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BANACH HY PERBOLICITY AND EXISTENCE OF
HOLOMORPHIC MAPS IN INFINITE: DIMENSION

" PuAM KHAC BAN
Introduction

_ Finite dimensional hyperbolic analysis has been investigated by several
authors, in:particular by Kobayashi, Kwack and recently by Noguchi, Zaiden-
berg. The obtained results have been used to study some important problems of
complex analysis and number theory In recent years Bart Lempert, Vesentini
have obtained 1mporta,nt results concermng the hyperbol1c1ty of convex doma,lns
in Banach spaces. The aim of the present paper is to study some questlons con-

cerning the extensmn of holomorph1c maps in Banach hyperbohc ana,lysxs

In Section 1 we will solve the Kobayashi-problem [7] for proper holomor-
phic maps between Banach analytic spaces' Ap’plying*Br'ody"s'i:haracteriZatidn
of compaict hyperbolic spaces; Urata [10] and independently- Zaidénberg {12]
have solved this problem in the'finite ‘dimensional case. In Section 2it is shown
_ tha_,t' for a convex domain in a Banach space the Kwack extension theorem holds
if and *only if this domain ‘contains no cotplex lines; Moreover, in the finite
dimensional case we show that the above statement is equivalent to the H-
extendibility. Finally, in Section 3 we extend results of Hirschowitz [5] and .
Sibony [9] on the extension of _holomorph_ie maps with values in complete C-
spaces. We prove that every holonlorphic rn-a.p"frorn‘ a Riemann domain §2 over
a topological vector space into a Banach manifold,.modelled by open sets in an
injective Banach space which is complete for the distance of Caratheodory, can
be extended holomorphically to ﬁoo, the envelope of holomorphy of Q for the
set H °°(Q) of bounded holomorph1c funct1ons on Q |
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Let X be a Banach a-,na.lytic'_sp'_ace in the sense of Mazet [8]. By dx we
“denote the Kobayashi pseudodistance on X. Unlike the finite dimensional case,
there exists a Banach manifold X on which the Kobayashi pseudodistance is a,
d1stance but it does not deﬁne the topology in the manifold X. We say that X
is hyperbolic if dx is a distance deﬁnmg the topology of X.

1. Inverse invariance of Banach hyperbolicity.

*In this seetion we investigate the inverse invariance of Banach hyperbol-
icity and in particular, the Kobayashi problem [7]. First we prove the following

theorem which extends a result of Eastwood [4] to the Banach case.

THEOREM 1.1. Let :X — Y be a ho]omoxphzc map between Banach

analyt:c spaces If Y is hyperbohc and every pomt of Y has a ne1ghbourhood
v suc.b that 6~ 1(V) is hyperbohc then X is also hyperbohc

.. PROOF: -Let . {a:n} cX and'dx(:%'n,'a:g) —.0, 79 € X We have to prove
that &, — z¢. Since Y is hyperbohc and. dy(é'wn,éxg) S dx(Tn;zo) it follows
that {fz,} converges to Gmg Put yo = fz¢. By the hypothesis we can find
a neighbourhood V' of yp such that 87'(V):is hyperbolic. On the other hand,
since dy, defines the topology'of Y. ﬁhere exists a neighbourhood W of yp such
that dy(W,0V) > 0. Then. there ex1sts §>.0 such that f(6A) C V for every
holomorphic - map f from A into Y such that f(O) € W, whereé A denotes the
open unit discin. C. We may assume that the neighbourhood W has the form

ows {er dy(yo,y)<r}
anda:neﬂ 1(I/V)fora,fll'n>1

Put
= {y € Y dy(ye,y) < r/2}

‘To prove that dy- 1(W)(mn,wo) — O and hence :cn — xg, we. only need to prove

that there exist positive numbers ¢, s such that

dx(p,q) = min{s, cd9-1(pi/)(p_,q)} forall p,q€ H—I(IW')



BANACH HYPERBOLICITY 189

Consider a holomorphic chain joining p and g¢: {fiYe,, fi: A - X
are holomorphic, fi(0) = pi-1, fila:) = pi i = 1,...k, where pp = p, Pi =

g¢; 41,-.,ar € A, There are only two cases .

