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A CLASS OF CALIBRATED FORMS ON f-MANIFOLDS

HOANG XUAN HUAN

Introduction

The calibration method was introduced first by Dao Trong Thi [4—6]
and later by R. Havey, H.B. Lawson [12] in order to study globally minimal
currents and surfaces on Riemannian mamfolds The prln(:lple of this method
can be described as follows. Given a closed k-form with comass HQH* <lona

Riemannian manifold M, we define the cone of ma.x1ma1 directions of Qat

FQ)={fc ALM | Q(5) = II£||}

If the tangent space 5, ofa surface S belongs to F (Q) almost every-
where, then S is a globa.lly ‘minimal surface. In this paper we study a class of
calibrated forms Q on (2r + p)-dimensional f-manifolds and we find the cone of

maximal directions Fi(2). Thereby, callbrated forms c.a,n be presented as
Q= gt A A/, 0S 0 Sp, 0SEST,
where w is a closed 2-form and 7t (O <1< p) are the 1'—er1ﬁé of the f -structure '(
" These results allow’ us :tb :déﬁe:rminé a class l(;f_ m1111mal SurfaceSOn f_ ._
manifolds and in particular, on contact manifolds. o |
1. .F(_:\:rlns énd currents

In this section we collect some concepts and fdcts_of the current theory
(for details see [7]). : R
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Let R" be the n-dimensional Euclidian space, Ay, and A*" the dual
spaces of the k-vectors and k-covectors on R", respectively. The direct sums
Avn = DAL, A¥" = OAET form the contravariant and covariant Grassmann

.algebras with the exterior multiplication A.

The scalar product (.,.) in R”® induces the scalar product (.,.) and the
corresponding norm |.| in A, and the mass of a k-vector £ € Ak,n is defined
by

(11)
|]§ |{ = mf { Z B|Bisa ﬁmte set of 51mple L vectors such that £ = Z Ji] }
' BEB . , seB
The comass of a k covector w € Abm s deﬁned by | |
(1.2) |lw|{* = sup{w(?)) | n is a szmple A vector and || < 1}

One can prove that the 1nﬁmum in (1. 1) and the supremum in (1 2) are
attamed for a finite set B and a sunple k vector E respectrvely If £ is a sample ,
k- vector, then HEI] = |§| '

Let AI be a Rmmamnan mamfold Each d1ﬁ'erent1al k-form can be re-
garded as a smooth section of the Grassmann bundle AF7™, We denote by EF -
the vector space-of all real differential k-forms on M equiped with the topology -
of compact convergence of all partial derivatives. A k-current (with compact
support) on M isa real contmuous lmear functmnal on E'k The mass M (5' ) of g

a k-current S is defined by - o |
M) = s (507 o€ BH), Tl <1, Ve € ).
If M(S) < oo, one can deﬁne & measure Hs” by the formula
ISIICH) = sup{S(6) 1 € BGH) , llull” < F(0) . Vo € ).

for any real nonnegative continuous function f on M Iu this case, ”tl.lere-erc-
ists-||$||-measurable section § of the bundle AM such that 1Sz]] = 1 almost
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everywhere in the sense of the measure |[S]| and such that
CEN Ste) = [ e(S.allsii)

for an arbitrary k-form ¢ € E*M. S, is called the tangent k-vector of § at
z. The boundary of a k-current S is a (k — 1)-current defined by the for-
mula 95(¢) = Sdtp for any ¢ € E¥"'M.- A k-current S on M (with or with-
out boundary) is said to be absolutely (respectively, homologically) minimal if
M(S) £ M(S") for any k-current S’ such that 85 = 85’ (respectively, § — S
is the boundary of some (k 4 1)-current on M ). c

Let 2 be a d1ﬁ'erent1al k-form on M. We deﬁne HQH = sup H€2:]]* and
the cone

Fo(9) = {€ € MMy | Rt = [iE]L 101",

- DEFINITION: A closed k-form Q is called a calibration if He* =1. In
this case, a k-vector £ € F,(R) is called Q-maximal.

