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Introduction - L

Analytic multivalued functions (shortly, analytic multifunctions) were
studied first by Oka [13], and then by Nishino [12], Yamaguchi [21]. In recent
years the theory. of analytic multifunctions ha&é been déveloped by several au-
thor, in particular by Aupetit [1,2,3}, Slodkowski [16], Ransford [14,15] in the |

one-variable case, and by Slodkowski {17,18,19] in the several variable case.

In this note we study first the relation between analytic multifunctions
and uniform Frechet algebras and give a generalization of Slodkowski’s Theorem
[17] fof aﬁalytic multifunctions on an open subset G of C™ which can not be -
bounded on G. Then we investigate the extensibility of analytic multifunctions
across thin sets which are removable for plurisubharmonic. functions and we
characterize the hyperbolicity of convex domains in terms of extens1b111ty of

ana.lyt1c multifunctions.

1. Analytic multifunctions and uniform Frechet algebras B
In [17] Slodkowski proved the following result on the relation between
analytic multifunctions and uniform algebras.

- SLODKOWSKI’S THEOREM. Let'G be a boundéd planar domain and K :
G — F,(C*) an analytic multifunction such that sup max |[K())| < co. Then

there exists a uniform algebra A and functions f, g1, ..., gx € A such that
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(i) f(m A\ F(84) = @, where F denotes the Gelfand transformation of
fi My and 84 are the maximal ideal space and the Shilov boundary of A.

(i) §9(f~(x)) = K(z) for every z € G, where § = (§1,..., §z).

Following Slodkowski [16] we say that an upper semi-continuous multi-
function K : X — F.(Y) (where X and Y are complex spaces, F(¥') denotes
the hyperspace of non-empty compact subsets inY") is analytic if for every open
subset W in X and every plurisubharmonic function 1 on a neighbourhood of

the graph I" Kjw of K on W, the funétion
() = max{y(z,y) : y € K(z)}

is plurisubharmonic on W. With this notion we can generalise Slodkowski’s

Theorem as follows.

THEOREM 1.1. Let G be an open subset of C* and K : G'—».Fc(Ck) be
an upper semi-continuous multifunction. Then K is analytic if and only if for _
every sequence {G;} of bounded open subsets of G increasing to G, there exists u
a uniform Frechet algebra A = lim proj A;, where A; are unifonn"algebras,"
Jtsees Fny 91400, 95 € A such that ' '

() 9(F 7 (z) = K(2) forz € G.

(ii) f(aA”_tm) NG; = 0 for every > 1 and for every complex line .
L in C*, where A jf-1(1) denotes the completion of Aj; for the supnorm on
f-l(L) n MA,‘ .

To prove Theorem 1.1 we first show that the function given by Slodkowski
[17, (1.1)] can be chosen such that L(z,8) C L(z,8') for every z € Ds;={z ¢
C": [Jz]| > 6} and for 0 < 6 < &. . -

LEMMA 1.2, Let § > 0. Then for every n > 1 there eﬁsté én'analytic
multifunction L({ ,§): Ds — Fo(C"™) such that '

(1) (z,2) =292 + ... + Znin =1 for every z € I(z, 6).



ANALYTIC MULTIFUNCTION 173
(ii) L(2,8) C L(x,8') for all 0 < 6 < 6.

PRrRoOOF: For simplicity we only consider the case n = 3. As in [16] we

define the multifunction L( , §) by
L(x,8) = {z = ||z||"%(#1, T2, 53) + Hagy —ag, 23 — 21,2y — 29) :
1)< llel? exp paflog e}

where ps : (log(4?), 00) — R is a smooth function which will chosen such that

L{,8)is analfytic and for which the condition (ii) holds.