(i) pj‘rgé 61 (W) for some j = 1,..., k. Then

Eda(o @) > Zdy(ep,_l,epl) > Zm (8pi—1,6pi)
> dy (91) 8p;) = dy (GPJ,yo) dy (6p,yo) 2 7 = r/2= T/2

(ii) Po, ..., Pk € §7H(W). Then 8fi(6A) CV for all ¢ = 71,..,‘1.?._‘ If a; ¢
(6/2)A for some j = 1,...,k, we have

k , .
3" da(0,ai) 2 da(0,6/2).
i=1 o .
Ifa; € (6/2)Afori=1;..,k wefindc>0 such that
da(y,#) 2 edsaly,z) forall y,z € (62D,

Thus

sz(O, a;) 2 CzdéA(O:ai) > Czdg-l(w)(f;(_()),_fi(qi)). :
i=1 i=1 =1 :
k

= C}:ds—l(W)(Pan 1) 2 Cda 1(W)(P, CJ)
IRERERE £

So there exist'c, s > 0 having the requlred property.’

“We say that a map 9 X — Y is locally proper if for every r € X,
there exist two neighbourhoods U and V of z and 6(z) respectively such tha,t
6 : U — V is proper. We note that in the case where dim X < oo and 8 has
discrete fibers, @ is locally proper. o - '

' THEOREM 1.2. Let 8 : X SY béa Ib'céﬂ'V proper hblombrphic map
with discrete fibers. If Y is hyperbolic, then X is also hyperbolic.

PROOF: Let dx(zn,z) — 0. It follows from the hyperbolicity of Y that

{6(zn)} éonverges to 6z,. Assume that z, - 2. Take two neighbourhoods U
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and .V of 7 and 6’(:r) respectively such that § : U — V is proper. Without loss of
generality we may assume that z, ¢ U Vn> land 718U NNE7H8()) = {z}.

Let W be a neighbourhood of z such that W c U. Since x, ¢ U there exists
&, € OW C U such that

| dx(%n,) L dx(xn.z) — 0.

This yields

6(%,) — 8(z) as n — co.

By the property of § : U — V., one can conclude that {#,} contains a subse-
quence {z,} converging to z € dW. It is obvious that 8(z) = 6(x). But this is

impossible because of the relation
671 (0(U)) N6 (8(2)) = {=}-
- The main result of this section is the following '.

THEOREM 1.3. Let 8 : X — Y bea proper holomorphic map from a
Banach manifold X having C1-partitions of unity into a Banach analytic space
Y. Assume that 6™ l(y) is hyperbohc for every y €Y and that Y is hyperbolic.
Then X is also hyperbohc ' ' '

Cover X by a locally finite system of coordinates {(U;, ¢;)}. Let {Vi}
be an open cover of X such that V; c U;, dist (V;,0U;) >. 0 and ¢i(V;) is
isomorphic to a ball in a Banach space for every i. By the hypothesis there
exists a Cl-pa,rtltlon of unity {h } such that h; = 1 on V; and supp {h:} C U;
for every i. Let L TX - X be the tangent bundle of A For each u € TX, '
put .

Il = 3 i Dps(ra)w

By px we denote the integral distance on X associated to -1
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LEMMA 1.4, py defines the topology in U, where U is the unit ball in
a Banach space B.

ProoF: We have

llz — yll = sup{|z*(z) — 2™ (¥} + 2" € B, [|z"]| < 1}
< 2sup{|f(a) — )| : f € H=(2U), [IfIl <1}
= CZU(an)a V

where B* denotes the dual space of B and C,y denotes the Caratheodry
distance on 2U...On the other hand, for the diff_ez:entjal Caratheodory metric
you of 2U we have by [11)

1
Cov(z,y) < inf{/ '}'23(0‘ (t))dt : o € Q,,(2U)}
< inf{ / S (t))dt o€, (U))

N <1nf{/ o' (Olldt : 0 € Qun(U)) —pu(:c y)

for all T,y € U, where §; y(U) is the set of C”l paths jommg x and y in U.
Thus PU. deﬁnes the topology of U

LEMMA 1.5. Let X be asin Theo: e 1 3 Tben px defines the topo]ogy
in X.

