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OKA-WEIL THEOREM AND PLURISUBHARMONIC
FUNCTIONS OF UNIFORM TYPE

BUI DAC TAC AND NGUYEN THU NGA

Introcluc tion

The classwal Oka-Weil theorem is well known : Let K be a compact
polynomlally convex subset of the space C™. Then every holomorphlc functlon
in a neighbourhood of K can be uniformly approximated by a sequence of
“polynomials on . This theorem has been generalized in various directions by
several ‘authiors. Noverzaz [6] proved an analogous theorem in Banach spaces
with bounded approximation property. ‘He ' considered also the approximation
of continuous plurisubharmonic functions on a pseudoconvex domain in Banach
spéces by special function of the form

e el
where f. € H(U) and a; >0, i=1,2,..,p. See aJSO the ‘works of Matyszczyk
[2] and Mu_]ma [5] for the case of Frechet spaces

- This paper:establishes a version of the. classma.l Oka-Weil theorem for se-
quent1a,1 approximation of plurisubharmonic functions defined on pseudoconvex

domains in Fréchet spaces with a Schauder basis.

Using this result we characterize the property Q (intreduced by Vogt [9])
of nuclear Fréchet spaces with a Schauder basis by the uniformity of plurisub-

harmonic functions.
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1. Approximation of continuous plurisubharmonic functions

-in Fréchet spaces.

Recall that an epen subset Q of a Fréchet space F is said to have the
- property. Pif K ps( E) is relatwely compact in Q for every compact subset I in

Q, Where

Rpspy={z € B: f(z) < sg}o_‘f(m), f € PS(E)},
and PS(FE) is the space of all plﬁrisubharmonic function on E.

In this section we give a necessary‘and sufficient condition for the approx-
‘imation of continuous, plurisubharmonic functions on every open set {2 having
the property P by a sequence of finite supremum of functions a.‘log [ f| with
a>0andfinH(U). | o |
| THEOREM 1.1. Let E be a Fréchet space having a Schauder basis.- If
for every open ‘suf?_seyﬂ_;of E with the property P and for every continuous,
plurisubhamornic function f-on Q, there exists a sequence of. functions {f}

uniformly convergent to f on eachﬁcon_lpa:ct's:ub's_et of Qoo
n(z)_ Iax aj 7 log |f”(z)], a; >0,

where fI' are holomorphzc funchbns on Q, then E has a continuous norm. -

PROOF: Let {ek} be a:Schauder bas1s of E F1rst as in [8] we prove
that there exists a sequence {A, } such that Ang enk - 0 for every subsequence
{Ane} € {An}." Consider a- polynom1ally convex subset D din C con51st1ng of

infinite many convex components

D= UDJ,OED.~i--
. J— )
_ Put

M= span{ej}jzg,

i=1
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Then © has the property P. Define a plurisubharmonic function on £ :
(z) = |e (z)| = |zJ] for z E D ey @M
By the assumptmn, there ex1sts a sequence of functlons { fn} :
fa(#) = max ajlog l{f}‘(z)l 2

with ¢} >0, n =1, 2, e such that the sequence {fr|D;e, @ Ce; } nen uniformly
converges on each compact subset of Dje; + Ce'j to f(z) = 2|, here.z = z1e1 +
zJeJ' ‘This means that for n sufficiently larg'e fn is dependent on the variable
z;. It follows that one of the functions f[, 1 = 1 2y ey Mo is dependent on zj.
Hence there exists z1 < i such that fn" (zl,z_,) is unbounded on zlel ) C €j for

some index nj and ¢;. ThlS implies the, existence of A; € C such that .
| fo (2ler + Ajes) 1>

we shall show that {X;}-is the desired sequence. Assume for the contrary that
Aj € — O fora subsequence {A,k} C {)\ } Put

I(Z{Z el""}\_;keﬂn k—-12 }U{O}

Then K is a compact subset of De, @ M for some mdex £ such that 0 € De We

have
g, (2Fer N e5,) = ler (2t er + Ajeei =
[fug, (#me + Ay )| 2 i Tfor k> L
This coﬁtre,dicts .the fact tha,f"{fn } converges uniformly on K. Since
* Jim (e53(2)/A5)-Ages = Jim, e;(_z.)f.ij =0
B ) (z)l

for every 2 c E_ we have lu'nJ_;oo e’ (z)/)\ = 0 Hence |]z|| = sup3>1|

deﬁnes a contmuous norm on E
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THEOREM 1.2. Let E be a Fréchet space with a Schauder basis and a
continuous norm. If Q C E is an open subset W1th the property P, then every
continuous plurzsubha;momc function f on gan be umformly approximated