To prove the analyticity of L( ,6) it suffices to show that A —s

L(z()), ) is analytic on every complex line x = 2{A) in C3. Let
(A} = (a1 A+ by, a A + ba,az X + by).
We may assume that [la||®> = |a;|? + |az[? + ja3]? = 1. Then

L(=(A),8) = {(1/A)@rx + by, @ X + by,agX + by} + (t(az — az)A — (by ~ by),
taz —ay)A + (by — by),t(ay — az)A - (by —b2)) : It] < (1/2) exp ps(log A)},

where A = oM = AP + <a&ab> XA+ <abdb>r+ [18}]? with « =
(a1,a2,a3), b= (b;,by,b3) and <, > is the scalar product in C3, Put

R(A) = (1/A4) exp ps(log A).

| Let % be a plurisubharmonic function on {(A z1822,23) A € G,
(21,22,23) € L{z()),6)}. We put

©(A) = max{p(A, z1,22.23) : (21,22, 23) € L(2()), 6)}
= max{y(}, 1) : [t| < R(V)},

where

B\ 1) = i&(A, (a1 A+ b1)/A + t{az — az)A + (b ~ by), (az_x+ b2)/A+
Has — a1 )A + (bs = by), (asX + B3 ) /A + t(ay — ag)A + (by — b))
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By [16] to prove the subharmonicity of (1)) it suffices to show that the

domain

Q= {(\) € C: It > RO}
is pseudoconvex. Hence it remains té prove that the function
log(dist(t, 821)) = —log | [t| = BY)| -
is plurisubhafﬁibﬁic; where 25 = 2N () x C) [16].
Lett=cA+d be an arbltra.ry complex line in C3 We may assume that
lc| = 1. Put | S ‘ '
)= ~log(Jt] = R(V)) = log(leA -+ d| = R(N).
Then o |

86(3)/0) = —a(log(lc)\ +d| - R(,\))/aA |
= (3(feX +d] - mnwmma+ﬂ R())
26(2)/9%0A = (1/(|e + d| — R(\))?)(—0 /3/\3)\(|c)\ +d-
= ROO)(leA +d] - RO -
; + 8/0M(|cA + d| = R(A))3/0M(JeA + d| — R(A))):2 0 &=
—82/3%0X(je) + d| — RO (leh +d] — R(Y) '
+8/0X(Jex + d] — R(A))8/0X(JeA + d] — R(X)) = 0

Thus it suffices to show that
— 82/330A(leA +d] — RO)(leA +d| —=R(\) 20 or
— 8 /NN(Jeh + d| — R(N) 2 0 <= —8? [0AOA([e) + d])
£ 0°R())/0X0A >0 | |

The proof will be completed when we can find a smooth function ps :

(log(52) oo) — R mdependent of the complex line m()\) such that :

—32(|cA + d|)/aAaA + 82R(A)/6)\6A > 0.
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For this we shall need the following claim whose proof will be given below. "

Claim. 9% (JeA + d|)/ai\a/\ + PR(AOAIN = 1/4 fed + d|))
+ (1/4%)]af? exp ps(log A)(ps — 2p5 +2) +(1/47) exp pg(log A)(ps — 1)+
(1/4%)]af? exp ps(log A)ps(ps — 1),

where P.s and p, 5 are derivatives of the first 01de1 dnd sccond o1del of pg Te-

spectively, and o = A + < @, b >.

- We Shall choose TE: (q,oo) — R, where q = 100(52) as follows

(1) —61433(”l @+ (@ —q) for qS 0,

IL) = e>.p 3¢+ for ¢>0.
- We shall check tlsla‘t p(s satisfies th; _inéquality
—amc,\ + d|)/aA3A +OPR(A\)/03A>0
Observe first that | |
o1
g2 25— 2
Wg must prove that |
(1/A%) expps(log A) o = 1) 2 (1/dfJeA+ d))
or equivalently
(1/A2) exp ps(log A)ps — DA([eX + d]) >
For ¢ £ 0 we have
(1/A%) exp ps(log A)(ps = 1}(JeA + d]) >
(1/A%)exp ps(log A)(ps — 1)(4/4) exp ps(log A) =

(4/A%)(exp ps(log A)Y*(ps — 1) = dexp 2(exp 3(z — q)+
+ (z—¢))3exp3(z — ¢)/ exp3z > 1
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where z = log-A. For. g > 0 we have
 (1/4%) exp py(log A)(ps ~ DA(IeA + dI) =
(4 e‘x'piz'(ekp‘Sa: + z)3exp 3z)/ exp 3z > 1,
where z = log A > ¢ > 0.

