ON THE STRUCTURE OF COCOMMUTATIVE COALGEBRAS

NGUYEN VIET DUNG

The note proves the existence of a special basis for cocommutative coalgebras, called the γ_2 -basis. This can be considered as a dual version of a result of J.P.May [2; Thm.2]. The basis-free form of this result can be considered as the splitting theorem for ξ -modules of finite type. An application of this result will appear in [3], where the algebra structure of cohomology of the wreath product $\sum_{\infty} \int X$ is determined. Throughout the paper the underground field will be the finite field \mathbb{F}_2 of two elements.

Let V be a cocommutative coalgebra over \mathbb{F}_2 with the comultiplication $\Delta ; \underline{\Delta}$ the composition

$$\underline{\Delta}: V \xrightarrow{\Delta} V \otimes V \xrightarrow{pr} (V \otimes V)_{\sum_2}$$

where $(V \otimes V)_{\sum_{2}} = V \otimes V / \bigcup_{g \in \sum_{2}} Im(1-g)$ - the coinvariants of \sum_{2} in $V \otimes V$ and pr is the projection. By the cocommutativity, we have $\underline{\Delta}(V) \subset \{v \otimes v; v \in V\}$. Denote by V_{od} the kernel of $\underline{\Delta}$. An element of V_{od} will be said to be odd. Recall that the map $\underline{\Delta}$ gives rise to the root map

$$\xi: V \xrightarrow{\underline{\Delta}} \underline{\Delta}(V) \xrightarrow{\pi} V,$$

where π is given by $\pi(v \otimes v) = v$. With these notations the main result of this note may be formulated as follows.

THEOREM 1. For each connected, cocommutative coalgebra V there exists a basis $\mathcal B$ of the $\mathbb F_2$ -module V and a certain inverse map of $\xi,\,\gamma_2:V\longrightarrow V$ such that

- i) $\gamma_2(\mathcal{B}) \subset \mathcal{B} \cup \{0\}$.
- ii) If $x \in \mathcal{B}$ and $\gamma_2(x) \neq 0$, then $\underline{\Delta}\gamma_2(x) = x \otimes x$.
- iii) Denoting $\mathcal{B}_{od} = \mathcal{B} \cap V_{od}$ and $\gamma_{2^h} = (\gamma_2)^h$ we have

$$\mathcal{B} = \bigcup_{x \in \mathcal{B}_o d} \{x, \gamma_2(x), \cdots, \gamma_{2^{h(x)-1}}(x)\},\,$$

where $\gamma_{2^{h}(x)}(x) = 0, 0 < h(x) \le \infty$.

Such a basis will be called a γ_2 -basis of V and the integer h(x) the depth of the element x. The notation γ_2 is an imitation of the divided powers in an algebra with divided powers (see[2]).

PROOF: Let ξ be the root map as above. Since $\xi(V)$ is a vector subspace of V, we can write $V = \xi(V) \oplus X$. From this we obtain

$$\xi(V) = V_{\infty} + \sum_{i>0} \xi^{i}(X),$$

where $V_{\infty} = \bigcap_{n>0} \xi^n(V)$. Again, since V_{∞} is a vector subspace of $\xi(V)$, we can write $\xi(V) = V_{\infty} \oplus W$ and we can choose W such that $W \subseteq \sum_{i>0} \xi^i(X)$. So we get

$$V = V_{\infty} \oplus W \oplus X$$
.