PROOF: Let {z,} C X, px(2n,z) = 0. Take ip such tha,t z € V;,. For
eachn > 1 take o, € Q. r(X) such that o

px(mn,ww f nan(t)ndt—l/n | | |
-/ i an(t>)|lmo,(an(t)(an(tnudt— 1/

> j ||Dso,o(an(t))(a,,(t))||dt— 1/n

] 1D (Ba(N BNt — 1/
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Where

€n = sup{r > 0: 0,([0,7]) C V;,}
8 =t/en and Bu(s) = on(cns) for s € [0, 1]

This implies
PPio(Vio N @io(2a), 030 (2)) — 0

Hence zp, — x by Lemma,1.4. _

Since X is a mamfold it is easy to see that the 1dent1ty map X — (X, p X)

1s continuous. Hence px defines the topology of X.

LEMMA 1.6. Let X be a Banach manifold such that
sup{llF (Ol : £ € Hol(, X)} <o

where Hol (A, X ) denotes the space of ho]omo;pb:c ma,ps from A into X. Then
X is hyperbohc ' R '

PROOF Let d X (3,,,,,, a,) — 0. For each n > 1 there e>.1sts a holomorphlc

chain joining z, and z, (ff,. fk", at, . g ) such that

Lli

Zdﬂ-
By the h-j;pothéé.is we have
a = sup{||f'(2)|| : f € HOI(A X) ]z| < r} < o0,

where 0 < r < 1 is choosen such that Ia"I < T f01 3 = 1 k Then

px(pl,p, )< [ Il(f“ “) (8]t

<a/ ||a (t)||dt
= ada(o, a}‘),
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where pf = ff(al).and o7(z) = afz.
" Thus px(2n,2z) — 0. By Lemm_)af_,l.& W‘?;,h@}’?;mn,?{tx-

LeEMMA 1.7. Let-Z be a compact’ Banach’ analytjc §pacelin’ar Banach
mamfold X sucb that Z - contains no complex liniés; e every holomorphic'map
from C into Z is contant. Then there exists a hyperbohc nengbourhood of Z
in X5 e e e D e T T e

-y PROOF By Lemma 1 6 lt suﬁ"lces to show that there exzsts a nelghbour—
hood W of Z in X such that

. C (il Ol f € Hol(A, W)Y <0
, If not for each n we,can ﬁnd f,,, E Hol(A T/V ) such that ||f (O)H = rn T oo,

Where {W }isa decreasmg nelghboulhood ba31s of Z 111 _X By the p'u ametnza—

' t1on 1ernrna of Brody [3] there emsts for each na holon1o1ph1c map tpn from
(rn / 2)A 1nto VV such that , ‘ N

lmwm =1 o |
and. . coeie e e e s "
||‘P'n(2)|| Sri/?‘i-k? for |Z|<Tn/2
Tllls }ra"i;el!lds. R x R T T T T T os ruts IR IR I TIO LT
B | ]|¢n(z)|[ <4/3 for |z |<?n/>

and henr-e {cpn} is eqmcontmuous By the compmctnebs of Z and by the 1e1at1on
Z = ﬂWn, it follows that {Lpn} cofntains a subscquence {z,b,,} com er gmg to 1,0 €
Hol (¥4 ) Obv1ously v comst. “This-is impossible: because Z ‘¢oritains no

complex hnes. BT R P F R BRIRTE P

Proor oF THEOREM 1.3: By thé’ hypothesxs and by-Lemnia’1.7, for

each y € Y there exists a hyperboli¢ ne1ghbou1 hood W~ of 67 (y)." -We can find
_:a, nelghbourhood 4 of Y such that 6 (V) C, IfV Thus 9 1(V) is hyperbohc
Hence, by Theorem 1.1 X is also hypelbollc
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2. Kwack holomorphic extendibility of convex domains.

Let X be a Banach analytic space. We say that X has the Kwack
holomorphic property if every holomorphic map from M\ A into X', where M is a
Banach manifold and A is a hypersurface of M, can be extended holomorphically
to M. '

THEOREM 2.1. Let 8 be a proper holomorphic map from a Banach
manifold X having C'-partitions of unity into a Banach analytic space Y. If
Y and the fibers of 8 have the Kwack hoIOmofphic‘ extension property, then X

has the Kwack holomorphic extension property.