Proof of the claim. We have

o Pler+d)  FRR) _ _ el 8 (5 exppslog A)) _
- OAON oXOX  4led +d] ANOX
1 - O (kexpps(logd ;
- 4IcA +d| = 65\(’36/\( 22 (e =1),
BR()) @ d 19
P = 55(G expallog ) = o Lyesp il ) 22 (exp pstiog 4))
1 aA
A2 By P ps(log A) +. —exp ps(log A)P (_log A)
1 o1
= E()\+ < a,b>)expps(log A) + 7 &P ps(log A)p Z()H_ <a,b>)
1 - '
= —((AJ_r < a,b>)expps(log A)(ps — 1)) .
2R(A 1 < | ;
a,\gg 5 L0+ <a,b>)exp psllog A)ps 1)

( ()\+ < a,b>)exp ps(log A))(Pa -+

+ —-5()\4- <'a,b >)exp ps(log A) 5~ (Pa —1).

' TS
M < a,b>)expps(log A)); S = Z(ps — 1), when —'"*aaféi) =

A < ab >)_exp ps(log A))S. Then

.‘n-|...
—
/—\ /—-\

0
T = —( (A+ <a b>)a expp.;(logA)

= (—( (A+ <a,b>))+ ()\-!— < a,b>)expps(log A)+

1
A2 9)
p()\'l- <ab >))exp ps(log A)Paéj(log 4)
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___( (,\+ < a, b>)(A+ <a b>) Aﬂ)

+ F(A+ < a, b >)exp pg(logA)p ""'(A-!- < a, b >)

= ——(A+ < @, b>)(A+ < a, b>)+ )ekppa(logAH |

exp ps(log A)+

()\—l— < a, 3 >)()\-|— < a, b >)e:\p pg(logA)pé
= "é")—:(Pa —1) = ps Z((\+ <a,b>).

Put & = (A+ < &b >). Then

A R(A
05\3()\) = T{ps — 1)+ ()\-I- < a, b >)expp5(log A))S
- 1 [ IR AP -
= ((— IO«fI2 Ag)eXP pa(log A)+ 3_,I0f12 exp ps(log A)ps)(ps — 1)
Ial expps(log A)ps)
.
|a|2 exp ps(log A)(ps = 1) + 7 exp ps(log A)(ps - 1)+
Flalzexp ps(log A)(ps — 1)ps + Iozl2 exp ps(log A)(Pa ~ 1)95
1 ‘ y "o ot C e
= _la|2 eXP ps(log A)(ps —2p5 + 2)+
1 1, "
2 P p.s(log A)(p.s “D+ 3 lctl2 exp p.s(log A)Pa(P& - 1)
Thus | - _
_ (A +d) 82R(A) 1 R
< T 9AAN 'BXOX To4ed+d] T 9xdA
1

I . .
= "dotq T Io‘f exp ps(log A)(ps — 2p5 + 2)+

- e:cp pa(log A)(Ps -~ 1) + = yE !al?exx) ps(log A)ps(ps — 1)

The proof of Lemma 1.2 is now complete ,

PrOOF OF THEOREM 1 1: Let A and f,g be as in the theorem. To
prove the a.nalyt1c1ty of K it suffices to show that K [G .n1 1s analytic for every

j > 1 and for every complex line LinCn"
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Given j > 1 and a complex line L in C". From (i) and (i) it follows

that Fy: M4 ;.1 , \OA; vy ™ I‘(Ix \G,nL)) is proper and surjective, where
F; = (f, )‘MA . a,nd I'(K|g; AL) denotes the graph of leG L. By aresult
of Slodkowski 18], F(I\ lg;nL) is an 0-maximum set in L x C? in the sense of
Slodkowski because of the 0- ma,mma,hty of M[A f"(L) \aAJf 1(L) for Ajf—l(L)'. |
Hence K |g;nL is analytic [13]. ' '

Conversely, let X : G — F,(C*) be an analytic multifunction and {G;}

be a sequence of open subsets of G increasing to G such- that
sup{HzH z € K(z), 2 € G; } < o0

for every j > 1. For simplicity we assume tha,t n=k= 2 Let L( ) be the
analytic multlfunctmn on Ds deﬁned by Lemma 1 2 for n = 5. For each j=1
put .