on every compact subset of ) by a sequence of functions :
£ul2) = max a3 oglf (e} o} >0,
where fI' are holomorphic on Q.
- PROOF: Set An(z) = z:le;(a:)éj, where {e;} is a Schauder basis of E.
. i=1 | - , ‘
Then the sequence {4, } uniformly convergences on each compact subset of £

to the identity operator. Since @ is an open subset of the Fréchet space E; we
can write Q = |J Fy, where F, isclosed, F,, C F4; and Int F, #0,neN.

neN
Let-
R ={ee el <i),
K; -F N9 N4;(B)

and [}: || be a contmuous norm on E Then
A, CFNA; (E)chA (E),

and K is compact'in-ﬂh A;(E) for j € N. Consider the restriction f jon A;(E)-
By [6], there exist f{ € H(QN 4;(E)), k=1,2,..., such that.

- 1
N5 = Flix; < 7

where f;(z) = fgaxia'}; log | fi(2)]. Since' 2N.A4;(E) has the property P with

respect to A; (E) the functmns f:. can be replaced by holomorphlc functions
on A; (E) [4 Theorem 2. 4]. We shall show that { fioA;} converges umformly
on each compact subset & in Q. Choose ng such that K C Int Fno Then there
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~ exists a neighbourhood of zero in E such that

(11) K4V CK+V Clnt By,
-(12) | | A(K)CK+V forall i = Jjo-

' F&‘om (1.1) and (1.2) we obtain

(1.3) _ , A_,-(K) C F,, C Fj for all j 2> ji = max(jg, no).

Since ‘|J A4; ;(K) is relatwely compact, {J A; (K ) C sz for some j;. 2 ji.
“iZh izZh

Hence ' ‘

(14) AK)CQ; forall 24
From (1.3) and (1.4) we have -
A;(K) C Q5N FyN A(B) C K; forall j 2 j.
ol R
55 = Sl < 1545 = Al + 11545 = Pl
=Ifi — fllajx + [If4; = flix < s = flle + 1145 = Flixe

_1+|if«4 fIIK—'U (as J—’OO)

Combining- Theorem 1.1 and Theorem 1 2 we g;et the following
| THEOREM 1.3. Let E be a Fréchet space having a Schauder basis. - Then
E has a continuous norm if and only if for every open subset §) of E with the
property-P and for every continuous plurisubharmonic function f ‘on ), there

exists a sequence of function { fa}s uniformly convergent to f on each compact
subset of Q:

fal2) = max a} log 17 (2,

Wherea >0 and f7 € H(Q).
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2. Plurisubharmonic function of uniform type

DEFINITION: Let E be. a locally convex space and G an open set in
Ck. A plunsubha.rmomc function ¢ ! G X E — [=00, oo) is called uniformly
plurisubharmonic (or of uniform type) if there exists a continuous seminorm p

on E and a plurisubharmonic function ¢ on G x E, such that -
o = g.(1dGx L),

where E,, is the completion of the canonical normed-space E/ker p and II, is.

the canonical projection from F on the space E,.

It should be noted that in the partwular case when ¢ depends only on
the second variable z € E, it is cons1dered as a functwn on E and is un:formly

plurlsubha,rmonlc in the usual sense.

Recently; Meise and Vogt-have investigated the relation between the
uniform boundedness of holomorphic functions and the property Qofa nuclear
Fréchet space (see (3, Theorem 3. 3]). Recall that a locally convex space Eis
said to have the property Sl if for each continuous semmorm pon E, there exists
a continuous seminorm ¢ on E such that for each _contmuous semlnorm kon E

and each e > 0 there exists ¢ > 0 ,wi_th
IIyH "< ¢ Ty 1% IIyH* for all yeE.

here ||y||3 = sup{ly(z)} : p(z) < 1}. Itis well-known that umformly bounded
holomorphic functions are closely connected Wlth un1form1y plunsubha,rmomc
funct1ons Thus, 1t 1s natura.l for us to give a chara,ctenza.mon of the property

Q by the uniformity of pluusubharmon;c functions.