PROOF: Given a holomorphic map f : M \A — X, where M is a Banach
manifold and A is a hypersurface of M. By the hypothesis, 8f can be extended
to holomorphic map ¢ from M into Y. Let zo € A. First consider the case
where 7, is a regular point of A. Then 2o has a nelghbourhood of the form
U=A*xD, where A* = A \ {0} By Theorem 1.3 we can find a hyperbolic
neighbourhood of §=1(gz¢) of the form #71(V). Assume that g(U) C V. Then
by the property of 6 : 9-1(V) = V, for each 2 €D, f(.,z) can be extended to a
holomorphic map f (.,2) from A into X as in the finite dimensional case. From

“the hyperb011c1ty of 971(V') it is easy to see that f is continuous on U. This
yields the holomorphicity of f. Now assume that z, € S(A4), the singular locus
of A. Since codim S(A) > 2 [8] we can find a neighbourhood U of 29 and a
holomorphic function k on U such that S(A)NU C A~1(0) and x, is a regular
point of A=1(0). By (i), f|U \A71(0) can be extended holomorphically at zo.

PROPOSITION 2.2. Let D be a convex domain in a Banach space B.

The following two conditions are equivalent:
(i) D contains no complex lines

(i) D has the Kwack holomorphic extension property.

PROOF: Without loss of generality we may assume that 0 € D. Then

D can be written in the form

D_-——-ﬂ{Rex}‘<e.-:i€I}, ;>0 forall 7€l
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. (i) = (ii). Given a holomorphic map f: M\ 4 — D, where M is a
Banach manifold and A is a hypersurface of M. Let 29 € A. Asis Themem 2.1
we may assume that zy is a regular pomt of A. Thus ¢ has a ne1ghbourhood
of the form A* x V. For each i € I, the map z*f : A* X X = H;, where
H; = {z € C : Rez < ¢;, can be extended to a holomorphic map (27 f)* from
A 'x X into H; [9]. We write

ft,z) = z aj(2)t)  for (t,z) € A" xV,
o 3‘_°° N . ‘
where a; are holomorphic functions on: V. with values.in B. Smce (:z,* N is
holomorphic on A x V, it follows that. z}{a;(z)) =0 foralli € I, =z ‘_EVVVa.nd
7 < 0. This yields the holomorphicity of f on A x V.,

(1) = (i). Let f be a holomorphic map from C'into D. By the hypothesis
f can be extended holomorph:cally to CP. It follows from the compactness of
CP! that f is a constant map '

PROPOSITION 2.3. Let dim B < co. Then the conditions (i) and (ii) of
Proposition 2.2 are equivalent to the following condition '

(iii} Every holomorphic map from a Riemann domain  over a Banach

space into D can be extended holomorphicaﬂy to ﬁoo.

~ Proor: The nnphcatmn (111) = (11) is trivial.
| (1) = (111) Given a holomorphlc map f from Q into D Where D is
defined as in Proposition 2.2. By the hypothesis we have ﬂ{Kera: el } = 0.
Since dim' B- < o0, we have span {z} : i € B} =B*. Now, for each i € I
the map z!f is extended to a holomorphic map (=} f)" : Qoo — H;. Thus for
z* € B*, z* = 2. Ajzy,, the forn}_

CEHNR Y NN
define: a heloﬁofphic extension of ¢* f. t6'{ss. Then

F)) = (@ PNG)
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isa holo11101ph1c extension of £ to Qeo. On the other hand since (2% f)™z) € H:
for every i € I, it follows that f (Qoo) C D.

A domam Dina Banach space B is called completely cu'cular 1f z G D

implies tx € D for all £ € A,

PROPOSITION 2.4. Let D be a completely circular domain in a Banach

space B. Then D is hyperbolic if and only if D is bounded.

PROOF: The sufficiency is trivial. Assume that D is hyperbolic but
unbounded. Then there exists a sequence {z,} C D such that {|zaj| — oo
Since D is completely circular for each n > 1, we can consider the holomorphic
map h, € Hol (A, D) defined by ha(z) = zat,. Take 6> 0 such that

{:CEB II:L||<6}CD

Putting sl
go = (6/llealllen and 2 = 8/llzn]
we have o _- .
ha(2n) = Yn and h,(0) =0.
Hegce - | -

dD(O yn) - dD(h (0), n(zn) < dA(O zn) - 0.