%, = ct{(,5) €C*: 2 €y, 2 € Ky(#))
U =€\ X; o
-_{12345}U{U x{12345}}

where G =Gj % A and Ix,(a:) = K(z) for & = (z, 1:3) € G By the property
(i1) of L{ 6) and sitce \ C XJ_H we have Y; C YH.%, where

¥ = {(yer; €CV 2 (Unyens¥s) o
= (u,v) E__j;;j' ;an_d:fqr (a: z) E U , (yr 2ls - yi,;j)' -
AR NIEES -1/2(1151:((3;,:) X i} '

Since L( 6) is uppel seml continuous, it follows that Y is compact. By

A; we denote the uniform alg,ebla on-Y; gener ated by the functlons

y) = 1, fuly) =11, Fal D=v
fs(J) ys,. gi(y) = ‘J4,=J2(y) = Ys,

21 (Y) = Ui,z 0 055 = Y25

with (&,z) € Uj.
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. Put A=1im(4;R;4,), where Rj41: Aji1 — Aj denotes the restriction
map. Then as in [16] we can prove that A, f = (fi,f2) and ¢ = (g1,¢92) satisfy
the conditions (i) and (ii) of Theorem 1.1.

'The theorem is proved.

2. Extending analytic multifunctions and

the hyperbolicity of convex domains.

. The problem of extending analytic multifunction has been inv est1gdted
‘ﬁrst by Ransford. In [5] he proved that every analytlc 1nu1t1funct1011 KN:D*—
F(V) where D = {z €C:lz | < 1} D*=D \ {0} and V 18 e1ther D or
"Dy, = {z € C:r< | ] < s}, can be extended to an analytic mult:func‘tlon
K:.:D— F (V). .

- First we prove a theorem on extension b'y thin'sets

* We shall need the followmg, result whlch is a generahzatlon of an impor-

fant result of VVEIHGJ. [‘)0]

LEMMA 2. 1 Let A be a umform algebra with. Shilov boundary 0 and

U an open subset of C. Let h: U -+ A be a holomorphzc map. Then for every
f € A such that o(f) \ f(aA) C U, where o(f) is the specira of f, the form

A= K(A) = (A0 w) = AN (w) s w € F10))
deﬁnes an anaiytxc multﬁunctlon on or( f ) \ f ( 3,1

PrROOF: We bafsicaliy follow Slodkowski’s argument in [16, Theorem 3]
It is enough to show that J'(}) satisfies condition (ii) of [16, Theorem 3], i.e. for
every polyﬁomial p(A) and for every a,b € C, the function A — max |AA(K(A)),
where fa(z) = (z — Aa = b) " exp(p())); has local maximun property in G :
{(h € a(FI\F(Ba) : ar+b ¢ K(N)}. Let D be-adise such that ¢{(D) C G. Put
N=Ff "I(D) C My, and let B denote the uniform closure of 4|z N) on c{(N).

Then B is a uniform algebra with maximum ideal space Mp = cé(N ) and the
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form & = (h(y) — af — b) L expp(f), where a,b € C and p is a polynomml

defines an element of B. For A € D we have

max fa« (A {\*)) = max |k f~? (A*)]
=max ||k} [an (by Ross’s local maximal principle)
= max{max IR F~YM) - A e 8D}
= max{|f+(K(V)| : A € D)
- Thus, the function A — max | fA(7(A))] has the local maximum property.
LEMMA 2.2, Let K : G — F.(Y), where G is an open subset of,IC"

and Y an analytic set in C*, be an upper semi-continuous multifunction. If

K : G — F,(C*) is analytic, then K : G — F.(Y') is also analytic.