THEOREM 2.1. Let . E be a nuclear Fréchet space with a Schauder basic.
Then E has the property Q if and only if every plurisubharmonic functmn of
class C! on G x E is of uniform type, Where G 1s an. open bounded absolutely

convex subset of C*,
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PROOF: a) S.l.J.ppOS;e that E has tlie prop'e'rty. 5 and let G be. an open,
bounded absolutely convex subset of C*. Let ¥ be a plunsubharmomc function
of the class C! on G x E. '

First, assume that £ has a contintious norm.” Sincé G X E has the
property P, by Theorem. 1.2 there exist functions fFeHQIXE), n=1,2,.
and 7 < my, such that = - .~
cp(:c,z) = lim fn(m: z},

where fn(z,2) = max aj aj log|f}(z,2)|. Moreover, the sequence {f,} uniformly
i<
converges to ¢ on each compact subset of G x E. There exists a balariced convex

neighbeurhood U of zero in E such that

sup max a3 log|fj'(z,2)| = M, < oo
t€pG jsm
zeU

for every 0 < p < 1. Hence
|} (@, 2)| < &M/
forall z € pG, z € U, n>0,j<m,.

As in [3], we can find a balanced convex neighbourhood' V' C U and

holomorphlc functlons f ™ on G' X Ev such that

f"(ﬂf 2) f"(-’v HV(Z)), |

o sup{[f"’(::: e, z) € pG X EV, ||z|| < 1} < c eM"/“

for some constant C, dependent only onr, here Ey is the complet1on of E/Ker
Py considered as a norm space by the Mihkowski- functional Py associated
with V and Iy : E — Ey is the canonical projection. We may assume that '
0<aj<1forallnandj <m, Then- | o

af log If (=, 2) < a7 log Cr + M, <log C, + M,,
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for aﬂ n >1, § < my and (z,2) € pG X EV, [lz]} < r. Deﬁne a functlon % on

' G >< EV by .
' (a: z) =lim sup[ hm max a“ log |f"(w z)]
i<

' —z

Then ¢ is plurisubharmonic on G x Ev [7].

Since the function ¢ belongs to the class C!; we find a neighbourhood
Go X W of zero in G x E and a continuous plurisubharmonic function ¢ on
Go x W such that '

- p(2,2) = ¢ (2, 11(2)).
Consider the pl.urisubharmonic function
G(IdG x Owy) on G x Ew, where
HOwy : Ew — Ev is the canonical 'p‘r.oje‘ction.
By the continuity of ¢ on Go x W,
B(1dGy x H_Wv) lGow= 0.
Hence o | . |
F(IdG x My o Ily) = .
Thus ¢ is uniformly .pllurisubharmoni'é."'

Now we can pass to the génefal casé; ﬁhéfe E does Illlofhne‘eci .to have a
continuous norm. Since ¢ belongs to the class C?! in a neighbourhood of zero
in G x E, we can find a continuous seminorm « on E and a neighbourhood of
zero in G such that ¢ and its derwatwe is bounded on Go x {z € E : oz} < 1}.

Without loss of generality, we may assume that
a(z) = Sup‘{a'(‘lrn(z)) :n€ N},

where

ma(z) = 3 et()en.
S k=1 . -
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Put
*={n € N rale,) =0},
E={z€E:e,(z)=0,nec Z%}.

‘Then by [5, Lemma 3.1}, E =Ker a + E%, and E* has a Schauder basis and a
continudus norml. Foreveryz € E, we write z = 21 + 23, 21 € Ker o, z3 € E“.
We shall show that the function @ is not. dependent on the component z;. Let
21 € Ker a. For each z; € E with af2;) < 1, cons:der the subharmonic function
(z,A) = o(z,21 + Az2). Slnce © belongs to the class C1, for A sufficient small

~and = € G we have

lo(2, 21 + Az?) - ¢(z, Azz.)l < Ma(zlj = 0.

_ Hence go(m, 71 + Az) = oz, Azz) for Al < e 2 € Go. From this it follows that
w(x, 2 + Azzj = t,o(_a;, Azs) fér all )\ and z € G |

Hence ¢(z, 2y + zz) = ¢(z,2) for 2 € G and 2 €Ker a. Thus ¢ may be
considered as a plurisubbharmonic function on G x E°. From what we have
proved above, it follows that there exists a neighbourhood V of zero in E* and

a plurisubharmonic function g on G x E¢ such that -

(2.1) . (e, m) = g(z, T (22)),

where II§, : E* — Eg is the canonica;l projection. Put U = Ker a @ V. Then
Ey = E3. Let

I*: E—s E®,
Hy:E— Ey=E%
be the canonical projections. We have

(2.2) o My = I o I*
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Combining (2.1) and (2.2), we get