The following theorem is the main tool for the determination of minimal

currents in the following sections.

THEOREM 1.2 [6]. Let  be a calibration, and $ a current such that
Sz are Q-maximal almost everywhere in the sense of the measure [lS||. Then S
is homologically minimal (if Q is exact, then § is abso]ute]y minimal).

Based on Theorem 1.2 we can prove the globally minimal propert1es of a
class of currents and surfaces by. finding suitable calibrations and determmmg

its cones of maximal directions.

2. Calibrations on manifolds having a closed 2-form

Let w be an exterior 2-form on R”". We denote by (,0 the skew-symmetnc |
transformation associated with w such that (o(u), v) = w(u v) for all u,v € R",

If K is a two-dimensional invariant subspace of R® with respect to ¢, then the
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restriction ¢ | of ¢ to K'isalso a. skew -symmetric trahsformation. With respect'

to an arbitrary orthonormal ba,sm of K, the matrix of ¢ | takes the form -

Y
G

_ We can choose the orientation of the basis such that A > 0. The number
X does not .depend on the choice of the orthonomal basis of K, and A is called
the characteristic value of ¢ corresponding to the space K. It is well-known
that R™ a,lways admits an orthogonal decomposition (which is not unique) R™ =
Ko-- GB_I&,-, where Ky = ker pand K; (i < r 1_s a two-dimensional invariant
subspace corresponding to the chara.cteristic value A; (0 < /\1 < Age-- < /\,.)
Let H be an arbitrary 9k-imensional subspace and p the orthogonal pro_]ectlon.
from R" to H. We define by ¢n the restriction of the transformation p = py
on H. ¢y is a skew-symmetric transformation on H, so H can be expressed by
an orthogonal sum . | o

H=H® - 0H,

where H; (i < k) is: a two-dimensional invariant subspace of H correspondmg
to the characteristic value ﬂ/ of pg (0B << H) : -

THEOREM .2.1. Let/tp and H be as above. Then B+ fr < Ar—pt1
 Ap Moreover equality holds if and only if H = Hy @+ @ H}, where
H; (i € k) is a two-dimensional invariant subspace of R* correspondmg to the

characteristic value A._p4+; of .

PROOF If ,6’1 = 0 the statement is trivial. Therefore,:we may assume -
that #; > 0. For any subset X of R", we denote by span (X) the subspace
spanned by the vectors of X. For simplicity we shall consider only the case n =
2r. The case n = 2r + 1 can be proved analogously. We shoose an orthonormal
basis {v,},_1 of R" satlsfylng the conditions tp(vg,._l) = Aivai, p(v2i) = Aivz2ia

forany : < r and an orthonormal basis {e,} L, of H satisfying the conditions

‘PH(eZ: 1) = )61.6235 ‘PH(eZ:) = _ﬁteZZ -1 (z < k) SUPPOSC that

(2.1) e = Zc,-,jvj (i <k).
j=1
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We have
‘P(ez)— Z)\ (Ca 2j—1V2;5-— €4, 21'023—1) and k
j=1
(22) (611 (P(em)) — "-(ema (,0(6 ) - z Aj (cm 25— lcl ,25C8, 2_1—1)
j=1
In particular, |
(2.3) Bi = (ei,0(ezi—1)) = Z Aj(C2im1,2j—1C2i 25 = C2i=1,2§C24,2j-1)-

=1

We define the function
. ,
F(c) = Fler,1,- - canoe) = ([ [ B) =
: . : i=1

r

E in E E X;(e2im1,2j—102i2j — D2i~1,2§€2i,25~1),

j=1j=1

and consider the problem of mininﬁzin@ F(e) under the following constraints

2
(2.4) . Z‘.Ci’j =1
j=1
R
(2.5) o S epacgi =0
. =1
(26) 0= Xlcpaj—16u2) — cppicazi-1) s V(P a) # (28— 1,25).