PROOF: We may assume that n = 1. Let ¢ be a plurisubharmonic
function on a neighbourhood W of I'Kjy in G x Y, where U is an open subset
of G. Consider the plurisubharmonic function c,a(.,,w) = c,o(z g(w) on (zd X

)71 (W), where f, g, A are constructed as in Theorem 1. 1. By [7] we have
Sz, w) = lim ma%{{c}‘_ log |h;-’(z,w)[} .
for all (z,w) € (id x §)~1(W), A} € CalO(U, 4), where CalO(U, A) is the set
~of all holomorphic maps from U 1nt0 A. '
Since for every sequence of upper semi-continuous functions v, ¥ =
lim %, point-wisé, lim max(t, F) = mé..\:(dq F) on every compact subset F ,and «
since (id x §)~1(OU) D A(id x §)~1(U), it suffices to prove the following formula
max |fz;-'(z,w)| ]3kidx§)-1(g):'ma.x |fz}‘(z,'w)| l(:'dxg)'l(aU) .

But this formula follows from the analyticity of the multifunction 2 —

{fz}‘(—z, w) :w € f~1(z)} and from the relation FOGY D 84 -

Let PSH(X) denote the set of all plurisubharmonic functibn_ on X.
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THEOREM 2.3. Let g be an open set in C":and S a closed subset of G
such that PSH(G\ §) = PSH(G). Let K : G\\S — F(Y') be an analytic
multifunction, where Y is a Stein space. Then K can be extended analvtically

on G.

PROOF: Without loss of generality we may assume that ¥ is an analytic
set in C*. Then the function

- 8(x) = {sup|lyll : y € K(2)}

is plurisubharmonic on Gy = G \ S. Hence # can be extended to a i)hli‘isub—
harmonic function on <. This implies that for every zq € S, there exists a
neighbourhood U of z¢ such.that K (U N Gy) is relatively compact. Define an

upper semi-continuous extension of I by
~ K(z) for z€Gy
o= o
{y €Y : IH{(xn,ya)} CTK, (0,yn) — (z,y)}, forz € S.

.. We will prove that K’ is analytic at every point z¢-€ §. Let G’ be an
open ball around @, G' C G. It suffices to show that K |Lre 1s analytic for .*
every complex line L in C". Using Slodkowski’s Theorem we can find a unlfm m
a,lgebra A and f,g1,...,gk € A such that

(1) Gf- 1(z = Ix(:c) for allz€ LN (G'\S)
(i) f(aA) —3(Ln(G'\5)) o
We have to prove that f(84) N (L NG')=

- Forr the contrary, suppose that there exist a complex line L in C” such
that f(@4) N (LN G') = §. Since K is analytic on G'\ S, it follows that -
F(@A)N(LN(G'\ S)) = 0. Hence there exists wy € 84 such that f(wgy) = z,.
Since G’ is open and the set of pick points of 4 is dense in.a,;; [6], we may
assume that wp is a. pick point' (wo € My is called .'a'pi'ck point of A if there
exists k € A such that. |E(wo)| = 1°and |k(w)f < 1 for weE M'A \ {wo}) Hence
there exists h € A such that |h(wo)| = 1 and |A(w)}'< 1 for w € M\ {wo}.
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- Consider the plurisubharmonic function .
o(x) = logmax |hf~1(z)] on G'\S.

Then ¢ is plurisubharmonic on G'. Since logmax |k f—l(a:)] <0 =
log max [Af~1(z)]| for evely z e, it follous that c,o = const, a contradwtmn

Thus f(84)N(G' NL) =

By [8], if § = HN(G\G"), where H is an é,nalytic set in G, G is an
open subset of G such that G’ meets every irreducible component of H, or S is
a set of zero (2n — 2)-Hausdorff measure in G, then PSH(G\ S) = PSH(G).

