversible we investigate instead of L*(A) the
bundle:

Note that for this bundle the operator (I5 — P;D{; P;) is reversible.

REMARK: If we construct the operator
@1 0
0 Q2

Q1 = (Is + Py[(Is — PaDy Py 1 |* PaDy )P {Is+

where

+ D} Py(Is — PyDEP) 1 ),

Q2 = (I5 - P‘Z[(Pl + Dgg)_l]*Pg .TQ)PI(IS — D12P2(P1 + D22)—1P2)1

then the system Q1Z; 5, AtQ22k,s + Qng,s_l}i‘;ll is complete in Q1 K X (K.
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