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ON NECESSARY OPTIMALITY CONDITIONS =~ -
FOR DISCRETE MINIMAX PROBLEMS ..
DO VAN LUU

1 Introductlon

"Ilaet f1yeees fN be functlonals deﬁned on a real Bana.ch space X Cisa
non-empty closed convex subset of X, F' is a map from X into a real Ba,na,ch
space Y and K is a closed convex cone in Y with vertex at'the origin. We shall
be concerned w1th a dlscrete mmlmax problem of the followmg form

C - { m1n1rmze lléla.<x f,(a:), |

‘\subject.to F(z) €K, z€C. - -

First and second-order optimality conditions for discrete minimax prob--
lems are discussed in [2] by Dem’yanov and Malozemov for the ﬁnlte - di-
mensional case, Necessary cond1t1ons for a class of nonsmooth mmumza.tlon
problems mvolvmg unconstrained mﬁmte-dlmensmnal d1screte minimax prob-
lems are studxed in [1] by Bel Tal and Zowe In the case N =1, optlmallty
conditions for Problem (P) are given by Zowe' a.nd Kurcyusz [9], Maurer“and
Zowe [8], and the author [7]. For the general case N> 1, several suffidcient

| optimality conditions for (P) ar_e established by the author in [6].

7 The purpose of this paper is to exploit characteristics of discrete minimax
problems to derive various necessary op:ti:r;nality_conditions_ for (P). We'é,l-:s-o
show that under suitable byi)otbeees:'f;he: necessar_;rl conditions obtained here
are equivalent.:In Section 2, using a result of Hiriart-Urruty [4] we establish a
necess;'a,ry optimality condition in terms of directional derivative and Sequentia,l
tangent cone. It should be noted that the sequentlal tangent cone c01nc1des with
the contingent cone of the set of feasible po1nts of (P). In Sect1on 3, we give

a generalization of a necessary optimality .condition in [2] under a regularity
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assumption. Section 4 studies the Kuhn-Tucker type necessary condition for
(P) in terms of Gateaux derivative and linearizing cone, which includes a result

of Zowe and Kurcyusz in [9] as a 'special case.

2. Necessary optlmallty condltlons

- Let M be the set of fea51ble pomts of Problem (P) For zE M we con31der

the followmg cone
TM(:E)":'{:::.GX | r= lim 2 Zn ,\ An =04, ZTn eM}
O

which is called the sequenmal ta.ngent cone of M at z (see e. g [8]) ‘We recall
that the set of points d € X such that there exist sequences d, — d and A, | 0
with 7 + A\,d, € M for-all n is said to be the ¢ontingent cone to M at Z.(see
e f1o]. - | ' RIS EI |

In the proof of Theorem 2.1 we W111 see e that the sequentlal tangent cone

of M at comades with the contmgent cone to M at z

THEOREM 2.1. Let z be a Iocal squt;on of (P) Suppose that fI is
L1psch1tz in a nezghbourhood of £ and. the d1rect1onal denvatwe f (z; J) exists

fora,HdEX z--l N Then

R L >
(2.1) - ;?Raix)f (a: d)>0,Vde TM(:v),

where _

R(I) {ZG [1 N] l fz(w)— max f,(fC)}

1<jEN

- PROOF: We first evaluate the directional derivative of the.function,_ w(z)

=, < 3 Nf;(-'ﬂ)

- Observe that for i e R(z) one has o |
@) @@ vid R(:v)
Now we P'U.f.

€= f-(m) — max fi(2).
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By virtue of the continuing of fi and f;, it follows from (2.2) that for all suffi—

ciently small positive ¢,

Hi(Z+1td) > fi(z) - § > (&) + § > (& + td)
(Vi € R(z), Vi ¢ R(z), Vd € X),

which implies that

11%11;1’15\, [i(Z +td) = max f,(:z, + td).

Hence

(2.3) ‘ ¢ (7;d) = ax fi(&;d).

Since fy,..., fi are Lipschitz in a neighbourhood of z, all hypotheses of Theorem
6 in [4] are satisfied. Applying this theorem we obtain

(2.4) 0 (Z:d) >0 Vde Ky(z),
where K/(Z) is the contingent cone to M at %

We now show that |

Indeed, by the deﬁminon of IxM( ) there exists a sequence A, J, 0 and a
sequence d, — d (d € I\M(:c)) such that T+ A, d € M. Setting y,, = x—f—)\ dy,,
one gets d, ‘yl:—f — d with y, € M, A, 1 0. Hence d € Tu (7). This. means
that Kpr(Z) C Tag(2).