It is easy to verify that this problem always has solutions. Assume that ¢
is a solution of this problem. We shall prove that each pair of vectors (e2i—1,€2i)
(renumbered if necessary) form an orthonormal basis of some two- dimensional

invariant subspace (with respect to @) corresponding to the characteristic value
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Ar—pti (1 <4 < k). In fact, since cis a conditionally extremal point of F', it

must satisfy the Lagrange's equa.tions

N _
—sz 2j = 2ugi—1¢2i—1,25—1 + E Ugi—1,4C1,2i-1 + E AjP2i-1,1Ct,25
15#2i—1 1#£2:—1,24
Y | |
% Cai-1,2j = 2ugi_1C2i-1,2j + E Ugi-1,1Ct,25 — E AjP2i-1,6C,2j—15
¢ t£2i—1 t#£2i—1,24
(2.7) ﬂ " gy, 2j-1 = 2ugiczi—1,2j-1 + E U2i,1Ct,25-1 T E AjP2i Ct 2i=1)
t t£28 1#£2i—1,24
Aj

J
'—_621 1,2j—1 = 2u2iCo; 2it+ E U2;,1Ct25 + E AJPZ: tC¢,25~1,
1#21 t#£21—1,21

(1<i<k,1<j<r), whereu;,u;; and p;,; (i < j) are Lagrange’s multipliers
corresponding to the contrains (2.4), (2.5), (2.6) respectively, and

. (2.8) o uj,.i = Uy Pji = —Pij for ¢ > j.
Taking (2.2), (2.3), (2.4) into account, we obtain from (27) the following

equalities

(2 9) _‘P(e‘lt) - 2ﬁ1u2z 1€2i—1 + Z 1811521 1, 1€ — Z ﬂip21—-l t()a(et)a

t#£2i=-1 1#2i—-1,24i-

(210)  @leimy) = 2Biunieni + 3 Bivniger—  y  Bipaipeler).

t#21 t#£2i—1,2¢

Multiplying both sides of (2.9) by ez;—1 and those of (2.10) by ez, and
takmg (2 4) (2.5), (2. 6) mto account, we obtain B; = 2ﬁ,u2, 1, Bi = 2Biug; (1 £
1 < L) Hence Ugi—1 = Ug; = 1/2. Multiplying (2. 9) by eg; yields

(2.11) o Bingi—12: =0 or 152;'_-1,2,'. = 0.
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Now we fix an arbitrary pair of (¢,7), 1 €i¢ # j € k. Multiplying (2.9)
by ez;~1 and then by es;, we get

(2.12) ' ﬂiu2i—1,‘2j—1‘ +2ﬁ?P2i—1,2j =0, °
, Bivgi—1,2j ~ Bip2i-1,2j-1 =0
Since fi # 0, from (2.12) it follows that

: u9i—1,2j—1 + Bip2i-1,2; = 0
(213) i i | iP2i j 1
gi-1,2j = BiP2i-1,2j—1 = 0.
Permuting ¢ and j in (2.13) we obtain

, Ugj—1,2i—1 + Bip2j—1,2i =0,

(2.14) ’ o
Ugj-1,2i — PBiP2j—1,2i-1 = 0.
Doing the same operation for (1.10) we have

U2i,2j-1 T Bipzi—1,2; = 0,

tai2; — Bipri-1,2j-1 =0,

(2.15)

' u2j,'2i:—1 + Bip2jei =0,
U25,2i — 5;‘1;323',2{—1 = 0.
Taking (2.8) into account we transform (2.13), (2.14), (2.15) into the
following system ' |
U2i—1,2j—1 + ﬂiPZi—l,zj =0,
Uzi—1,2; — BiP2i—1,2j—1 = 0,
u2i-1,2j-1 + Bjp2izj-1 =0,
(2.16) Ugizj—1 — Bip2i-1,2j-1 = 0,
Uzizj—1 + Bip2iz; = 0,
Ugi 25 = ﬁﬂbi,z;‘—1 =1,
Uzi—1,2j + Bjp2j2i =0,