We first consider the restriction of the root map on the first summand $\xi \mid_{V_{\infty}}: V_{\infty} \longrightarrow V_{\infty}$. Let $\{x_j, j \in J\}$ be a basis of $V_{\infty} \cap \ker \xi$. Since $x_j \in V_{\infty}, j \in J$, we can choose $\gamma_2(x_j) \in V_{\infty}$ to be an inverse image of x_j under ξ . We have the system $\{\gamma_2(x_j); j \in J\} \subset \ker \xi^2 \cap V_{\infty}$. By the definition of the element $\gamma_2(x_j)$, we can easily check that $\{[\gamma_2(\xi_j)]; j \in J\}$ is a basis of $V_{\infty} \cap \ker \xi^2/V_{\infty} \cap \ker \xi$. Inductively, for every $n \in Z_+, j \in J$ we may define an element $\gamma_{2^n}(x_j) \in V_{\infty}$ to be an inverse image of $\gamma_{2^{n-1}}(x_j)$ under ξ respectively. So we get the system $\{\gamma_{2^n}(x_j); j \in J\} \subset V_{\infty} \cap \ker \xi^{n+1}$ such that $\{[\gamma_{2^n}(x_j)]; j \in J\}$ is a basis of $V_{\infty} \cap \ker \xi^{n+1}/V_{\infty} \cap \ker \xi^n$.

By this way we obtain the linearly independent system $\{\gamma_{2^n}(x_j); j \in J, n \in Z_+\} \subset V_{\infty}$. Moreover, by the definition of ξ for every $v \in V_{\infty}$, there exists an $N \in Z_+$ such that $v \in \ker \xi^N \cap V_{\infty} = V_{\infty} \cap \ker \xi^N / (V_{\infty} \cap \ker \xi^{N-1}) \oplus \cdots \oplus (V_{\infty} \cap \ker \xi^2 / V_{\infty} \cap \ker \xi) \oplus (V_{\infty} \cap \ker \xi)$. Since $\{[\gamma_{2^n}(x_j)]; j \in J\}$ is a basis

for $V_{\infty} \cap \ker \xi^{n+1}/V_{\infty} \cap \ker \xi^n$, $n \in \mathbb{Z}_+$, the element v can be expressed as a linear combination of the elements $\gamma_{2^n}(x_j)$, $j \in J$, $0 \le n \le N-1$. So the system $\{\gamma_{2^n}(x_j); j \in J, n \in \mathbb{Z}_+\}$ is a basis for V_{∞} .

Next we consider the summand W. For $n \in \mathbb{Z}_+$, let $F_n = X + \xi(X) + \cdots + \xi^n(X)$.

Put

$$H_0 = W \cap ker\xi \cap F_0$$

$$H_0 \oplus H_1 = W \cap ker\xi \cap F_1$$

$$H_o \oplus \cdots \oplus H_{n-1} \oplus H_n = W \cap ker\xi \cap F_n$$

Let $\{x_i : i \in I_s\}$ be a basis for H_s , s > o, and $I = \coprod_{s>0} I_s$. By an argument similar to that used above, for every $i \in I_s$, $n \in Z_+$, $0 \le n \le s$, we may define

elements $\gamma_2^n(x_i)$ as inverse images of $\gamma_{2^{n-1}}(x_i)$ under ξ . We can also check that $\{[\gamma_{2^n}(x_i)]; i \in I \setminus \prod_{s=1}^{n-1} I_s\}$ is a basis for $W \cap \ker \xi^{n+1}/W \cap \ker \xi^n, n \in Z_+$. Therefore, we obtain the linearly independent system $\prod_{s>0} \{\gamma_{2^n}(x_i); i \in I_s, 0 \le n \le s\}$ in W. Since $W \subset \sum_{i>0} \xi^i(X)$, for each $v \in W$ there exists an $N \in Z_+$ such that $v \in W \cap \ker \xi^n = (W \cap \ker \xi^N/W \cap \ker \xi^{N-1}) \oplus \cdots \oplus (W \cap \ker \xi^2/W\ker \xi) \oplus (W \cap \ker \xi)$. Then the element v can be expressed as a linear combination of the elements $\gamma_{2^n}(x^i), i \in i_s, 0 \le n \le s, 0 < s < N$. So the system $\prod_{s>0} \{\gamma_{2^n}(x_i); i \in I_s, 0 \le n \le s\}$ is a basis for W.