Conversely, by the deﬁmt]on of Tm(E), for d E TM(.’L') there exists a
sequence A, | 0 and a sequence Yn € M such that d = lim L— Choosing
n—od "

d, = 1— we obtainy, = Z+ A,d, € M. Hence d € Ky(ZF). This shows that
Twm(Z) C Ka(z). :

Now we only need to combine (2.3), (2.5) and (2:4) to get (2.1).

From now on let fi, fy, F be differentiable in the sense of Géteaux at &
with derivatives f(3), .. o Fn(E), F'(3).
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We recall that a feasible point Z is sald to be regular for Problem (P)

(see e.g. [9]) if .
FI(#)0() - K(F(@) = ¥

where

C@) = {Mz~3) |z €C, A>0),
K(F(z)) = {y - \K(3) | y€ K, 220}

COROLLARY 2.2. If 7 is a regular local solution for (P), then

(2.6) g}{aéx) <fi(@),d>>0 Vde Ly(z),

where

LM(m)_{rec(m)fF'( )€ K(FE)}

is the linearizing cone of M at %.

PROOF: Since 7 is legular LM(:E) C TM(:B) (see e.. [9]) Hence, the

conclusion of Corollary 2.2 follows from Theorem 2.1,

Let us consider the minimax problem studied by' Dem’yanov and Mal-
ozemov [2]

1< <N

‘minimize max f :(:z:),
(P 1)

subject to'z € C
where f1, ..., fn are functzons deﬁned on R" Cis a nonempty closed convex' '

subset of R™.

COROLLARY 2.3 ([2]). Let 7 be an opt;mal squtmn for Prob]em (Pl)
Assume that f;, 4 fN are d1ff'ex entiable at Z, Then, '

2. > 0.
(2.7 [in lg};\(gﬁf(x) .>_'0

=1
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PROOF Apply ing Cozollal\ 2 1 to Pmblom 1) we obtam the fol]ox\ ing

' necessary cond1t10n

(2.8) 4 -max < fi(%), > >0, Vd e C(z). |
tER(x)

It is easy to check that (2.8) is equivalent to the condition

(2.9) inf  max < f( Flod-> > 0.
deC(F) IER(E)
lidfi"

Hence from the compactness of the set {d € C (T) | [|d]l =1} e get (2. )

3. A geometrical necessary condition

In this section we try to est'lbhsh a geometrical necessar ¥ condition for
the 1nﬁn1te dimensional case w hich unde1 smtable h} potheseq 18 equivalent to
Condition (2.6).

Define

—{ Z af r) [a >0, Z otf‘.l}

i€ER(X) i€ER(F)
where the bar indicates the weak* closure.
| THEOREM 3.1. Let the:.cojlie'f&"(ﬁ(a?')') be closed and 7 be a i'eéiz-}ar Iocal
solution for (P). Then, = :

3.1) Lu(Z)*NE #40,
where LM(:E)*‘ is the conjuage cone to LM(.E).

PROOF: It follows from Corollary 2 that (2 6) is fulfilled for all d €
L (7). Therefore, we only need to show that 2 6) nnphes (3. 1)

Assume the contrary that (2 6) holds but .

(3.2) Lu(Z NE =9



206 N DO VAN LUU

Observe that the set E 1s convex, bounded and weakly closed 1 in X*, where X™*
is the topolog1ca1 dual of X. Then E is a weakly* compact convex subset of X*.
It is obvious that Ly (Z)* is a weakly* closed convex cone. By the separation

Theorem 3.4 in (3], there exist wo € X** and a number v such that
(3.3) <z,2wp> >y > <ywe> | (Vz€ Ly(g)*, Vy € E).
Since 0 € Ljs(%)*, it follows that

<ywg><0 (Yye E)
andhence. | o

3.4 ' x <y, < 0.
(3.4) ax Y, wg > <

Since < y,wo > > 7 (Vy € Ly(2)") and Ly(7)" has the vertex at the
origin, it follows from [3, Lemma 5.1] that : o =

<y,wp>20 (Vy € Lyp(Z)),

which means wo € La(Z)™. Slnce K (F(z)) is closed convex, L M(a;) is ‘weakly

closed. Consequently,
Ly(Z)™ = Lpu(7)

which implies that wy € Lp(Z). 1t is clear that

max < I),w ><ma1< w>
i€R(z) f() 0 Ve E nwe

On the other hand,

I&a%c <y,wo > = max{< Z_ a,'f,-(:i_),w_g >, | a; 20, Z a; =1}
i€ R(z) o 7 zER(:E) ‘

Z a; max < f,(m) wy > = max < f, (x),wg >
:ER( ) 1€ R(Z)
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Therefore,

(3.5) max < f(z),ug > = max < Y,y > .
) zeR(r) yE

In view of (3.4) and (3.5) we see that

max < f (T)owy > <0,
zGR{I)

which contradicts (2.6). Thus we have proved that (2.6 implies (3.1), which

completes the proof of theorem 3.1.