Uzj2i — ﬁjPzi—l,zj = 0.
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‘

(0.5} 20We regard (2:16) as'a system of dinear, equations of ugjq/;:24 721,25,

U24,2~1, U2i,25, P2i—1,2j—1, P2i=1,2j, P2i 2j~1, P2ii3j. “The, determinant - of ;this: sys-

tem is equal to —(,832- —B2)L. So, if Bit ,B;, then the system has only the trivial
e A B R N Sl AN}

solution ) o & (8.8
R E A FLE TN BTN
(2.17) U2i—1,2j-1 = Uggnny25, T2 & Y2i2y 7 % 5 oonid

S

— S
= Pzi—l,z?—'r = P2i1,25 = P2i2j—1"= P2i2; = 0

But if 8; = f;, theih :'frdln':(2.16:)'ii%~ follows thiat
1o

..... o JE SR
Lt u, IGIIR a RIRSE RN LS

D2i2; = P2z--1 23 1, ;Pzz 23 ’1 —P2=-1,2J, -

iR i
(2.18) Ugi-1,25 T hairai 4, Unicriaj = "Lugigj-1, (5

B1.E)
Ugi—1,25—1 =T ﬁzPZl—l‘ B Hza-1 25 = ﬁ:Pz:—l 2j—1-
Putting (2.11), (2 18) (2: 17)‘1nto (2:9) and' (2"10)’iwe’ SBtaintod
(2.19) g éz,) Zeé}ii@"'
' 0 ; RS PR RT3\
8.8

Z {u2;~1 2t—1 [ﬁaezz-l + fP(Cm)] + Uzz—l 2i[ﬂ162t - ‘P(62t 1)]}
B:=8i _ Lo
7 S e e
r(2'20):: "‘{‘:[‘:) :{EI.' ' 'k:k!- (62'_1) ey ﬁiegj PO “ilL (\_‘.\'_.\I ,pjlzi:jrsr
. Gradeye l‘li‘i"ff!_'j‘i,{{}'-j"
Z {u2£—1,2t—1[€£62t - (ezt 1)] — Ui-1 2t[ﬂ,egt 1+ @(ezt)]}
Bt=ﬁ.’ R il .j:} - - E-_ﬁ.:'i_—::‘ g

tohi N .
i = LT [
Set
. o § oy pen

€1 = e2:—1 + E [u2=-1 21— 162t 1+ u2i—y,20€2:),
R ‘Bt#ﬂ! Ly - i-‘k,,:': PR B far e
t-;é‘l. . L ...TJ

(221) ' L= T gt L

€qy; = €3 + Uzz—l 2t62t - u2:-—1 2t€2¢—1]-
"ﬁ:—ﬁ. i e

) = .
=Rt IR TG
)= — D
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" Since {e;}f_, are linearly independent, e;;_; # 0 and ¢,; # 0. Hence,

we may put

i i . lr V
€9i—1 = 82;‘—1/|32£—1|a
i

’ I
€9; = eg:/lea;l-

By virtue of (2.19) and (2.20) we have ¢(ey;_,) = Biezi and @(ey;) = Biezis.

- Consequently, §; is a characteristic value of ¢ and span (e;,-_z,e;,-) is
an invariant subspace of R™ corresponding to #;. Thus, there exists 3 < r
such 'tha.t ﬁg = /\J Moreover, if m # ¢, fn = A; and span (eam-1,€2m) is
a two-dimensional invariant subspace with respect to ¢, then in (2.19), (2.20)
the terms with index ¢ = m vanish. Continuing the process of orthonormal-
izing, we can choose the orthonormal basis {e;} of H such that ey;_; = ep;_,
and e; = ey;.. Hence F(c) attains the maximal value if and only if {8:i}%,
are k largest characteristic value of ¢ and H; is the two-dimensional invariant

subspace corresponding to ;.