Since D is hyperbohc, Yn — D Thls is 11nposs1ble bécause of the relation
ol =6Va>1 o

. Note that the case dim B < oo of Proposition 2.4 was proved by Kodama
REMARK2.5: 1) For every infinite dimensional Banach ‘space B there
 exists a balanced convex domain such that its Kobayashi pseudodistance is a
distance but does not define the topdiagjf Indeed, since dim B = o0, there
exists a continuous norm p on B such that U, = {z € B : p(z) < 1} is
unbounded. Obviously dy, is a dlstance but by Propomtxon 2 & it does not
define the topology of U '
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2) There exists an injective holomorphic map fforn a Banach non - hy-
perbolic manifold into a Banach hyperbolic manifold. For ‘example;:consider
the identity map id : U, — Up, where U 1s the unit ball in BP, the completion
of (B p)- Then U, is hyperbohc and U is not hyperbohc

3. H -extendibility of Banach complete C’-manifolde

Let X be a Banach a,nalytuc space.. We say. that X has the H* - ex-
tendibility if every holomorphlc map from a Riemann domain 2 over a topo-

logical vector space can be extended holomorphlcally to Qoo

Given a Banach a.na,lytzc space X. By cx we denote the ‘Caratheodory
pseudo-distance on X defined by Lo

cx(-'r,y-) =sup{|f(x) = f(¥)| : f€ H=(X), ||Ifll <1}.

Then X is called a C space 1f cx defines the topology of A Moreover if cx is
complete, then X-is called'a ‘complete C- space. . --

Finally, a Banach space @ is said to' be °lIIJCCt1V€ if every continuous
linear map from a subspace of a. Banach space B into @ can be extended to a

continuous linear ma.p from B 1nto Q

THEOREM 3.1. If X isa Banach comp]ete C’ mamfold modelled by open

subsets of an. injective Banach Space then X has: the H m-extendeﬂJty

R T

PROOF (1) Cons1der the canonlca.l map’ 6 X (H °°(X ))* deﬁned by_
é(x)(h) h(:t:) for.z € X, he H°°(X)

By the hypothe51s 6 1s a homeomorphlsm onto Im é and Im 6 is. closed 111'
(H °°()i ))*. Moreover for each zo E A we can ﬁnd a nelghbourhood U of o,

b1holomorph1c to the unit ball in an 1n_]ect1ve Ba,nach space Q such tha,t

cX(:co,a:g + h) > AHhH for h ¢ Q, Hh” <e e > 0
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where A is a constant independent on h € @, [|[h|| < € [2]. Thus, for every
h € Q, ||hll < ¢, there exists o € H®(X), ||o|| £ 1, such tha

et + 1) ~ otao)| 2 Alltll.

Consequently, for every £ € A and ||h|| < € there ex1sts g€ H °°(X )
llo|| € 1, and 57 € A such that

|Do(zo + neR)(R)| = o0 + €R) = a(rco)l > Anhn
| sup{|Do(zo + ER)(B)! : llo]] < 1, [£] < 1} 2 Allkll
So, for 0 < @ < 1 and ||h|| < € we have

“sup{|Do(zo + ERY(R) : |loll < 1, 1€} < a}-

=sup{|Do(o +&/a ah)eh)1/a: |loll <1, l€l < o)

=(1/a)sup{|Do(zo + nak)(ah)|: |loll < 1; Inl <1}

>(1/a)Allah]| = AllR]

By the Monteless of H (A) we then have ‘
sup{|Da(ao)(h) nau < 1]« > Anhn

for every h € Q Therefore Dé(xg) : Tan — Im D6(a:g) is an- 1somorph1$m 7
Since T, X 2 Q is injective, by the implicit function theorem we deduce that -
Im § is a submanifold of (H*°(X))* and § is a bihclomorphism onto Im &.

(ii) Given a holomorphic map f from a Riemann domain Q‘over a topo-
loglcal vector space 1nto X. Foreachbe H °°(X ) consider the bounded holo-
morphlc function b6 f on Q. Let (66 f )"‘ be a hO].OII].OI‘pth extensmn of b6 f to
Q Deﬁne the map f from Qoo 1nto (H °°(X ))‘ by

(z)(b) (86 f)Nz) for zenm and beH°°(X) |

. Since f is bounded and holomorphlc in z and b sepa.rately, it follows that f is
holomorphlc on Qo o
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(iii) From (i) and from the inclusion F(Q) C Im § it follows that f(§leo) C

Im §. Thus, §71 f is a holomorphic extension of f to ﬁoo

10.

11.
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