(2.3) l o(z,2) = (P(Is HU(Z))

Thus, ¢ is uniformly plurisubharmonic on' G x E.

e b) Let E be a nuclear Fréchet space such that every. plurisubharmonic
function of the class C? on G x E is of uniform type. To prove the property Q of
Ej; it is sufficient by Vogt [9] to show that L(E, H(A)) = LB(E, H(A)), where
A is the unit ball in C, L(E,H(A)) is the space of continuous linear maps
of E into H(A), and LB(E, H(A)) the subspace of L(E, H(A)) consisting of
maps which are bounded on a neighbourhood of zero in E. Take. aﬁ' arbitrary
element T € L(E, H(A)). Define a holomorphlc function T AXE — Cby
CT(2,2) = T(2)[z]. Then the function (z,2) — |T(z; z)|2 is plurisubharmonic
and belongs. to- the class C'1 on A x E. By the assumptlon there ex1sts a

continuous seminorm p on E a,nd a plurlsubharmonlc fanction
<I> A X E — [ 00 oo)
such that o L ) e T
[T(z,2) = (. Tp(2)) forall z€B. .
From the linearity of T, it -follows that
B(x, Az} = [A2&(z,2) forall. z€E,
Let L e
oo
A=K,
=1
where {K;} is a compact exhaustion sequerice of A. By the upper-
semicontinuity of ®, there is a neighbourhobd Vi of zero in E, such that @

is bounded on each K; x V;.. We shall show that Qi is bounded on K X V1 for
each compact seét K in A. Obv1ously, KcC I\. and V1 - )\V ‘for some i and A
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We have
sup®(x,z) < sup ®(z,z) < sup @(m Az) <
TEK 2EK; zel;
z€V) zEV1 zeEV; -
< A sup ®(z,2) < o0
zEN;
zEV;

Put Uy = II;1 (V7). Then U, is a neighbourhood of zero in E and we get

sup - sup IT(2)[z]]? < sup|T(1 2)[? < sup &(z, 2') < oo
zel; zeK rEN zeK
zel, eV

Thus T' € LB(E < H(A)). Theorem 2.1 is now completely proved.

Under the assumption that F is a nuclear Fréchet space, it follows from
Theorem 2.1 that if E does not have the property $=2, there is a plurisubharmonic
function on G' x E which is not of uniform type (in the sense of our definition).
However, this does not happen in the case of DFC-spaces. Recall that a DFC-
space is any space of the form E = F; where F is a Fréchet space, i.e. the dual

of a Fréchet space endowed with the topology of compact convergence.
THEOREM 2.2 Evexy plunsubhaunomc function on a sepamble DFC-

space is of uniform type.

PROOF: Let E be a sepa.ra'ble DFC-space and ¢ € PS(E). Set
Uj = ¢} (—oo,r;) for r; € Q.
Then the family {U; : r; € Q} forms an open covering of E. We can replace
this family by a family {z; + Vi}ien which satisfies the following conditions

| a) Vi is a convex, balaﬁced .neigh'bourhood of ‘zero_. )
b) For each 7, there exists j such that @ +V; CU;.
- By [4], there exists a sequence {As} such that U = ﬂ Aj V is also a

nexghbourhood of zero in E. There is a plur:subharmomc functlon

¢ : EfKer Py — [—00,00)
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such that ¢ = @ o Ily. On the other hand, by the assumption we can write
E = U I{n, where K, is compact in E with nK,, C K4y for n=1,2,.... For

each n, there exists a nelghbourhood W of zero such that
sup{go(‘x) 22 € Koy +Wo} < oo, |

Let W = ?i{Kn + %Wn}, where W,, are _t:hoosen such that W, C-W,41, n=
2,.... Since E is a DF C-space, Wis also open in E:. We have nW.C:Kpp1 +
Wy. Thus

sup{(z): z € nW} < sup{p(z) 1z € Kpp1 + Wn}.< o)

Put D = WA U. Then ¢ is bounded on nD for all n > 2. Hence
¢ o II is plurisubharmonic and bounded on evéry nD; n > 2, where II is the
restriction of the canonical projection IIpy : Ep — Ey on the space E/Ker

PD Deﬁne a-function ¢ on ED by

g(z) ' l1m sup cpoII( )
2z .

z' EE/Ker PD
Then 2 is plunsubhamlomc on ED [7] a.nd cp =go II D-
| The proof of Theorern 2 2 is complete
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