THEOREM 2.2 (GENERALIZED WIRTINGER’S INEQUALITY). Let w be
anr exterior 2-form on R", {w;}", an orthonormal basis of A" such that
w= Awi Awg + -+ Aworg Awar (r=[n/2],0 < A €22 <0 < Xpp)
Then

_ ok
(2.22) WF(€) <k [T Armrsilléll
=1 -

for any k < r and any 2k-vector £ € Agjp. Bqual.ity holds if and only if
E=6+---+&, where & (i < p) is a simple k-vector which has the form
aze; A---Aeag, {ej}§i1 is an orthonormal system such that {eg;_1,eq;} form-an
orthonormal basis of a two-dimensional invariant subspace { with respect to )

corresponding to characteristic value A,_jy; (7 < k).

PROOF: First of all, we assume that £ is a simple 2k-vector in Asg n,
& =€ A Aegp. Put K = span (e; -+ - ea;). Let f: K < R™ be the embedding
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of I into R™. Then f*(w) is an exterior 2-form on K associated with the skew-
symmetric transformation ;. Denote by 8;,:-- ,f the characteristic values

of ¢y and consider an orthonormal basis {8;,--+ ,8,:} of AL¥ such that
fr=k 50, /\92+ +16L92L 1/\92k

Then (f*w)" = k! ﬁl - B 91 s A Ok Therefore wk(f)/k'
= (:f*w)k(g)/:l! =-£B;i - Bellé]l. Using The'ore'm 2.1 we obtain wk(E) =
BV Ar—pgr -+ A€ || Moreover, equality holds iff ¢ has the mentioned form.
Consider now an arbitrary 2k-vector £ € Mg . As it was mentioned above,
one can choose smlple 2k-vectors ety p such that { = 771 et 7];-;: and
HEH = |lml + + an” Accordmg to (2 4) we have ' -
(2.23) -
L e =w (m)+ () |

S EAreppr A A (Il 4+ Il - + H??p”
=k Arkgr - Ar]]

Moreover, equahty holds iff w*(n;) = & Ap_ppi- - X Ainill for any ¢ < p.-

- Consequently, £ has the desired form. The proof is complete.

Now let M be'a Riemannian manifold, w a closed differential 2-form on
M. Then Q = w* /w® || (k < [n/2]) is also closed. We have the following

consequence of Theorem 2.2.

3

COROLLARY 2.3. Let w be a closed djfferentjal 2—form on M and

H Ar—k+i = constant # Oforallz e M, where r = [n/2], \: (2) G>r—k+ 1)
=1
ave the k greatest characteristic values of the skew-symmetnc,transfozmation7

associated with the exterior Q—form we. Then Q = w*/ |lw¥||* are calibrations

and the cones §)-maximal directions were determined by Theorem 2.2.
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3. Calibrations on contact manifolds

In this seétion, M will be a (2n + 1)-dimensional Riemannian manifold.
M is said to be a contact manifold if there exists a pfaff-form having maximal

rank 5. If M is a contact manifold, there exists a vector field ¢ such that
(3.1) n(€)s=14dn, =0 forall ze M.

(for details, see [9]). Moreover, for each z € M there exists a local coordinate
of M such that
d

(3.2) n=dr + Z-’Ezidivziﬂ and = Or1

=]
Several authors [13, 14, 15] have studied the metric contact manifolds
(o, &, 7, ¢), where a is an affinor field and ¢ is a Riemannian metric satisfying

the following conditions

(3.3) rank aj- =2n, &n; =1, aéfq = 0,
(34) : afay = & +1;¢",
(3.5) M = gi,gl"s gpgala] = gi; —nin;
On; O
(3.6) Q= =t - —= where  a;; = alg,;
J - axi aa:j J .7

For the contact manifolds, the existence of metrics mentioned above has

been proved in [11, 15]. In this case, £ and a induce two distributions ¢ = span
({ag)g=1) and m =¢.

THEOREM 3.1. Let M be a contact manifold as above and Q =
(dm)*/I((dn)*||*, k < n. Then Q is a calibration, and the cones of Q-maximal

vectors belong to Aqr(t) and are determined by Theorem 2.2.