_ Let X be a complex space. Given p,g € X, we choose points p =
P1s-sPr = ¢ of X, ay,..,ak, by,...,br of the unit disc D, and holomorphic
mappings fi, ..., fr of D into X such that fi(ai) = pi—y and fi(h;) = p; for
t=1,...,k. Let

-
dx(p,q) =inf ) p(ai, b;),
i=1
where p is the Poincare-Bergnan metric, thé'inﬁmﬁm is taken over all possible

choice of points and mappings described above.
It is easy to see that dx is a pseu&o-disténcé on X
A complex space X is called hyperbohc 1f 1ts pseudo-dlstance d X is a

dlsta,nce

The following theorem discusses the relation 'betw'eer'l the hyperbolicity

of convex domains and the extensibility of analitic multifunctions.’

THEOREM 2.4 .Let D be a convex domam in C*. Then the following

conditions are equivalent,
(i) D is hyperbohc

_(ii) For every a,nalytlc mul t1funct1on K:C—F (D) the multifunction .
I C ~ F (D) given by K (A) = K(J\ where K()\ denotes the holomorphw

convex buﬂ of K(}), is constant.
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+,(iii) Every analytic multifunction K : A” ~+ Fe(D) can be extended
analytically on A, where A is the unit disc, AT =A\{0}.

PRrROOF: We first write D = QI{Rez; < 'e;'},'ﬁrhere {:z::;}are linearly
o Ll
forms on C*. Without loss of generality we may assume that 0.-€ D. Then
€y > 0 for all a. '

Let: {zf,, ..., 7.} be a maximal lihearly independent_system of {z}}.
Take 8, : Hy — A, where Hy = {z € C: Rez < €}, 1s a b1holomorphlsm .
Define a holomorphic map v : Dy — AP, Where D, = ﬂ {Re:va } by "y(m)

(B (2% (a:)) 9,,,? (a2, (m))) Obv1ously, visa blholomorphlsm 1f a.nd only 1f

ﬁ;heraf = {0} or, equlva,lently, D does not contam C
i= L
(1) = (11) Let Ix C— F (D) be an a.nalytm multlfunctlon Suppose

that r (21) :,é Ix(zz) for some two pomts a,% G C Take a plurlsubha,nnonlc

functlon (,a on Ap such that

Sup{tp(’y) y € 711(21)} % sup{sﬁ(y) Y€ 71&(~2)}

Since K is analytic, the functiofi' « - 7w

3(2) = sup{w(y) : y € ¥K(2)} = sup{p(y) : v € 7R (=)}
= sup{p(y) : y € 7K (2)} . .
is subharmonic onl C. | On; the other hand, since K (2) C AP for all z.€ C, we

have (p is bounded on C. This is 1mp0551ble because of the subharmonlaty of

go and of the relat1011 <p(z ). # (P(Zg)

(u) = (1) From (n) we have ﬂ {kel :r:a} = 0 Wthh 1mphes that ¥ :
D1 — Alisa, blholomorphlsm Thus Dl and hence D is hyperbohc

(1) => (111) By Theorem 2 3 '71\ and hence Ix can. be extended to an
analytic multifunction K : A = F, (Dl) 1t remains to show that I (0) C D.

Tooviyy LT
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Let @ € I and x"‘ K be an extenszon of zy, * K with values in Fo.(Hy).
Assume that 2% ot K (0) ;é T Ix(O) Take a plurlsubharmomc functmn won C
such that ¢1(0) # w2(0), where

i(z) =sup{p(y) 1y € mﬁZ)} =sup{p(y) : y € 25K (2)}

and
2(2) = sup{ely) 1 y € 24K (2)} = sup{p(y) 1 y € 25 K(2)}
forzEC R ' |

. Smce lpl and Lpz are plunsubharmomc on. A and gal = g on A , We
ha.ve 99;(0) = cpg(O) This is 1mp0551ble because of the cho1ce of @. Thus
Rez’(z) < €a for all z € I\(O) and for all & € 1. Hence I\(O) C D

. (111) => ( ) By [4] 1t sufﬁces to show that every holomorphm map B :
C — D is constant. By the hypothes1s B can be extended to an a,nalytlc
multifunction ﬂ on CP?!, This implies that g is locally bounded on CP!. Thus

B is holomorphic at: co. Hence é and therefore 4 is constant.
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