REMARK: W'hen:II{(F (#)) is closed, the condition (3.1) is equivalent to
(2.6). Indeed, the proof of Theorem 3.1 has shown that (2.6) implies (3.1): To
prove the converse, suppose that (3.1) holds. Since L = L** and L* N L # 0,
for.‘:r: € L we have - |

<yr>20 (Vy € L* N E),

whence

max <y, r> > 0.
yEE

Taking (3.5) into account we get

‘max < f Pl > >0,
tER(F)

as required by (2.6).

Theorem 3.1 is a generalization of [2, Chapt.4, Theorem 3.1] to our

infinite - dimensional discrete minimax problem.

4. The Kuhn-Tucker type necessary condition

THEOREM 4.1. Let & be a regular local c;oim‘mn of (P). Then there exists

a Laﬁ:anﬂe nm]t:phu A € K* such that

(4.1) max <f 1):>></\F'( x>
. e ry . _

for all z € C'(%) and

(4.2) <A F(3)> = 0.
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ProOF: Using Corollary 2.1 we see that (2.6) is fulfilled for all d €
m(Z). We only need to show that (2.6) implies (4.1) and (4.2).

Consider the following set in R x ¥ ;

{lél}?(x)< fi(z),z> +a, F'(1)1 —y) |a>0, z € C'(r), y € Ix(F(:r))}

It is clear that @ is a convex cone with xemn\ at the origin of R x Y. By
the definition of Q we can see that for z € C'('t) if F Tyr —y = 0, then
y = F'(Z)x € K(F(z)). Hence, by (2.6) one gets }:_D};»_a(x) < fi@)ha > 4a >
0 (Yo > 0). Therefore, (—0,0) x {0} ¢ Q. Consequently, @ # R x Y. So
(0, 0) is a boundary point.of Q. - -

To apply the separatlon Theorem 1 of [5] we shall show that int Q #4.

Using the open mapping Theorem 2.1 of [9] one finds a number p > 0 such that
(4.3) By (0,p) C F'(z)((C — #) N Bx(0, 1))—-(Ix — F(#)) N By (0, 1),

where By (0, p) stands for the open ball around zero with radius p > 0 in Y.

Consider the following subset of R x Y

Qo = {{a,y) | y € By(0,0), &> rgegNHf,( z)|[}-

Observe that ff(.'E) (¢ = 1,...,N) are bounded, as they are linear continuous

mapplngs Then for evely z € (C' —Z}N Bx(0, 1)

(44) { g}gk) < fi@he > < ax I£:(@)]] < +oo."

Consequently, Qg # §. It follows from (4.3) and (4.4) that Qo C Q. Therefore,
. Q 40, . . \ : - : :

| By the separatlon ‘Theorem 1 of [5] there exist A € Y* and a number,
not all zero, such that -

(4.5) | ﬁ(mﬁafk)<f($)’$> +a)— </\F'(:L):f,——y>>0

(Vz € C(3), Yy € K(F(z)), Ya > 0)
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For z = 0 and a = 0 this impﬁesﬂ € (K(F(z)))*. Therefore A € K™ and
<AF(Z) > =0.

 Since the regularity condition is equivalent to (éée e.e. [9]) -
0 € int{F'(z) C'(.fs ) — K(F(3))};

one gets g>0 and consequentlv one may assume that /3 = 1 Now for y=0
and @ = 0. (4.5) ylelds ' C o

161}{a(XJ<f,( ST - <AF'(:1)1 >>0 VreC(.r)

which complet.es the proof of Theorem 4.1..

Let us conqlder the following problem whose necessary o tnnaht r.condi-
gp

tions are given by Zoue and Kurcyusz [9] :
minimize fi(x ),
(P2) . .
subject to F(z) e K, 2z € C.
Here f,, F,C, i\’ are as in Problem (P). R '

For N =1 Theorem 4.1 has the following immediate consetjuence.

COROLLARY 4.2 ([9]). Assume that T is a regular local solution of (P)-
Then the:e emsts A € I\* such that

fi(E) ~ Ao F'(2) € (C(2))*,
< AF(E)>=0.

REMARK: It can be seen that Condition 2.6) is equivalent to the con-
ditions (4.1), (4.2). Indeed, the proof of Theorem 4.1 has shown that (2.6)
implies (4.1) and (4.2). Conversely, if (4.1), (4.2) hold, then < A, F'(Z)z > >0
for x € L'M(:E);

In short, when Z is a regular local solution of (P) and K(F(#)) is closed,
the necessary optimality conditions stated in Theorems 3.1, 4.1 and Corollary

2.2 are equivalent.
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