PROOF: Because of (3.6), we have g(¢,q,) = f"gg,kag = £'a; , for each
¢. On other hand, 7¢dn = 0 by (3.1). Hence ¢a;, = 0 for any g. This implies
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that two distributions ¢ and ¢ are orthonormal. If ¢ is the skew-symmetric
transformation corresponding to dn, then ¢ belongs to ker . Hence the asser-

tion follows by applying Theorem 2.2.

Now let A .be a contact manifold without metric. We will construct a

Riemannian metric and find suitable calibra.tions.

THEOREM 3.2. Let M be a contact mamfold Then there ex;st an exact
1-form w on M such that w,(¢) =1 for all « € M.

PROOF: Let {uq}aen be alocally finite open cover of M and {z*}aem

the correspondent coordinate system satisfying (3.2). Then
(3.7) | n = dz§ +25da§ + - + 25, deS i
on u, for any o € N.

We choose a unit decomposition {90,}061\( refining {#a}aen such tha.t
support Bo = vo C {:c € M/}z$| < 1}. For each'p € M, define

zy{p) ) : .
o) =3 | " ot 25 () - 250 sa (P

[+ 1 0 ’

It is clear that E'EE —f— =landw= df is the required 1-form.
l

COROLLARY 3.3. _Let M be a contact manifold satisfying the assump-
tion of Theorem 3.1. There exists a Riemannian metric g' on M such that .g'
induces the meiric g on the distribution t, and the two distributions t,m are or-
thogonal. For the calibration @ = (dn)* Aw/||(dn)*l|*, k < n, a (2k + 1)-vector |
p is Q-maximal if p = B A €, where 8 is (dn)* /||(dn)¥||*-maximal

PrRoOOF: We denote by p the §-direction projection from TM to m and
I the identical transformation on TM. Let ¢ =1 — p. We put

(38)  JLY) = ga(X) ) +u(Xu(Y) VXY € TM.

Then ¢’ is the desired metric.
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-ivisi « COROLLARYHSu4, ovizieag Do nic

i (T H i1 £y \YE R it
gl L an G Innageon FAF LRI Vit IR e
1) Contact manifolds are cosyinpléctic hanifold withi the Yiforin and

2-form dn mentioned aboved; 7

daneRd = (70 70 I

2) For each a € R, 1 1| f{z)=a}. T H® %0, then HO

A6, 18 mzmﬁj{ %17 aL » »Iwgl')')l_hu fofiilerng
is symplectm with the 2-form h*dn, where h, is the embeddmg of H mto M.
vigt o oanitiazs odd o= st Y3 T e sol O = (M ernsned (€

Consider the differentiallsystem«y!=-{X1.e (M o w(X:) =20} ard: the
two dlstrlbutlons t= span {'y} m = span {£}. Then dim 1ty = 2n,t; Hy for any

g T L — - h
& € M, where gl f( e, o eroiisidiins o zz2nls A b

Y HpRRoREN glg conth T+ 08 s evtomD VL Loofinu sy sl

i done G dass o Y bl ol na i T
1) There exists a Riemannian metric on M such that m and t are or-

T '!ly‘.

thogonal and |w||* = 1,¢, is w-maximaliféf each x € M.

= w) {2 Bub Q= dmS AN dnmf |13
B is koS maximal (a7 f(2)).c Moregyers©) =, 8 Aw,ds a, cahbxai‘ion and a

YA 2k-vector 8.6, T “_\ r 1s,wy ~maximal iff

(2% + 1)-vector o is Q- mamma] ifo=p4 A ¢, where 3 is QQ-maximal.
.\‘X o ? J— l\-—- oy MJ‘ -‘(;'J) == &3 ﬁH =t‘.‘.'i".r'

5, H [

PROOF
7 i ! .
i deltse y olions tanursami 5T Doibir i o { ;\;’}] e} Ao fn i

1) Let {va}, {6a}, {z*} be the families determined in the pmof of

Theorem 3.2. Because of (3. 7) we have o o
AP E O T e = 0 )