Let $\{x_k; k \in K\}$ be a basis of X. Then by the above construction we can easily check that $\{x_i, \gamma_2(x_i), \dots, \gamma_{2^{h_i-1}}(x_i); i \in I \sqcup J \sqcup L\}$ is a γ_2 -basis of V, where

$$h_i = \left\{ egin{array}{ll} \infty, & ext{if} & i \in J \\ n+1, & ext{if} & i \in I_n \\ 1, & ext{if} & i \in K \end{array}
ight.$$

The proof of Therem 1 is now complete.

In the rest of this note we shall try to translate the above result into a basis-free form. First we need some definitions.

DEFINITION 2. An abelian restricted Lie algebra over \mathbb{F}_2 of two elements is a graded \mathbb{F}_2 -vector space L such that

- i) $L_0 = 0$.
- ii) There is a vector space homomorphism $\gamma: L_n \to L_{2n}$ for all $n \ge 0$.

If H is a commutative, connected Hopf algebra over F_2 , then the augmentation ideal IH is an abelian restricted Lie algebra with $\gamma(x) = x^2$.

DEFINITION 3. A ξ -module over the field \mathbb{F}_2 is a graded \mathbb{F}_2 - vector space V such that

- $i)V_0 = 0.$
- ii) There is a vector space homomorphism $\xi: V_{2n} \to V_n$ for all $n \geq 0$.

We routinely extend ξ on V by setting it be 0 on elements of odd degree.

If C is a cocommutative coalgebra, the root map defined above $\xi: C_{2n} \to C_n$ gives C the structure of a ξ -module. Notice that the dual of a ξ -module is an abelian restricted Lie algebra.

DEFINITION 4. Let n be an integer $n \ge 0$ or $n = \infty$. Let j be an integer $j \ge 1$. Define a ξ -module V(j,n) by

$$V(j,n) = \left\{ egin{array}{ll} F_2 & ext{if } i=2^t j, & 0 \leq t \leq n, \ 0 & ext{otherwise,} \end{array}
ight.$$

and $\xi: V(j,n)_{2i} \to V(l,n)_i$ an isomorphism for $i=2^t j, t < n$, and $\xi=0$ otherwise.

The ξ -module V(j,n) may be called cyclic of depth n+1 on a generator of degree j.

The following is a basis-free formulation of Theorem 1.

THEOREM 5. Let V be a ξ -module of finite type. Then there exists a set of pairs of integers (j_i, n_i) so that there is an isomorphism of ξ -modules

$$\oplus V(j_i, n_i) \cong V.$$

In other words, Theorem 5 says that every ξ -modules is a direct sum of "cyclic" modules. In this form, the result can be considered as a dual version of [2, Theorem 2]. Indeed, let V^* be the vector space dual to V. Then V^* is an abelian restricted Lie algebra of finite type. According to J.P.May [2, Theorem 3] V^* can be decomposed into a direct product of abelian restricted Lie algebras on a single generator. By the assumption on the finite type we get

$$V^* \cong \oplus V(j_i, n_i)^*$$
.

Now dualizing again we obtain Theorem 5.

REMARK: Using this special basis for coalgebra H_*X and a remark on the universal enveloping of an abelian restricted Lie algebra we have determined the cohomology algebra of the wreath product $\sum_{\infty} \int X$ in [3].

REFERENCES

H. Cartan, Collected works, Springer-Verlag 3 (1979). [1]

J.P. May, Some remarks on the structure of Hopf algebras, Bull. Amer. Math. Soc. 23 [2] (1969), 708-713.

Nguyen Viet Dung, The modulo 2 cohomology algebra of the wreath product $\sum_{\infty} \int X$, Proceedings of 1990 Barcelona Conference on Algebraic Topology, to appear. [3]

INSTITUTE OF MATHEMATICS P.O.BOX 631, HANOI, VIETNAM