— o o
& o :f@{’ Cg 3 :ﬂ( 5 f+ﬂg’<’n\2qr./'\ﬂ,c.i§?,"\‘-l-' {7

4

.Consider, H2. a.s.,;a,_2?1-_(1imensi011a_,l)ksymp,llec.tig,maxllifoldswit,h the corre-

sponding complex operation J,. Denote by P, : TM — TH ¢ the f d11ect10n

(AR A R AT T X \] e
prOJectlon Put L , . &
S CRRRTRTE PR TE RL ROty \\ A~; — {} e 3 '.?;is‘-, T - .
(3.9) 00(X, Y ) dn(JoF 2(X), PaX)) £ (‘f{\)w( V) oo

foranyXYETM.

ii)!! _\7. ':i!_i,.‘.}.—._)_,.,
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It is clear that g is symmetric and positive. Moreover, the two distri-

‘butions ¢ and m are orthogonal with‘ respect 10 ga. Put
(3.11) g(X,Y) = Bbag.(X,Y).
It is stralghtforward that g is the requlred metrlc

2) Because w(Y) = 0 for each Y et dedyp = 0 the assertmn is only a

simple consequence of the first assertion and Theorem 2.2,

4, A class of calibrations on f-manifolds

" In this section, M denotes a (2n + p)-dimensional manifold. ‘If M 1s
equiped with an affinor field f of rank 2n such that

(41) o PPy f=0,

then M is called a f-manifold. In this casé; there exist the 1-forms {n® } (a
1,2, ,p) and the vector fields {Eb} (b =1, 2 : ,p) on: M such'that . -

(4.2)  B=6.f = I+TGE,

Several authors (see [9]) have studied Riemannian m’etric‘g (sé,.ti:slfying the
conditions ' 3

(a) 9(X,Y) = g(f(X), f(¥)) + T (X" (¥),

(b) F(X,Y) = g(X, (V) is  closed 2-form

THEOREM 4.1. Let g be‘a metric and F defined as above. Then

1) f(Eu) =0 forany a < p |

2) Rank F = 2n and for any k < n, Q = F*/k! is a calibration and the

Q)-maximal cones are determined by the Theorem 2.2.

' PROOF: 1) By (4.1) we have f(By) = —f*(Ea) = —f(f*(Ea)) for any
a <p By (4.2) this implies f3(E,) = E, — n*(E,)E, = 0. Hence f(E,) =0
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2) Because rank f = 2n, from (b} we get rank F' = 2n. Using (a) and
(b), we have

(4.3) . g F=0.

Denote by ¢, the skew-symmetric transformation of F' at z. Then E,
belongs to ker ¢, for any @ and any ¢ € M. Let w; (1 £ ¢ < 2n) be an

orthonormal system such that
F=XMNw Awz + -+ Apwan—1 Awen at z.

By (b) f is the skew-symmetric transformation of F. Let {ei} be the

orthonormal system which satisfy the conditions
(44) Flezio1) = Mieaiy fleai) = —iezic, wje:) = 6}

From (a), (b) and (4.4) it follows that X = —F(ez,
f(e2i)) = g((e2i, f*(eq:)). Taking (4.2) into account we have A; = glezi,e2) +
San(e2i)g(eai, Ea). Because of (b) and (4.3) g(e2i, E,) = 0. Thus, A\; = 1 for
all 2 < n. '

‘Now applying Theorem 2.2 we obtain the statement.

~ COROLLARY 4.2. If n =75 A--- An? is a closed differential form, then
n is a calibration and Fy(n) = Agy (span {Ei, - ,E,}). Moreover, for any
kE<n, Q=mnAFF/kis a calibration, and if v is §)-maximal, then ya= £ A §3,

where ¢ is n-maximal and 8 is F*-maximal.

PROOF: By (4.2), (a) and Theorem 4.1, {#*} and {E,} are dual or-
thonormal systems. Moreover, E, belongs to kerp, for any z on' M, where ¢,
is the skew-symmetric transformation with respect to F,. Hence the assertion

is a simple consequence of Theorem 4.1 and Theorem 2.2.

REMARK: The case n® being closed for all a < p has been considered in
[12], {13] (see also [9]).
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